Biological Activities of Aqueous and Organic Extracts from Tropical Marine Sponges
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Sponge collection
3.2. Sample preparation
3.3. Aqueous extraction
3.4. Protein determination
3.5. Extraction with organic solvents
3.6. Hemolytic activity assay
3.7. Antibacterial activity assay
3.8. Hemagglutination assay
3.9. Acetylcholinesterase inhibition assay
3.10. Protein phosphatase 1 inhibition/activation assay
4. Conclusions
Supplementary Data
Supplement Table 1a
Species | S # | Hemolytic activity | Antibacterial activity (inhibition zone mm) | Hem- agglutination | AChE inhibition | PP1 activation/inhibition | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B. subtilis | E. coli | aqueous | Organic | aqueous | organic | ||||||||||
aq | aqh | A | B | M | aq | aqh | A | B | M | ||||||
Agelas clathrodes | 81 | +++A,B,M | 2aq, 3aqh | +++ | + | +++ | i | ||||||||
2A, 2B, 5M | |||||||||||||||
Agelas conifera | 34 | .5A, 8B, 10M | .5A, 8B, 10M | +++ | +++ | +++ | +++ | ||||||||
Agelas conifera | 97 | 4A, 2B, 9M | 1.5A,1B, 6M | +++ | +++ | + | +++ | i | i | i | |||||
Agelas dispar | 58 | +++ | iii | ||||||||||||
Agelas dispar | 88 | 2A, 2B, 3M | + | + | ++ | ++ | i | i | ii | i | |||||
Agelas schmidti | 54 | 9A, 9B, 9M | 0.5B | ||||||||||||
Aplysina archeri | 40 | 3.5aq 3A, 5B, 4M | 2A, 1B, 1M | +aq | +++ | +++ | + | + | ++ | iii | iii | iii | |||
Aplysina archeri | 61 | ++A,B | 6aq 3A, 3B, 6M | 2aq 1A, 1B, 3M | +aqh | + | +++ | ii | |||||||
Alpysina cauliformis | 84 | ++A,B, +M | 2aq 2A,2B,3M | ++ | ii | ii | |||||||||
Aplysina fistularis | 57 | ++A,B | 2A, 2B, 2M | 1A, 1B, .5M | ii | ||||||||||
Aplysina fulva | 10 | +++A, ++B,M | 6aq 3A, 3B, 10M | 4aq 2A, 1B, 6M | + | + | +++ | ii | ii | ||||||
Aplysina lacunosa | 41 | ++A,B, +M | 2A, 2B, 2M | + | + | ||||||||||
Aplysina lacunosa | 112 | 3A, 3B, 2M | +aq | +++ | +++ | + | + | +++ | ii | ii | |||||
Callyspongia plicifera | 9 | 2A, 1B, 2M | + | i | i | ii | ii | i | |||||||
Callyspongia plicifera | 67 | 3A, 2B, 2M | + | ii | i | ii | i | ||||||||
Callyspongia plicifera | 103 | 3A, 2B, 1M | 1A, 2B, 1M | i | ii | iii | |||||||||
Callyspongia plicifera | 127 | 2A, 2B, 1M | a | ||||||||||||
Callyspongia vaginalis | 15 | 1A, 1B | 1B | ii | i | iii | |||||||||
Callyspongia vaginalis | 48 | 2A, 2B, 2M | 1B, 2M | + | ii | ii | iii | iii | |||||||
Callyspongia vaginalis | 66 | 3A, 4B, 1M | +aq | + | + | ++ | i | i | i | i | |||||
Geodia neptuni | 87 | +A,M | 3A, 2B, 2M | ++ | ii | ||||||||||
Holopsamma helwigi | 5 | 3A, 5B, 2M | +aq | + | ii | ii | ii | ||||||||
Holopsamma helwigi | 122 | +aq | |||||||||||||
Iotrochota birotulata | 77 | 4A, 4B, 4M | 1A, 4B, 4M | +aq, +aqh | ++ | + | +++ | ++ | +++ | i | iii | ||||
Ircinia campana | 70 | +A,B | 7A, 5B, 6M | + | + | ++ | a | ii | i | i | |||||
Ircinia felix | 59 | +++A,B,M | 5aq, 5.3aqh 9A,10B, 9M | + | ++ | ++ | ++ | a | i | ii | ii | ||||
