Preclinical Efficacy and Proteomic Prediction of Molecular Targets for s-cal14.1b and s-cal14.2b Conotoxins with Antitumor Capacity in Xenografts of Malignant Pleural Mesothelioma
Abstract
:1. Introduction
2. Results
2.1. s-cal14.2b Had Larger Effect on Proliferation of Epithelial Mesothelioma-Derived Cell Line
2.2. Apoptosis Was Induced in Cell Line Monolayers After s-cal14.1b and s-cal14.2b Exposition
2.3. s-cal14.1b but Not s-cal14.2b Impaired Growth and Morphology of Multicellular Spheroids
2.4. Conotoxins Induced Cytotoxicity in Spheroids Culture
2.5. Differential Protein Expression in Epithelial Cell Lines After Conotoxin Treatment
2.6. Mass Spectrometry Analysis
Protein Expression Induced by s-cal14.2b Generates More Abundant Biological Networks
2.7. Intravenous Administration of s-cal14.1b Decreased the Tumor Mass of MPM Xenografts
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Conotoxins s-cal14.1b and s-cal14.2b
4.3. Animal Model
4.4. Cellular Proliferation and Apoptosis Assays in 2D Cultures
4.5. Formation and Growth of Multicellular Spheroids
4.6. Exposure of Multicellular Spheroids to Conotoxins
4.7. Cytotoxicity Assay on Multicellular Spheroids
4.8. Protein Extract and Denaturing Gel Electrophoresis Assays
4.9. Protein Digestion and Mass Spectrometry Analysis
4.9.1. Protein Identification/Proteomic Processing Data
4.9.2. Heat Maps and Visualization Analysis
4.10. Mice Malignant Pleural Mesothelioma Xenografts
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tsao, A.S.; Lindwasser, O.W.; Adjei, A.A.; Adusumilli, P.S.; Beyers, M.L.; Blumenthal, G.M.; Bueno, R.; Burt, B.M.; Carbone, M.; Blumenthal, G.M.; et al. Current and Future Management of Malignant Mesothelioma: A Consensus Report from the National Cancer Institute Thoracic Malignancy Steering Committee, International Association for the Study of Lung Cancer, and Mesothelioma Applied Research Foundation. J. Thorac. Oncol. 2018, 13, 1655–1667. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Delgermaa, V.; Takahashi, K.; Park, E.K.; Le, G.V.; Hara, T.; Sorahan, T. Global mesothelioma deaths reported to the World Health Organization between 1994 and 2008. Bull. World Health Organ. 2011, 89, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Odgerel, C.O.; Takahashi, K.; Sorahan, T.; Driscoll, T.; Fitzmaurice, C.; Yoko-O, M.; Sawanyawisuth, K.; Furuya, S.; Tanaka, F.; Horie, S.; et al. Estimation of the global burden of mesothelioma deaths from incomplete national mortality data. Occup. Environ. Med. 2017, 74, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Madrid, G.; Robles-Pérez, E.; Juárez-Pérez, C.A.; Alvarado-Cabrero, I.; Rico-Méndez, F.G.; Javier, K.G. Case-control study of pleural mesothelioma in workers with social security in Mexico. Am. J. Ind. Med. 2010, 53, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Gopar-Nieto, R.; Cabello-López, A.; Juárez-Pérez, C.A.; Haro-García, L.C.; Jiménez-Ramírez, C.; Aguilar-Madrid, G. Actualización sobre la epidemiología, fisiopatología, diagnóstico y tratamiento del mesotelioma maligno pleural [Update on epidemiology, pathophysiology, diagnosis and treatment of malignant pleural mesothelioma]. Rev. Med. Inst. Mex. Seguro Soc. 2016, 54, 770–776. (In Spanish) [Google Scholar] [PubMed]
