Therapies from Fucoidan; Multifunctional Marine Polymers
Abstract
:1. Introduction
2. Uptake and Fate of Fucoidan
3. Toxicology
4. Differences between Fucoidan Fractions
5. Inflammation and Fibrosis
5.1. Inhibition of Selectins
5.2. Inhibition of Complement
5.3. Inhibition of Enzymes
6. Therapies from Fucoidan
6.1. Osteoarthritis
6.2. Surgical Adhesions
6.3. Liver Fibrosis
6.4. Radiation and Fucoidan
6.5. Stem Cells and Fucoidan
6.6. Blood Homeostasis
6.7. Neuronal Protection
6.8. Viruses: Influenza, Herpes and Dengue
6.9. Viruses: HTLV1
6.10. Leishmaniasis
6.11. Malaria
6.12. Prions
6.13. Helicobacter and Stomach Ulcers
6.14. Renal Disease and Hyperoxaluria
6.15. Snake Envenomation
7. Conclusions
Acknowledgments
References
- Kiple, KF; Ornelas, KC. Important Vegetable Supplements. In The Cambridge World History of Food; Beck, SV, Ed.; Cambridge University Press: Cambridge, UK, 2000; Volume 1, pp. 231–249. [Google Scholar]
- Berteau, O; Mulloy, B. Sulfated fucans, fresh perspectives: Structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiolog 2003, 13, 29–40. [Google Scholar]
- Kylin, H. Zur biochemie der meeresalgen. Hoppe-Seyler’s Z. Physiol. Chem 1913, 83, 171–197. [Google Scholar]
- Bird, GM; Haas, P. On the nature of the cell wall constituents of Laminaria spp. Mannuronic acid. Biochem. J 1931, 25, 403–411. [Google Scholar]
- Percival, EGV; Ross, AG. Fucoidin. Part I. The isolation and purification of fucoidin from brown seaweeds. J. Chem. Soc 1950, 145, 717–720. [Google Scholar]
- Black, WAP; Dewar, ET; Woodward, FN. Manufacture of algal chemicals. IV. Laboratory scale isolation of fucoidin from brown marine algae. J. Sci. Food Agric 1952, 3, 122–129. [Google Scholar]
- Bairstow, S; McKee, J; Nordhaus, M; Johnson, R. Identification of a simple and sensitive microplate method for the detection of oversulfated chondroitin sulfate in heparin products. Anal. Biochem 2009, 388, 317–321. [Google Scholar]
- US Department of Health and Human Services, FDA. Center for Drug Evaluation and Research (CDER), Guidance for Industry Botanical Drug Products. 2004. Available online: http://www.fda.gov/cder/guidance/index.htm accessed on 20 May 2011.
- Fitton, JH; Irhimeh, MR; Teas, J. Marine Algae and Polysaccharides with Therapeutic Applications. In Marine Nutraceuticals and Functional Foods; Barrow, C, Shahidi, F, Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2008; pp. 345–366. [Google Scholar]
- Pomin, VH; Mourao, PA. Structure, biology, evolution, and medical importance of sulfated fucans and galactans. Glycobiology 2008, 18, 1016–1027. [Google Scholar]
- Li, B; Lu, F; Wei, X; Zhao, R. Fucoidan: Structure and bioactivity. Molecules 2008, 13, 1671–1695. [Google Scholar]
- Nishino, T; Nishioka, C; Ura, H; Nagumo, T. Isolation and partial characterization of a novel amino sugar-containing fucan sulfate from commercial Fucus vesiculosus fucoidan. Carbohydr. Res 1994, 255, 213–224. [Google Scholar]
- Michel, C; Lahaye, M; Bonnet, C; Mabeau, S; Barry, J-L. In vitro fermentation by human faecal bacteria of total and purified dietary fibres from brown seaweeds. Br. J. Nutr 1996, 75, 263–280. [Google Scholar]