Ircinia felix | 93 | +A,M, ++B | 3aq, 2.1aqh 13A,12B, 9M | ++ | + | + | ++ | ++ | a | i | ii | iii | |||
Ircinia felix | 129 | +++A | 5A, 2B, 5M | ii | i | ii | |||||||||
Ircinia strobilina | 56 | ++A, +B | 0.5aq 10A, 3B, 4M | + | + | a | i | i | i | ||||||
Ircinia strobilina | 124 | +++A,M, ++B | 9A, 2B, 10M | + | ii | i | |||||||||
Lissodendoryx colombiensis | 51 | +aq ++A, +B | 4aq 2A, 2B, 7M | 2aq 2M | +aq | ii | ii | i | i | ||||||
Lissodendoryx colombiensis | 110 | +++A | 10A, 3B, 4M | 1A | ++ | + | +++ | i | ii | ||||||
Myrmekioderma styx | 86 | ++A, +B | 4A, 4B, 3M | .5A, .5B, .5M | +aq, +aqh | ++ | ++ | a | |||||||
Neofibularia nolitangere | 49 | ++A, +B | 2A, 2B, 2M | .5A | |||||||||||
Neofibularia nolitangere | 83 | 3A, 3B, 2M | 1M | + | + | ii | iii | iii | |||||||
Neofibularia nolitangere | 94 | 4A, 4B, 3M | 2A, 1M | ++ | i | i | i | i | |||||||
Pandaros acanthifolium | 14 | 3A, 2B, 2M | 1A, 1B, 1M | i | ii | ||||||||||
Pandaros acanthifolium | 76 | +++aq | 3A, 2B, 5M | .5A, .5B, .5M | + | + | + | iii | iii | ii | i | i | |||
Pseudoceratina crassa | 2 | 3aq 7A, 3B, 7M | 1B | +aq | + | + | + | + | ++ | i | ii | ||||
Pseudoceratina crassa | 104 | +++A, ++M | 3A, 2B, 2M | +aq | + | ++ | ii | ii | i | i | |||||
Scopalina ruetzleri | 78 | 2A, 1B, 2M | + | + | i | i | |||||||||
Spheciospongia vesparium | 45 | 2A, 2B, 2M | 1A,1M | + | ++ | i | i | ||||||||
Spheciospongia vesparium | 69 | +++aq ++B, +++M | 2A, 2M | + | + | ++ | iii | iii | i | iii | |||||
Topsentia ophiraphidites | 99 | +++aq, +++aqh, +++A, ++M | 7aq, 8aqh 7A, 7B, 7M | 3aqh 4A, 4B, 4M | +++ | ++ | +++ | +++ | +++ | ii | ii | ii | i | ||
Tridideum misolidum | 79 | 3A, 2B, 2M | 1A, 2B | ii | ii | ii | |||||||||
Verongula gigantea | 44 | 5A, 4B, 4M | 1A, 1B, 1M | +++ | ++ | + | + | ++ | a | i | i | i | |||
Verongula rigida | 38 | 5aq, 5.2aqh | 1aqh | + | ++ | ++ | a | i | i | i | |||||
6A, 6B, 6M | 1A, 1B | ||||||||||||||
Verongula rigida | 105 | +A | 5aq 7A, 3B, 10M | 1A, 2M | + | + | + | ||||||||
Xestospongia muta | 53 | +++B,M | 10A, 7B, 6M | i | |||||||||||
Xestospongia muta | 95 | 4A, 6B, 5M | + | + | i | ||||||||||
Unidentified A21 | 114 | +aq | 2A, 1B, 5M | 2M | |||||||||||
Unidentified A33 | 28 | ++A,B,M | 3aq, 2aqh | +aq | +++ | +++ | +++ | ii | iii | iii | |||||
Unidentified A34 | 25 | ++A,B | 5A, 4B, 4M | ||||||||||||
Unidentified 1 | 21 | 2A, 2B, 3M | 1A, 1B | ++ | ++ | + | + | +++ | ii | iii | iii | iii | |||
Unidentified 2 | 32 | +B | 4A, 4B, 3M | 1A, 1B, 1M | +++ | +++ | + | ++ | ++ | ii | ii | ii | |||
Unidentified 3 | 96 | 2A, 3B, 2M | + | ++ | i | i | ii | ||||||||
Unidentified 4 | 117 | ++aq | 3A, 3B, 2M | +aq | + | + | + | + | + | a | i | i | i |
Supplement Table 1b