- Arrieta, O.; López-Macías, D.; Mendoza-García, V.O.; Bacon-Fonseca, L.; Muñoz-Montaño, W.; Macedo-Pérez, E.O.; Muñiz-Hernández, S.; Blake-Cerda, M.; Corona-Cruz, J.F. A phase II trial of prolonged, continuous infusion of low-dose gemcitabine plus cisplatin in patients with advanced malignant pleural mesothelioma. Cancer Chemother. Pharmacol. 2014, 73, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Montaño, W.; Muñiz-Hernández, S.; Avilés-Salas, A.; Catalán, R.; Lara-Mejía, L.; Samtani-Bassarmal, S.; Cardona, A.F.; Mendoza-Desión, J.; Hernández-Cueto, D.; Maldonado, A.; et al. RRM1 and ERCC1 as biomarkers in patients with locally advanced and metastatic malignant pleural mesothelioma treated with continuous infusion of low-dose gemcitabine plus cisplatin. BMC Cancer 2021, 21, 892. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ak, G.; Metintas, S.; Akarsu, M.; Metintas, M. The effectiveness and safety of platinum-based pemetrexed and platinum-based gemcitabine treatment in patients with malignant pleural mesothelioma. BMC Cancer 2015, 15, 510. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Steele, J.P.; Shamash, J.; Evans, M.T.; Gower, N.H.; Tischkowitz, M.D.; Rudd, R.M. Phase II study of vinorelbine in patients with malignant pleural mesothelioma. J. Clin. Oncol. 2000, 18, 3912–3917. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, O.; Medina, L.A.; Estrada-Lobato, E.; Ramírez-Tirado, L.A.; Mendoza-García, V.O.; de la Garza-Salazar, J. High liposomal doxorubicin tumour tissue distribution, as determined by radiopharmaceutical labelling with (99m)Tc-LD, is associated with the response and survival of patients with unresectable pleural mesothelioma treated with a combination of liposomal doxorubicin and cisplatin. Cancer Chemother. Pharmacol. 2014, 74, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Govindan, R.; Kratzke, R.A.; Herndon, J.E., 2nd; Niehans, G.A.; Vollmer, R.; Watson, D.; Green, M.R.; Kindler, H.L.; Cancer and Leukemia Group B (CALGB 30101). Gefitinib in patients with malignant mesothelioma: A phase II study by the Cancer and Leukemia Group B. Clin. Cancer Res. 2005, 11, 2300–2304. [Google Scholar] [CrossRef] [PubMed]
- Baas, P.; Scherpereel, A.; Nowak, A.K.; Fujimoto, N.; Peters, S.; Tsao, A.S.; Mansfield, A.S.; Popat, S.; Jahan, T.; Antonia, S.; et al. First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): A multicentre, randomised, open-label, phase 3 trial. Lancet 2021, 397, 375–386, Erratum in Lancet 2021, 397, 670. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Xu, S.; Zhang, Y.; Wang, F. Animal protein toxins: Origins and therapeutic applications. Biophys. Rep. 2018, 4, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, A.; Karaś, M.; Rybczyńska-Tkaczyk, K.; Zielińska, E.; Zieliński, D. Current Trends of Bioactive Peptides-New Sources and Therapeutic Effect. Foods 2020, 9, 846. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Donia, M.; Hamann, M.T. Marine natural products and their potential applications as anti-infective agents. Lancet Infect. Dis. 2003, 3, 338–348. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Akondi, K.B.; Muttenthaler, M.; Dutertre, S.; Kaas, Q.; Craik, D.J.; Lewis, R.J.; Alewood, P.F. Discovery, synthesis, and structure-activity relationships of conotoxins. Chem. Rev. 2014, 114, 5815–5847. [Google Scholar] [CrossRef] [PubMed]