- Yamada, Y; Miyoshi, T; Tanada, S; Imaki, M. Digestibility and energy availability of Wakame (Undaria pinnatifida) seaweed in Japanese. Nippon Eiseigaku Zasshi 1991, 46, 788–794. [Google Scholar]
- Lynch, MB; Sweeney, T; Callan, JJ; O’Sullivan, JT; O’Doherty, JV. The effect of dietary Laminaria-derived laminarin and fucoidan on nutrient digestibility, nitrogen utilisation, intestinal microflora and volatile fatty acid concentration in pigs. J. Sci. Food Agric 2010, 90, 430–437. [Google Scholar]
- O’Sullivan, L; Murphy, B; McLoughlin, P; Duggan, P; Lawlor, PG; Hughes, H; Gardiner, GE. Prebiotics from marine macroalgae for human and animal health applications. Mar. Drugs 2010, 8, 2038–2064. [Google Scholar]
- Barthe, L; Woodley, J; Lavit, M; Przybylski, C; Philibert, C; Houin, G. In vitro intestinal degradation and absorption of chondroitin sulfate, a glycosaminoglycan drug. Arzneimittelforschung 2004, 54, 286–292. [Google Scholar]
- Elsenhans, B; Caspary, WF. Differential changes in the urinary excretion of two orally administered polyethylene glycol markers (PEG 900 and PEG 4000) in rats after feeding various carbohydrate gelling agents. J. Nutr 1989, 119, 380–387. [Google Scholar]
- Irhimeh, MR; Fitton, JH; Lowenthal, RM; Kongtawelert, P. A quantitative method to detect fucoidan in human plasma using a novel antibody. Methods Find Exp. Clin. Pharmacol 2005, 27, 705–710. [Google Scholar]
- Tokita, Y; Nakajima, K; Mochida, H; Iha, M; Nagamine, T. Development of a fucoidan-specific antibody and measurement of fucoidan in serum and urine by sandwich ELISA. Biosci. Biotechnol. Biochem 2010, 74, 350–357. [Google Scholar]
- Nakazato, K; Takada, H; Iha, M; Nagamine, T. Attenuation of N-nitrosodiethylamine-induced liver fibrosis by high-molecular-weight fucoidan derived from Cladosiphon okamuranus. J. Gastroenterol. Hepatol 2010, 25, 1692–1701. [Google Scholar]
- Guimaraes, MA; Mourao, PA. Urinary excretion of sulfated polysaccharides administered to Wistar rats suggests a renal permselectivity to these polymers based on molecular size. Biochim. Biophys. Acta 1997, 1335, 161–172. [Google Scholar]
- Mizuno, M; Nishitani, Y; Tanoue, T; Matoba, Y; Ojima, T; Hashimoto, T; Kanazawa, K. Quantification and localization of fucoidan in Laminaria japonica using a novel antibody. Biosci. Biotechnol. Biochem 2009, 73, 335–338. [Google Scholar]
- Eardley, DD; Sutton, C; Hempel, WM; Reed, DC; Ebeling, AW. Monoclonal antibodies specific for sulfated polysaccharides on the surface of Macrocystis pyrifera. J. Phycol 1990, 26, 54–62. [Google Scholar]
- Chung, HJ; Jeun, J; Houng, SJ; Jun, HJ; Kweon, DK; Lee, SJ. Toxicological evaluation of fucoidan from Undaria pinnatifida in vitro and in vivo. Phytother. Res 2010, 24, 1078–1083. [Google Scholar]
- Li, N; Zhang, Q; Song, J. Toxicological evaluation of fucoidan extracted from Laminaria japonica in wistar rats. Food Chem. Toxicol 2005, 43, 421–426. [Google Scholar]
- Myers, SP; O’Connor, J; Fitton, JH; Brooks, L; Rolfe, M; Connellan, P; Wohlmuth, H; Cheras, PA; Morris, C. A combined phase I and II open label study on the effects of a seaweed extract nutrient complex on osteoarthritis. Biologics 2010, 4, 33–44. [Google Scholar]
- Irhimeh, MR; Fitton, JH; Lowenthal, RM. Fucoidan ingestion increases the expression of CXCR4 on human CD34+ cells. Exp. Hematol 2007, 35, 989–994. [Google Scholar]