Species | S.# | Hemolytic activity | Antibacterial activity (inhibition zone mm) | Hem- aglutination | AChE inhibition | PP1 activation/inhibition | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B. subtilis | E. coli | aqueous | Organic | aqueous | organic | ||||||||||
aq | aqh | A | B | M | aq | aqh | A | B | M | ||||||
Hyrtios erecta | LI-10 | +A | 4A, 4B, 4M | iii | |||||||||||
Ircinia sp. | LI-39 | 2A, 2B, 2M | ++ | ||||||||||||
Ircinia sp. | 107 | ++A,B, +M | 9A,10B, 9M | + | + | + | i | ii | ii | i | |||||
Ircinia cf. Abseits | 132 | +A, ++B | 8A, 8B, 6M | + | + | + | a | i | ii | i | |||||
Pericharax heteroraphis | LI-35 | +++A, ++B, +M | 2A, 2B, 2M | a | i | ||||||||||
Phakellia stipitata | LI-5 | 4A, 3B, 4M | ii | ||||||||||||
Spongia sp. | LI-43 | +A | 2A, 2B, 2M | + | i | ||||||||||
Thorectandra sp. | LI-27 | +A, +B | 3A, 2B, 3M | +aq | + | +++ | ++ | +++ | i | i | |||||
Xestospongia pacifica | LI-47 | 3A, 3B, 3M | 2A, 1M | +++ | +++ | ++ | +++ | +++ | iii | i | iii | iii | iii |
Acknowledgements
References
- Bacus, GJ; Green, G. Toxicity in sponges and holothurians: a geographic pattern. Science 1974, 13, 951–953. [Google Scholar]
- Kornprobst, J-M (Ed.) Substances Naturelles d'origine Marine; Editions Tec&Doc-Lavoisier: Paris, France, 2005.
- Sipkema, D; Franssen, MCR; Osinga, R; Tramper, J; Wijffels, RH. Marine sponges as pharmacy. Mar Biotechnol 2005, 7, 142–162. [Google Scholar]
- Kato, Y; Fusetani, N; Matsunaga, S; Hashimoto, K; Fujita, S; Furuya, T. Bioactive marine metabolites. Part 16. Calyculin A. A novel antitumor metabolite from the marine sponge Discodermia calyx. J Am Chem Soc 1986, 108, 2780–2781. [Google Scholar]
- Gunasekera, SP; Gunasekera, M; Longley, RE; Schulte, GK. Discodermolide: a new bioactive polyhydroxylated lactone from the marine sponge Discodermia dissoluta. J Org Chem 1990, 55, 4912–4915. [Google Scholar]
- Kashman, Y; Groweiss, A; Shmueli, U. Latrunculin, a new 2-thiazolidinone macrolide from the marine sponge Latrunculia magnifica. Tetrahedron Lett 1980, 21, 3629–3632. [Google Scholar]
- Kashman, Y; Groweiss, A; Lidor, R; Blasberger, D; Carmely, S. Latrunculins: NMR study, two new toxins and a synthetic approach. Tetrahedron 1985, 41, 1905–1914. [Google Scholar]
- Spector, I; Shochet, NR; Kashman, Y; Groweiss, A. Latrunculins-novel marine toxins that disrupt microfilament organisation in cultured cells. Science 1983, 214, 493–495. [Google Scholar]
- Spector, I; Shochet, NR; Blasberger, D; Kashman, Y. Latrunculins-novel marine toxins that disrupt microfilament and affect cell growth: I. Comparison with cytochalasin D. Cell Mot Cytoskel 1989, 13, 127–144. [Google Scholar]
- Petit, GR; Herald, CL; Cichacz, ZA; Gao, F; Boyd, MR; Christie, ND; Schmidt, JM. Antineoplastic agent 293. The exceptional human cancer cell growth inhibitors spongistatins 6 and 7. Nat Prod Lett 1993, 3, 239–244. [Google Scholar]