- Barghi, N.; Concepcion, G.P.; Olivera, B.M.; Lluisma, A.O. High conopeptide diversity in Conus tribblei revealed through analysis of venom duct transcriptome using two high-throughput sequencing platforms. Mar. Biotechnol. 2015, 17, 81–98. [Google Scholar] [CrossRef] [PubMed]
- Deer, T.R.; Pope, J.E.; Hanes, M.C.; McDowell, G.C. Intrathecal Therapy for Chronic Pain: A Review of Morphine and Ziconotide as Firstline Options. Pain Med. 2019, 20, 784–798. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Biggs, J.S.; Watkins, M.; Puillandre, N.; Ownby, J.P.; Lopez-Vera, E.; Christensen, S.; Moreno, K.J.; Bernaldez, J.; Licea-Navarro, A.; Corneli, P.S.; et al. Evolution of Conus peptide toxins: Analysis of Conus californicus Reeve, 1844. Mol. Phylogenet. Evol. 2010, 56, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Malaker, A.; Shah, A.I.A. Therapeutic potency of anticancer peptides derived from marine organisms. Int. J. Eng. Appl. Sci. 2013, 2, 53–65. [Google Scholar]
- Oroz-Parra, I.; Álvarez-Delgado, C.; Cervantes-Luevano, K.; Dueñas-Espinoza, S.; Licea-Navarro, A.F. Proapoptotic Index Evaluation of Two Synthetic Peptides Derived from the Coneshell Californiconus californicus in Lung Cancer Cell Line H1299. Mar. Drugs 2019, 18, 10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oroz-Parra, I.; Navarro, M.; Cervantes-Luevano, K.E.; Álvarez-Delgado, C.; Salvesen, G.; Sanchez-Campos, L.N.; Licea-Navarro, A.F. Apoptosis Activation in Human Lung Cancer Cell Lines by a Novel Synthetic Peptide Derived from Conus californicus Venom. Toxins 2016, 8, 38. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Calderón-Celis, F.; Sanz-Medel, A.; Encinar, J.R. Universal absolute quantification of biomolecules using element mass spectrometry and generic standards. Chem. Commun. 2018, 54, 904–907. [Google Scholar] [CrossRef] [PubMed]
- Follo, C.; Barbone, D.; Richards, W.G.; Bueno, R.; Courtney Broaddus, V. Autophagy in 3D In Vitro and Ex Vivo Cancer Models. Methods Mol. Biol. 2019, 1880, 491–510. [Google Scholar] [CrossRef] [PubMed]
- UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barreca, M.; Spanò, V.; Montalbano, A.; Cueto, M.; Díaz Marrero, A.R.; Deniz, I.; Erdoğan, A.; Lukić Bilela, L.; Moulin, C.; Taffin-de-Givenchy, E.; et al. Marine Anticancer Agents: An Overview with a Particular Focus on Their Chemical Classes. Mar. Drugs 2020, 18, 619. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kang, H.K.; Choi, M.C.; Seo, C.H.; Park, Y. Therapeutic Properties and Biological Benefits of Marine-Derived Anticancer Peptides. Int. J. Mol. Sci. 2018, 19, 919. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Riedl, S.; Zweytick, D.; Lohner, K. Membrane-active host defense peptides--challenges and perspectives for the development of novel anticancer drugs. Chem. Phys. Lipids 2011, 164, 766–781. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Phung, Y.; Ho, M. Changes in global gene expression associated with 3D structure of tumors: An ex vivo matrix-free mesothelioma spheroid model. PLoS ONE 2012, 7, e39556. [Google Scholar] [CrossRef] [PubMed]