- Irhimeh, MR; Fitton, JH; Lowenthal, RM. Pilot clinical study to evaluate the anticoagulant activity of fucoidan. Blood Coagul. Fibrinolysis 2009, 20, 607–610. [Google Scholar]
- Kim, KJ; Lee, OH; Lee, HH; Lee, BY. A 4-week repeated oral dose toxicity study of fucoidan from the Sporophyll of Undaria pinnatifida in Sprague-Dawley rats. Toxicology 2009, 267, 154–158. [Google Scholar]
- Prasad, S; Lillicrap, D; Labelle, A; Knappe, S; Keller, T; Burnett, E; Powell, S; Johnson, KW. Efficacy and safety of a new-class hemostatic drug candidate, AV513, in dogs with hemophilia A. Blood 2008, 111, 672–679. [Google Scholar]
- Kim, KJ; Lee, OH; Lee, BY. Genotoxicity studies on fucoidan from Sporophyll of Undaria pinnatifida. Food Chem. Toxicol 2010, 48, 1101–1104. [Google Scholar]
- Myers, SP; O’Connor, J; Fitton, JH; Brooks, L; Rolfe, M; Connellan, P; Wohlmuth, H; Cheras, PA; Morris, C. A combined Phase I and II open-label study on the immunomodulatory effects of seaweed extract nutrient complex. Biologics 2011, 5, 45–60. [Google Scholar]
- Araya, N; Takahashi, K; Sato, T; Nakamura, T; Sawa, C; Hasegawa, D; Ando, H; Aratani, S; Yagishita, N; Fujii, R; et al. Fucoidan therapy decreases the proviral load in patients with human T-lymphotropic virus type-1-associated neurological disease. Antivir. Ther 2011, 16, 89–98. [Google Scholar]
- Zhang, J; Tiller, C; Shen, J; Wang, C; Girouard, GS; Dennis, D; Barrow, CJ; Miao, M; Ewart, HS. Antidiabetic properties of polysaccharide- and polyphenolic-enriched fractions from the brown seaweed Ascophyllum nodosum. Can. J. Physiol. Pharmacol 2007, 85, 1116–1123. [Google Scholar]
- Cumashi, A; Ushakova, NA; Preobrazhenskaya, ME; D’Incecco, A; Piccoli, A; Totani, L; Tinari, N; Morozevich, GE; Berman, AE; Bilan, MI; et al. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 2007, 17, 541–552. [Google Scholar]
- Laubli, H; Borsig, L. Selectins promote tumor metastasis. Semin. Cancer Biol 2010, 20, 169–177. [Google Scholar] [Green Version]
- Maruyama, H; Tamauchi, H; Hashimoto, M; Nakano, T. Suppression of Th2 immune responses by Mekabu fucoidan from Undaria pinnatifida sporophylls. Int. Arch. Allergy Immunol 2005, 137, 289–294. [Google Scholar]
- Maruyama, H; Tamauchi, H; Hashimoto, M; Nakano, T. Antitumor activity and immune response of Mekabu fucoidan extracted from sporophyll of Undaria pinnatifida. In Vivo 2003, 17, 245–249. [Google Scholar]
- Shimizu, J; Wada-Funada, U; Mano, H; Matahira, Y; Kawaguchi, M; Wada, M. Proportion of murine cytotoxic T-cell is increased by high-molecular weight fucoidan extracted from Okinawa Mozuku (Cladosiphon okamuranus). J. Health Sci 2005, 51, 394–397. [Google Scholar]
- Park, SB; Chun, KR; Kim, JK; Suk, K; Jung, YM; Lee, WH. The differential effect of high and low molecular weight fucoidans on the severity of collagen-induced arthritis in mice. Phytother. Res 2010, 24, 1384–1391. [Google Scholar]
- Azofeifa, K; Angulo, Y; Lomonte, B. Ability of fucoidan to prevent muscle necrosis induced by snake venom myotoxins: Comparison of high- and low-molecular weight fractions. Toxicon 2008, 51, 373–380. [Google Scholar]