- Petit, GR; Herald, CL; Cichacz, ZA; Gao, F; Schmidt, JM; Boyd, MR; Christie, ND; Boettner, FE. Isolation and structure of powerful human cancer cell growth inhibitors spongistatins 4 and 5 from an African Spirastrella spinispirulifera (Porifera). J Chem Soc Chem Commun 1993, 24, 1805–1807. [Google Scholar]
- Petit, GR; Cichacz, ZA; Herald, CL; Gao, F; Boyd, MR; Schmidt, JM; Hamel, E; Bai, R. Antineoplastic agent 300. Isolation and structure of the rare human cancer inhibitory macrocyclic lactones spongistatins 8 and 9. J Chem Soc Chem Commun 1994, 1605–1606. [Google Scholar]
- Hirata, Y; Uemura, D. Halichondrins-antitumor polyether macrolides from a marine sponge. Pure Appl Chem 1986, 58, 701–710. [Google Scholar]
- Petit, GR; Tan, R; Gao, F; Williams, M; Doubek, B; Boyd, M; Schmidt, J; Chapuis, J; Hamel, E; Bao, R; Hooper, J; Tackett, L. Isolation and structure of halistatin 1 from the Eastern Indian ocean marine sponge Phakelia carteri. J Org Chem 1993, 58, 2538–2543. [Google Scholar]
- Litaudon, M; Hart, JB; Blunt, JW; Lake, RJ; Munro, MHG. Isohomohalichondrin B, a new antitumour polyether macrolide from the New Zealand deep-water sponge Lissodendoryx sp. Tetrahedron Lett 1994, 35, 9435–9438. [Google Scholar]
- Grouse, L. Turning molecules into medicine. The role of the national cancer institute's developmental therapeutics program in drug development. NCI Bench Marks. 2006, 6. http://benchmarks.cancer.gov.
- Sepčić, K; Turk, T. Fusetani, N, Clare, AS, Eds.; 3-Alkylpyridinium Compounds as Potential Non-Toxic Antifouling Agents. In Antifouling Compounds; Springer-Verlag: Berlin, Germany, 2006; pp. 105–124. [Google Scholar]
- Fusetani, N. Biofouling and antifouling. Nat Prod Rep 2004, 21, 94–104. [Google Scholar]
- Kobayashi, J; Cheng, J-F; Ishibashi, M; Walchli, MR; Yamamura, T; Ohizumi, Y. Penaresidin A and B, two novel azetidine alkaloids with potent actomyosin ATP-ase activating activity from the Okinawan marine sponge Penares sp. J Chem Soc Perkin Trans I 1991, 1135–1137. [Google Scholar]
- Alvi, KA; Jaspars, M; Crews, P. Penazetidine A, an alkaloid inhibitor of protein kinase. Bioorg Med Chem Lett 1994, 4, 2447–2450. [Google Scholar]
- Ushio-Sata, N; Matsunaga, S; Fusetani, N; Honda, K; Yasumoro, K. Penaramides, which inhibit binding of ω-conotoxin GVIA to N-type Ca2+ channels, from the marine sponge Penares aff. incrustans. Tetrahedron Lett 1996, 37, 225–228. [Google Scholar]
- Fusetani, N; Asai, N; Matsunaga, S; Honda, K; Yasumuro, K. Cyclostellettamines A-F pyridine alkaloids inhibit binding of methylquinuclidinyl benzylate (QNB) muscarinic acetylcholine receptors from sponge Stelleta maxima. Tetrahedron Lett 1994, 35, 3967–3970. [Google Scholar]
- Fusetani, N; Nakao, Y; Matsunaga, S. Bioactive marine metabolites. 39. Nazumamide A, a thrombin inhibitory tetrapeptide, from a marine sponge, Theonella sp. Tetrahedron lett 1991, 32, 7073–7074. [Google Scholar]