- Papazoglou, E.D.; Jagirdar, R.M.; Kouliou, O.A.; Pitaraki, E.; Hatzoglou, C.; Gourgoulianis, K.I.; Zarogiannis, S.G. In Vitro Characterization of Cisplatin and Pemetrexed Effects in Malignant Pleural Mesothelioma 3D Culture Phenotypes. Cancers 2019, 11, 1446. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barbone, D.; Van Dam, L.; Follo, C.; Jithesh, P.V.; Zhang, S.D.; Richards, W.G.; Bueno, R.; Fennell, D.A.; Broaddus, V.C. Analysis of Gene Expression in 3D Spheroids Highlights a Survival Role for ASS1 in Mesothelioma. PLoS ONE 2016, 11, e0150044. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sato, S.; Murata, A.; Orihara, T.; Shirakawa, T.; Suenaga, K.; Kigoshi, H.; Uesugi, M. Marine natural product aurilide activates the OPA1-mediated apoptosis by binding to prohibitin. Chem. Biol. 2011, 18, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Wesson, K.J.; Hamann, M.T. Keenamide A, a bioactive cyclic peptide from the marine mollusk Pleurobranchus forskalii. J. Nat. Prod. 1996, 59, 629–631. [Google Scholar] [CrossRef] [PubMed]
- Terlau, H.; Olivera, B.M. Conus venoms: A rich source of novel ion channel-targeted peptides. Physiol. Rev. 2004, 84, 41–68. [Google Scholar] [CrossRef] [PubMed]
- Koh, C.Y.; Kini, R.M. From snake venom toxins to therapeutics--cardiovascular examples. Toxicon 2012, 59, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.T.; Liu, Z.D.; Wang, Z.; Wang, T.; Wang, N.; Wang, N.; Zhang, B.; Zhao, Y.F. Recent Advances in Small Peptides of Marine Origin in Cancer Therapy. Mar. Drugs 2021, 19, 115. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jumeri Kim, S.M. Antioxidant and anticancer activities of enzymatic hydrolysates of solitary tunicate (Styela clava). Food Sci. Biotechnol. 2011, 20, 1075. [Google Scholar] [CrossRef]
- Dyshlovoy, S.A.; Honecker, F. Marine Compounds and Cancer: Updates 2020. Mar. Drugs 2020, 18, 643. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lan, Z.; Qiu, G.; Ren, H.; Zhao, Y.; Gu, Z.; Li, Z.; Feng, L.; He, J.; Wang, C. Over-expression of ANP32E is associated with poor prognosis of pancreatic cancer and promotes cell proliferation and migration through regulating β-catenin. BMC Cancer 2020, 20, 1065. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xiong, Z.; Ye, L.; Zhenyu, H.; Li, F.; Xiong, Y.; Lin, C.; Wu, X.; Deng, G.; Shi, W.; Song, L.; et al. ANP32E induces tumorigenesis of triple-negative breast cancer cells by upregulating E2F1. Mol. Oncol. 2018, 12, 896–912. [Google Scholar] [CrossRef] [PubMed]
- Ohno, Y.; Koizumi, M.; Nakayama, H.; Watanabe, T.; Hirooka, M.; Tokumoto, Y.; Kuroda, T.; Abe, M.; Fukuda, S.; Higashiyama, S.; et al. Downregulation of ANP32B exerts anti-apoptotic effects in hepatocellular carcinoma. PLoS ONE 2017, 12, e0177343. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, L.; Zeng, T.T.; Zhang, B.Z.; Li, Y.; Zhu, Y.H.; Guan, X.Y. Overexpression of HN1L promotes cell malignant proliferation in non-small cell lung cancer. Cancer Biol. Ther. 2017, 18, 904–915. [Google Scholar] [CrossRef] [PubMed]
- Pippa, R.; Boffo, S.; Odero, M.D.; Giordano, A. Data mining analysis of the PP2A cell cycle axis in mesothelioma patients. J. Cell. Physiol. 2020, 235, 5284–5292. [Google Scholar] [CrossRef] [PubMed]
- Vellky, J.E.; Ricke, E.A.; Huang, W.; Ricke, W.A. Expression and Localization of DDX3 in Prostate Cancer Progression and Metastasis. Am. J. Pathol. 2019, 189, 1256–1267. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.W.; Lee, M.C.; Wang, J.; Chen, C.Y.; Cheng, Y.W.; Lee, H. DDX3 loss by p53 inactivation promotes tumor malignancy via the MDM2/Slug/E-cadherin pathway and poor patient outcome in non-small-cell lung cancer. Oncogene 2014, 33, 1515–1526. [Google Scholar] [CrossRef] [PubMed]