- Yanase, Y; Hiragun, T; Uchida, K; Ishii, K; Oomizu, S; Suzuki, H; Mihara, S; Iwamoto, K; Matsuo, H; Onishi, N; Kameyoshi, Y; Hide, M. Peritoneal injection of fucoidan suppresses the increase of plasma IgE induced by OVA-sensitization. Biochem. Biophys. Res. Commun 2009, 387, 435–439. [Google Scholar]
- Hayashi, T; Hayashi, K; Kanekiyo, K; Ohta, Y; Lee, J-B. Promising antiviral Glyco-molecules from an edible alga. In Combating the Threat of Pandemic Influenza: Drug Discovery Approaches; Torrence, PF, Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 166–182. [Google Scholar]
- Wynn, TA. Cellular and molecular mechanisms of fibrosis. J. Pathol 2008, 214, 199–210. [Google Scholar]
- Preobrazhenskaya, ME; Berman, AE; Mikhailov, VI; Ushakova, NA; Mazurov, AV; Semenov, AV; Usov, AI; Nifant’ev, NE; Bovin, NV. Fucoidan inhibits leukocyte recruitment in a model peritoneal inflammation in rat and blocks interaction of P-selectin with its carbohydrate ligand. Biochem. Mol. Biol. Int 1997, 43, 443–451. [Google Scholar]
- Kubes, P; Payne, D; Woodman, RC. Molecular mechanisms of leukocyte recruitment in postischemic liver microcirculation. Am. J. Physiol. Gastrointest. Liver Physiol 2002, 283, 139–147. [Google Scholar]
- Gassmann, P; Kang, ML; Mees, ST; Haier, J. In vivo tumor cell adhesion in the pulmonary microvasculature is exclusively mediated by tumor cell-endothelial cell interaction. BMC Cancer 2010, 10, 177. [Google Scholar]
- Frenette, PS; Weiss, L. Sulfated glycans induce rapid hematopoietic progenitor cell mobilization: Evidence for selectin-dependent and independent mechanisms. Blood 2000, 96, 2460–2468. [Google Scholar]
- Mansson, P; Zhang, XW; Jeppsson, B; Johnell, O; Thorlacius, H. Critical role of P-selectin-dependent rolling in tumor necrosis factor-alpha-induced leukocyte adhesion and extravascular recruitment in vivo. Naunyn Schmiedebergs Arch. Pharmacol 2000, 362, 190–196. [Google Scholar]
- Tanaka, K; Ito, M; Kodama, M; Tomita, M; Kimura, S; Hoyano, M; Mitsuma, W; Hirono, S; Hanawa, H; Aizawa, Y. Sulfated polysaccharide fucoidan ameliorates experimental autoimmune myocarditis in rats. J. Cardiovasc. Pharmacol. Ther 2011, 16, 79–86. [Google Scholar]
- Thomes, P; Rajendran, M; Pasanban, B; Rengasamy, R. Cardioprotective activity of Cladosiphon okamuranus fucoidan against isoproterenol induced myocardial infarction in rats. Phytomedicine 2010, 18, 52–57. [Google Scholar]
- Kim, H; Moon, C; Park, EJ; Jee, Y; Ahn, M; Wie, MB; Shin, T. Amelioration of experimental autoimmune encephalomyelitis in Lewis rats treated with fucoidan. Phytother. Res 2010, 24, 399–403. [Google Scholar]
- Alwayn, IP; Appel, JZ; Goepfert, C; Buhler, L; Cooper, DK; Robson, SC. Inhibition of platelet aggregation in baboons: Therapeutic implications for xenotransplantation. Xenotransplantation 2000, 7, 247–257. [Google Scholar]
- Tissot, B; Montdargent, B; Chevolot, L; Varenne, A; Descroix, S; Gareil, P; Daniel, R. Interaction of fucoidan with the proteins of the complement classical pathway. Biochim. Biophys. Acta 2003, 1651, 5–16. [Google Scholar]
- Charreau, B; Blondin, C; Boisson-Vidal, C; Soulillou, JP; Anegon, I. Efficiency of fucans in protecting porcine endothelial cells against complement activation and lysis by human serum. Transplant. Proc 1997, 29, 889–890. [Google Scholar]