- Nakao, Y; Matsuda, A; Matsunaga, S; Fusetani, N. Pseudotheonamides, serine protease inhibitors from the marine sponge Theonella swinhoei. J Am Chem Soc 1999, 121, 2425–2431. [Google Scholar]
- Sepčić, K; Guella, G; Mancini, I; Pietra, F; Serra, MD; Menestrina, G; Tubbs, K; Maček, P; Turk, T. Characterization of anticholinesterase-active 3-alkylpyridinium polymers from the marine sponge Reniera sarai in aqueous solutions. J Nat Prod 1997, 60, 991–996. [Google Scholar]
- Sepčić, K; Marcel, V; Klaebe, A; Turk, T; Šuput, D; Fournier, D. Inhibition of acetylcholinesterase by an alkylpyridinium polymer from the marine sponge, Reniera sarai. Biochim Biophys Acta 1998, 1387, 217–225. [Google Scholar]
- Paleari, L; Trombino, S; Falugi, C; Gallus, L; Carlone, S; Angelini, C; Sepčić, K; Turk, T; Faimali, M; Noonan, DM; Albini, A. Marine sponge-derived polymeric alkylpyridinium salts as a novel tumor chemotherapeutic targeting the cholinergic system in lung tumors. Int J Oncol 2006, 29, 1381–1388. [Google Scholar]
- Ellman, GL; Courtney, D; Andres, V; Featherstone, RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmac 1961, 7, 88–95. [Google Scholar]
- Tubaro, A; Florio, C; Luxic, E; Sosa, S; Dellaloggia, R; Yasumoto, T. A Protein Phosphatase 2A inhibition assay for a fast and sensitive assessment of okadaic acid contamination in mussels. Toxicon 1996, 34, 743–752. [Google Scholar]
- Cariello, L; Tosti, E; Zanetti, L. The hemolytic activity of suberitine. Comp Biochem Physiol 1982, 73C, 91–93. [Google Scholar]
- Mangel, A; Leitão, JM; Batel, R; Zimmermann, H; Müller, WEG; Schröder, HC. Purification and characterization of a pore-forming protein from the marine sponge. Tethya lyncurium Eur J Biochem 1992, 210, 499–507. [Google Scholar]
- Mebs, D; Weiler, I; Heinke, HF. Bioactive proteins from marine sponges: Screening of Sponge Extracts for hemagglutination, hemolytic, ichtyotoxic and lethal properties and isolation and characterization of hemagglutinins. Toxicon 1985, 23, 955–962. [Google Scholar]
- Albrizio, S; Fattorusso, E; Magno, S; Mangoi, A; Pansini, M. 1992. Linear diterpenes from the Caribbean sponge Myrmekioderma styx. J Nat Prod 1992, 55, 1287–1293. [Google Scholar]
- Peng, J; Walsh, K; Weedman, V; Bergthold, JD; Lynch, J; Lieu, KL; Braude, IA; Kelly, M; Hamann, MT. The new bioactive diterpenes cyanthiwigins E–AA from the Jamaican sponge Myrmekioderma styx. Tetrahedron 2002, 58, 7809–7819. [Google Scholar]
- Peng, J; Franzblau, SG; Zhang, F; Hamann, MT. Novel sesquiterpenes and a lactone from the Jamaican sponge Myrmekioderma styx. Tetrahedron Lett 2002, 43, 9699–9702. [Google Scholar]
- Peng, J; Kasanah, N; Stanley, CE; Chadwick, J; Fronczek, FR; Hamann, MT. Microbial Metabolism Studies of Cyanthiwigin B and Synergetic Antibiotic Effects. J Nat Prod 2006, 69, 727–730. [Google Scholar]