- Bol, G.M.; Vesuna, F.; Xie, M.; Zeng, J.; Aziz, K.; Gandhi, N.; Levine, A.; Irving, A.; Korz, D.; Tantravedi, S.; et al. Targeting DDX3 with a small molecule inhibitor for lung cancer therapy. EMBO Mol. Med. 2015, 7, 648–669. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qi, H.; Liu, S.; Guo, C.; Wang, J.; Greenaway, F.T.; Sun, M.Z. Role of annexin A6 in cancer. Oncol. Lett. 2015, 10, 1947–1952. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Dong, C.; Li, X.; Han, W.; Su, X. Anticancer potential of bioactive peptides from animal sources (Review). Oncol. Rep. 2017, 38, 637–651. [Google Scholar] [CrossRef] [PubMed]
- Curtin, N.J.; Szabo, C. Poly(ADP-ribose) polymerase inhibition: Past, present and future. Nat. Rev. Drug Discov. 2020, 19, 711–736. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, E.; Tabatabai, R.; Roy, V.; Rimel, B.J.; Mita, M.M. PARP Inhibition in Cancer: An Update on Clinical Development. Target Oncol. 2019, 14, 657–679. [Google Scholar] [CrossRef] [PubMed]
- Cirello, V.; Colombo, C.; Pogliaghi, G.; Proverbio, M.C.; Rossi, S.; Mussani, E.; Tosi, D.; Bulfamante, G.; Bonoldi, E.; Gherardi, G.; et al. Genetic variants of PARP4 gene and PARP4P2 pseudogene in patients with multiple primary tumors including thyroid cancer. Mutat. Res. 2019, 816, 111672. [Google Scholar] [CrossRef] [PubMed]
- Prawira, A.; Munusamy, P.; Yuan, J.; Chan, C.H.T.; Koh, G.L.; Shuen, T.W.H.; Hu, J.; Yap, Y.S.; Tan, M.H.; Ang, P.; et al. Assessment of PARP4 as a candidate breast cancer susceptibility gene. Breast Cancer Res. Treat. 2019, 177, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Brunyanszki, A.; Szczesny, B.; Virág, L.; Szabo, C. Mitochondrial poly(ADP-ribose) polymerase: The Wizard of Oz at work. Free Radic. Biol. Med. 2016, 100, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Ganz, M.; Vogel, C.; Czada, C.; Jörke, V.; Gwosch, E.C.; Kleiner, R.; Pierzynska-Mach, A.; Zanacchi, F.C.; Diaspro, A.; Kappes, F.; et al. The oncoprotein DEK affects the outcome of PARP1/2 inhibition during mild replication stress. PLoS ONE 2019, 14, e0213130. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, T.; Qiu, B.; Zhou, S.; Ding, G.; Cao, L.; Wu, Z. Expression of DEK in pancreatic cancer and its correlation with clinicopathological features and prognosis. J. Cancer 2019, 10, 911–917. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, M.Q.; Bai, L.L.; Lei, L.; Zheng, Y.W.; Wang, Z.; Li, Z.H.; Liu, C.C.; Huang, W.J.; Xu, H.T. DEK promotes the proliferation and invasion of lung cancers and indicates poor prognosis in lung adenocarcinomas. Oncol. Rep. 2020, 43, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Yan, F.; Cao, W.; Chen, Z.; Zheng, H.; Li, H.; Pan, Y.; Narula, N.; Ren, X.; Li, H.; et al. Dysregulation of CUL4A and CUL4B Ubiquitin Ligases in Lung Cancer. J. Biol. Chem. 2017, 292, 2966–2978. [Google Scholar] [CrossRef] [PubMed]
- Duan, P.J.; Zhao, J.H.; Xie, L.L. Cul4B promotes the progression of ovarian cancer by upregulating the expression of CDK2 and CyclinD1. J. Ovarian. Res. 2020, 13, 76. [Google Scholar] [CrossRef] [PubMed]