- Tissot, B; Daniel, R. Biological properties of sulfated fucans: The potent inhibiting activity of algal fucoidan against the human compliment system. Glycobiology 2003, 13, 29G–30G. [Google Scholar]
- Blondin, C; Chaubet, F; Nardella, A; Sinquin, C; Jozefonvicz, J. Relationships between chemical characteristics and anticomplementary activity of fucans. Biomaterials 1996, 17, 597–603. [Google Scholar]
- Galebskaya, LV; Ryumina, EV; Bogomaz, TA; Preobrazhenskaya, ME. The mechanism of fucoidan action on human complement. Biomeditsinskaya Khimiya 2003, 49, 542–547. [Google Scholar]
- Clement, MJ; Tissot, B; Chevolot, L; Adjadj, E; Du, Y; Curmi, PA; Daniel, R. NMR characterization and molecular modeling of fucoidan showing the importance of oligosaccharide branching in its anticomplementary activity. Glycobiology 2010, 20, 883–894. [Google Scholar]
- Thring, TS; Hili, P; Naughton, DP. Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complement. Altern. Med 2009, 9, 27. [Google Scholar]
- Senni, K; Gueniche, F; Foucault-Bertaud, A; Igondjo-Tchen, S; Fioretti, F; Colliec-Jouault, S; Durand, P; Guezennec, J; Godeau, G; Letourneur, D. Fucoidan a sulfated polysaccharide from brown algae is a potent modulator of connective tissue proteolysis. Arch. Biochem. Biophys 2006, 445, 56–64. [Google Scholar]
- Tsuji, N; Moriwaki, S; Suzuki, Y; Takema, Y; Imokawa, G. The role of elastases secreted by fibroblasts in wrinkle formation: Implication through selective inhibition of elastase activity. Photochem. Photobiol 2001, 74, 283–290. [Google Scholar]
- Moon, HJ; Lee, SH; Ku, MJ; Yu, BC; Jeon, MJ; Jeong, SH; Stonik, VA; Zvyagintseva, TN; Ermakova, SP; Lee, YH. Fucoidan inhibits UVB-induced MMP-1 promoter expression and down regulation of type I procollagen synthesis in human skin fibroblasts. Eur. J. Dermatol 2009, 19, 129–134. [Google Scholar]
- Fujimura, T; Tsukahara, K; Moriwaki, S; Kitahara, T; Sano, T; Takema, Y. Treatment of human skin with an extract of Fucus vesiculosus changes its thickness and mechanical properties. J. Cosmet. Sci 2002, 53, 1–9. [Google Scholar]
- Hlawaty, H; Suffee, N; Sutton, A; Oudar, O; Haddad, O; Ollivier, V; Laguillier-Morizot, C; Gattegno, L; Letourneur, D; Charnaux, N. Low molecular weight fucoidan prevents intimal hyperplasia in rat injured thoracic aorta through the modulation of matrix metalloproteinase-2 expression. Biochem. Pharmacol 2011, 81, 233–243. [Google Scholar] [Green Version]
- Deux, J-F; Anne, M-P; Le Blanche, AF; Feldman, LJ; Colliec-Jouault, S; Bree, F; Boudghène, F; Michel, J-B; Letourneur, D. Low molecular weight fucoidan prevents neointimal hyperplasia in rabbits iliac artery in-stent restenosis model. Arterioscler. Thromb. Vasc. Biol 2002, 22, 1604–1609. [Google Scholar]
- Goldring, MB; Goldring, SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann. N. Y. Acad. Sci 2010, 1192, 230–237. [Google Scholar]
- Cunha, TM; Verri, WA, Jr; Schivo, IR; Napimoga, MH; Parada, CA; Poole, S; Teixeira, MM; Ferreira, SH; Cunha, FQ. Crucial role of neutrophils in the development of mechanical inflammatory hypernociception. J. Leukoc. Biol 2008, 83, 824–832. [Google Scholar]
- McNamee, KE; Burleigh, A; Gompels, LL; Feldmann, M; Allen, SJ; Williams, RO; Dawbarn, D; Vincent, TL; Inglis, JJ. Treatment of murine osteoarthritis with TrkAd5 reveals a pivotal role for nerve growth factor in non-inflammatory joint pain. Pain 2010, 149, 386–392. [Google Scholar]