- Martinez, A; Duque, C; Sato, N; Fujimoto, Y. (8Z,13Z,20Z)–Strobilinin and (7Z,13Z,20Z)– Felixinin: New Furanosesterterpene tetronic acids from marine sponges of the genus Ircinia. Chem Pharm Bull 1997, 45, 181–184. [Google Scholar]
- Martinez, A; Duque, C; Fujimoto, Y. Novel fatty acid esters of (7E,12E,18R,20Z) – variabilin from the marine sponge Irinia felix. Lipids 1997, 32, 565–569. [Google Scholar]
- Laport, M; Santos, O; Muricy, G. Marine Sponges: Potential Source of new antimicrobial drugs. Curr Pharm Biotechnol 2009, 10, 86–105. [Google Scholar]
- Sepčić, K; Batista, U; Vacelet, J; Maček, P; Turk, T. Biological activities of aqueous extracts from marine sponges and cytotoxic effects of 3-alkylpyridinium polymers from Reniera sarai. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 1997, 117, 47–53. [Google Scholar]
- Sepčić, K; Guella, G; Mancini, I; Pietra, F; Serra, MD; Menestrina, G; Tubbs, K; Maček, P; Turk, T. Characterization of anticholinesterase-active 3-alkylpyridinium polymers from the marine sponge Reniera sarai in aqueous solutions. J Nat Prod 1997, 60, 991–996. [Google Scholar]
- Fagerholm, AE; Habrant, D; Koskinen, AMP. Calyculins and related marine natural products as serine- threonine protein phosphatase PP1 and PP2A inhibitors and total syntheses of calyculin A, B, and C. Mar Drugs 2010, 8, 122–172. [Google Scholar]
Aqueous extracts | Organic extracts1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sponge species | S# | Amount in the assay (μg/mL) | Hemolytic activity | Amount in the assay (μg/mL) | Hemolytic activity | ||||||
Unheated | Heated | Unheated | Heated | A | B | M | A | B | M | ||
Agelas clathrodes | 81 | 32 | +++ | ||||||||
Ircinia felix | 59 | 2.6 | 43 | 88 | +++ | +++ | +++ | ||||
Lissodendoryx colombiensis | 110 | 25 | +++ | ||||||||
Pandaros acanthifolium | 76 | 60.5/10.4* | +++ | ||||||||
Spheciospongia vesparium | 69 | 408/143* | +++ | ||||||||
Topsentia ophiraphidites | 99 | 2.5/0.22* | 2.5/0* | +++ | +++ | 157 | +++ |
Sponge species | Sample # | B. subtilis (MIC μg/mL) | E. coli (MIC μg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Aqueous extracts | Organic extracts | Aqueous extracts | Organic extracts1 | ||||||||
unheated | heated | A | B | M | unheated | heated | A | B | M | ||
Agelas conifera | 34 | 2 | 2 | ||||||||
Agelas conifera | 97 | 3 | |||||||||
Agelas schmidti | 54 | 1 | |||||||||
Aplysina archeri | 40 | 3050 | 36 | 8 | 27 | ||||||
Aplysina archeri | 61 | 50 | |||||||||
Callyspongia vaginalis | 66 | 4 | |||||||||
Callyspongia plicifera | 103 | 120 | |||||||||
Holopsamma helwigi | 5 | 0.4 | |||||||||
Hyrtios erecta | LI-10 | 5 | |||||||||
Ircinia campana | 70 | 0. 7 | 7 | 3 | |||||||
Ircinia felix | 59 | 80 | 2750 | 0. 1 | 2 | 0. 4 | |||||
Ircinia felix | 93 | 2.5 | 0. 7 | 1 | 32 | ||||||
Ircinia sp. | 107 | 0. 9 | 0.9 | 0. 1 | |||||||
Ircinia cf. abseits | 132 | 0. 3 | 0. 7 | 2 | |||||||
Ircinia strobilina | 56 | 0. 1 | 0.03 | ||||||||