- Meerang, M.; Kreienbühl, J.; Orlowski, V.; Müller, S.L.C.; Kirschner, M.B.; Opitz, I. Importance of Cullin4 Ubiquitin Ligase in Malignant Pleural Mesothelioma. Cancers 2020, 12, 3460. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Creaney, J.; Dick, I.M.; Musk, A.W.; Olsen, N.J.; Robinson, B.W. Immune response profiling of malignant pleural mesothelioma for diagnostic and prognostic biomarkers. Biomarkers 2016, 21, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Giusti, L.; Ciregia, F.; Bonotti, A.; Da Valle, Y.; Donadio, E.; Boldrini, C.; Foddis, R.; Giannaccini, G.; Mazzoni, M.R.; Canessa, P.A.; et al. Comparative proteomic analysis of malignant pleural mesothelioma: Focusing on the biphasic subtype. EuPA Open Proteom. 2016, 10, 42–49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giusti, L.; Da Valle, Y.; Bonotti, A.; Donadio, E.; Ciregia, F.; Ventroni, T.; Foddis, R.; Giannaccini, G.; Guglielmi, G.; Cristaudo, A.; et al. Comparative proteomic analysis of malignant pleural mesothelioma evidences an altered expression of nuclear lamin and filament-related proteins. Proteom. Clin. Appl. 2014, 8, 258–268. [Google Scholar] [CrossRef] [PubMed]
MSTO-211 | H2452 | |||||||
---|---|---|---|---|---|---|---|---|
Condition | Day 4 Mean ± SD | p-Value | Day 8 Mean ± SD | p-Value | Day 5 Mean ± SD | p-Value | Day 9 Mean ± SD | p-Value |
Monolayer | 54 ± 4.1 | 46 ± 3.6 | ||||||
Spheroids untreated | 41 ± 3.5 | 0.040 | 29 ± 2.7 | 0.005 | 51 ± 2.8 | 0.138 | 38 ± 3 | 0.069 |
s-cal14.1b ϕ | 44 ± 3.8 | 0.366 | 34 ± 1.3 | 0.041 | 45 ± 4.9 | 0.251 | 38 ± 2.5 | 0.742 |
s-cal14.2b ϕ | 37 ± 2.4 | 0.238 | 33 ± 2.7 | 0.123 | 44 ± 3.9 | 0.112 | 34 ± 1.1 | 0.109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luna-Nophal, A.; Díaz-Castillo, F.; Izquierdo-Sánchez, V.; Velázquez-Fernández, J.B.; Orozco-Morales, M.; Lara-Mejía, L.; Bernáldez-Sarabia, J.; Sánchez-Campos, N.; Arrieta, O.; Díaz-Chávez, J.; et al. Preclinical Efficacy and Proteomic Prediction of Molecular Targets for s-cal14.1b and s-cal14.2b Conotoxins with Antitumor Capacity in Xenografts of Malignant Pleural Mesothelioma. Mar. Drugs 2025, 23, 32. https://doi.org/10.3390/md23010032
Luna-Nophal A, Díaz-Castillo F, Izquierdo-Sánchez V, Velázquez-Fernández JB, Orozco-Morales M, Lara-Mejía L, Bernáldez-Sarabia J, Sánchez-Campos N, Arrieta O, Díaz-Chávez J, et al. Preclinical Efficacy and Proteomic Prediction of Molecular Targets for s-cal14.1b and s-cal14.2b Conotoxins with Antitumor Capacity in Xenografts of Malignant Pleural Mesothelioma. Marine Drugs. 2025; 23(1):32. https://doi.org/10.3390/md23010032
Chicago/Turabian StyleLuna-Nophal, Angélica, Fernando Díaz-Castillo, Vanessa Izquierdo-Sánchez, Jesús B. Velázquez-Fernández, Mario Orozco-Morales, Luis Lara-Mejía, Johana Bernáldez-Sarabia, Noemí Sánchez-Campos, Oscar Arrieta, José Díaz-Chávez, and et al. 2025. "Preclinical Efficacy and Proteomic Prediction of Molecular Targets for s-cal14.1b and s-cal14.2b Conotoxins with Antitumor Capacity in Xenografts of Malignant Pleural Mesothelioma" Marine Drugs 23, no. 1: 32. https://doi.org/10.3390/md23010032
APA StyleLuna-Nophal, A., Díaz-Castillo, F., Izquierdo-Sánchez, V., Velázquez-Fernández, J. B., Orozco-Morales, M., Lara-Mejía, L., Bernáldez-Sarabia, J., Sánchez-Campos, N., Arrieta, O., Díaz-Chávez, J., Castañeda-Sánchez, J.-I., Licea-Navarro, A.-F., & Muñiz-Hernández, S. (2025). Preclinical Efficacy and Proteomic Prediction of Molecular Targets for s-cal14.1b and s-cal14.2b Conotoxins with Antitumor Capacity in Xenografts of Malignant Pleural Mesothelioma. Marine Drugs, 23(1), 32. https://doi.org/10.3390/md23010032