- Cashman, JD; Kennah, E; Shuto, A; Winternitz, C; Springate, CM. Fucoidan film safely inhibits surgical adhesions in a rat model. J Surg Res 2010. [Google Scholar] [CrossRef]
- Hayashi, S; Itoh, A; Isoda, K; Kondoh, M; Kawase, M; Yagi, K. Fucoidan partly prevents CCl4-induced liver fibrosis. Eur. J. Pharmacol 2008, 580, 380–384. [Google Scholar]
- Saito, A; Yoneda, M; Yokohama, S; Okada, M; Haneda, M; Nakamura, K. Fucoidan prevents concanavalin A-induced liver injury through induction of endogenous IL-10 in mice. Hepatol. Res 2006, 35, 190–198. [Google Scholar]
- Keppler, D; Lesch, R; Reutter, W; Decker, K. Experimental hepatitis induced by d-galactosamine. Exp. Mol. Pathol 1968, 9, 279–290. [Google Scholar]
- Kawano, N; Egashira, Y; Sanada, H. Effects of various kinds of edible seaweeds in diets on the development of d-galactosamine-induced hepatopathy in rats. J. Nutr. Sci. Vitaminol. (Tokyo) 2007, 53, 315–323. [Google Scholar]
- Kawano, N; Egashira, Y; Sanada, H. Effect of dietary fiber in edible seaweeds on the development of d-galactosamine-induced hepatopathy in rats. J. Nutr. Sci. Vitaminol. (Tokyo) 2007, 53, 446–450. [Google Scholar]
- Hayakawa, K; Nagamine, T. Effect of fucoidan on the biotinidase kinetics in human hepatocellular carcinoma. Anticancer Res 2009, 29, 1211–1217. [Google Scholar]
- Nesterenko, AV; Nesterenko, VB; Yablokov, AV. Chapter IV. Radiation protection after the Chernobyl catastrophe. Ann. N. Y. Acad. Sci 2009, 1181, 287–288. [Google Scholar]
- Levitskaia, TG; Creim, JA; Curry, TL; Luders, T; Morris, JE; Peterson, JM; Thrall, KD. Biomaterials for the decorporation of (85)Sr in the rat. Health Phys 2010, 99, 394–400. [Google Scholar]
- Hollriegl, V; Rohmuss, M; Oeh, U; Roth, P. Strontium biokinetics in humans: Influence of alginate on the uptake of ingested strontium. Health Phys 2004, 86, 193–196. [Google Scholar]
- Lee, J; Kim, J; Moon, C; Kim, SH; Hyun, JW; Park, JW; Shin, T. Radioprotective effects of fucoidan in mice treated with total body irradiation. Phytother. Res 2008, 22, 1677–1681. [Google Scholar]
- Byon, YY; Kim, MH; Yoo, ES; Hwang, KK; Jee, Y; Shin, T; Joo, HG. Radioprotective effects of fucoidan on bone marrow cells: Improvement of the cell survival and immunoreactivity. J. Vet. Sci 2008, 9, 359–365. [Google Scholar]
- Rhee, KH; Lee, KH. Protective effects of fucoidan against gamma-radiation-induced damage of blood cells. Arch. Pharm. Res 2011, 34, 645–651. [Google Scholar]
- Sweeney, EA; Priestley, GV; Nakamoto, B; Collins, RG; Beaudet, AL; Papayannopoulou, T. Mobilization of stem progenitor cells by sulfated polysaccharides does not require selectin presence. Proc. Natl. Acad. Sci. USA 2000, 97, 6544–6549. [Google Scholar]
- Fermas, S; Gonnet, F; Sutton, A; Charnaux, N; Mulloy, B; Du, Y; Baleux, F; Daniel, R. Sulfated oligosaccharides (heparin and fucoidan) binding and dimerization of stromal cell-derived factor-1 (SDF-1/CXCL 12) are coupled as evidenced by affinity CE-MS analysis. Glycobiology 2008, 18, 1054–1064. [Google Scholar]