Ircinia strobilina | 124 | 17 | |||||||||
Lissodendoryx colombiensis | 51 | 70 | |||||||||
Neofibularia nolitangere | 94 | 2 | |||||||||
Pseudoceratina crassa | 2 | 0. 4 | |||||||||
Topsentia ophiraphidites | 99 | 34 | 50 | 5420 | 3470 | ||||||
Verongula gigantea | 44 | 0.05 | 0. 4 | ||||||||
Verongula rigida | 38 | 1650 | 1310 | 0. 6 | 0. 08 | 1.2 | |||||
Verongula rigida | 105 | 1660 | 53 | ||||||||
Xestospongia muta | 53 | 1.8 | |||||||||
Unidentified 2 | 6 | 6 | |||||||||
Unidentified A34 | 25 | 9 |
Aqueous extracts | Organic extracts 1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sponge species | S# | Amount in the assay (μg/mL) | AChE inhibition (%) | Amount in the assay (μg/mL) | AChE inhibition (%) | ||||||
Unheated | heated | Unheated | Heated | A | B | M | A | B | M | ||
Agelas clathrodes | 81 | 337/140* | 337/0* | 23 | 23 | ||||||
Agelas conifera | 97 | 30 | 28 | ||||||||
Topsentia ophiraphidites | 99 | 31 | 34 | 217 | 31 | 46 | 62 | ||||
Xestospongia pacifica | LI-47 | 500/116* | 492/0* | 31 | 31 | 181 | 532 | 31 | 31 | ||
Unidentified A33 | 28 | 0.78/0* | 76 | 23 |
Species | S# | Amount μg/mL | PP1 activation/inhibition | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
aqueous | organic | aqueous | organic | ||||||||
unheated | heate | A | B | M | unheated | heated | A | B | M | ||
d | |||||||||||
Callyspongia plicifera | 9 | 58 | 48 | 23 | 44 | ||||||
Ircinia felix | 59 | 283/78* | 273 | x2 | |||||||
Ircinia felix | 93 | 244/70* | 200 | 176 | 275 | 790 | x1.5 | 33 | 67 | 100 | |
Ircinia strobilina | 56 | 192/55* | 177 | x1.4 | |||||||
Ircinia cf. abseits | 13 | 346/41* | 227 | x1.5 | |||||||
2 | |||||||||||
Neofibularia nolitangere | 83 | 28 | 54 | 167 | 67 | 100 | 100 | ||||
Spheciospongia | 69 | 78 | 50 | ||||||||
vesparium | |||||||||||
Verongula gigantea | 44 | 388/138* | 319 | x2 | |||||||
Verongula rigida | 38 | 164/54* | 130 | x2 | |||||||
Unidentified 1 | 21 | 73 | 117 | 673 | 100 | 100 | 100 |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sepčić, K.; Kauferstein, S.; Mebs, D.; Turk, T. Biological Activities of Aqueous and Organic Extracts from Tropical Marine Sponges. Mar. Drugs 2010, 8, 1550-1566. https://doi.org/10.3390/md8051550
Sepčić K, Kauferstein S, Mebs D, Turk T. Biological Activities of Aqueous and Organic Extracts from Tropical Marine Sponges. Marine Drugs. 2010; 8(5):1550-1566. https://doi.org/10.3390/md8051550
Chicago/Turabian StyleSepčić, Kristina, Silke Kauferstein, Dietrich Mebs, and Tom Turk. 2010. "Biological Activities of Aqueous and Organic Extracts from Tropical Marine Sponges" Marine Drugs 8, no. 5: 1550-1566. https://doi.org/10.3390/md8051550
APA StyleSepčić, K., Kauferstein, S., Mebs, D., & Turk, T. (2010). Biological Activities of Aqueous and Organic Extracts from Tropical Marine Sponges. Marine Drugs, 8(5), 1550-1566. https://doi.org/10.3390/md8051550