- Mavier, P; Martin, N; Couchie, D; Préaux, A-M; Laperche, Y; Serge Zafrani, E. Expression of stromal cell-derived Factor-1 and of its receptor CXCR4 in liver regeneration from oval cells in rat. Am. J. Pathol 2004, 165, 1969–1976. [Google Scholar]
- Fonseca, RJ; Santos, GR; Mourao, PA. Effects of polysaccharides enriched in 2,4-disulfated fucose units on coagulation, thrombosis and bleeding. Practical and conceptual implications. Thromb. Haemost 2009, 102, 829–836. [Google Scholar]
- Kwak, KW; Cho, KS; Hahn, OJ; Lee, KH; Lee, BY; Ko, JJ; Chung, KH. Biological effects of fucoidan isolated from Fucus vesiculosus on thrombosis and vascular cells. Korean J. Hematol 2010, 45, 51–57. [Google Scholar]
- Pomin, VH; Pereira, MS; Valente, A-P; Tollefsen, DM; Pavo, MSG; Mouro, PAS. Selective cleavage and anticoagulant activity of a sulfated fucan: Stereospecific removal of a 2-sulfate ester from the polysaccharide by mild acid hydrolysis, preparation of oligosaccharides and heparin cofactor II-dependent anticoagulant activity. Glycobiology 2005, 15, 369–381. [Google Scholar]
- Wozniak, MA; Itzhaki, RF. Antiviral agents in Alzheimer’s disease: Hope for the future? Ther. Adv. Neurol. Disord 2010, 3, 141–152. [Google Scholar]
- Jhamandas, JH; wie, MB; Harris, K; Mactavish, D; Kar, S. Fucoidan inhibits cellular and neurotoxic effects of β-amyloid (Aβ) in rat cholinergic basal forebrain neurons. Eur. J. Neurosci 2005, 21, 2649–2659. [Google Scholar]
- Cui, YQ; Zhang, LJ; Zhang, T; Luo, DZ; Jia, YJ; Guo, ZX; Zhang, QB; Wang, X; Wang, XM. Inhibitory effect of fucoidan on nitric oxide production in lipopolysaccharide-activated primary microglia. Clin. Exp. Pharmacol. Physiol 2010, 37, 422–428. [Google Scholar]
- Li, Y; Liu, L; Liu, D; Woodward, S; Barger, SW; Mrak, RE; Griffin, WS. Microglial activation by uptake of fDNA via a scavenger receptor. J. Neuroimmunol 2004, 147, 50–55. [Google Scholar]
- Pei, Z; Pang, H; Qian, L; Yang, S; Wang, T; Zhang, W; Wu, X; Dallas, S; Wilson, B; Reece, JM; Miller, DS; Hong, JS; Block, ML. MAC1 mediates LPS-induced production of superoxide by microglia: The role of pattern recognition receptors in dopaminergic neurotoxicity. Glia 2007, 55, 1362–1373. [Google Scholar]
- Huang, WC; Yen, FC; Shiao, YJ; Shie, FS; Chan, JL; Yang, CN; Sung, YJ; Huang, FL; Tsay, HJ. Enlargement of Abeta aggregates through chemokine-dependent microglial clustering. Neurosci. Res 2009, 63, 280–287. [Google Scholar]
- Do, H; Pyo, S; Sohn, EH. Suppression of iNOS expression by fucoidan is mediated by regulation of p38 MAPK, JAK/STAT, AP-1 and IRF-1, and depends on up-regulation of scavenger receptor B1 expression in TNF-alpha- and IFN-gamma-stimulated C6 glioma cells. J. Nutr. Biochem 2009, 21, 671–679. [Google Scholar]
- Luo, D; Zhang, Q; Wang, H; Cui, Y; Sun, Z; Yang, J; Zheng, Y; Jia, J; Yu, F; Wang, X. Fucoidan protects against dopaminergic neuron death in vivo and in vitro. Eur. J. Pharmacol 2009, 617, 33–40. [Google Scholar]
- Zhang, Y; Song, S; Song, D; Liang, H; Wang, W; Ji, A. Proliferative effects on neural stem/progenitor cells of a sulfated polysaccharide purified from the sea cucumber Stichopus japonicus. J. Biosci. Bioeng 2010, 109, 67–72. [Google Scholar]
- Lee, H-R; Do, H; Lee, S-R; Sohn, E-S; Pyo, S; Son, E. Effects of fucoidan on neuronal cell proliferation: Association with NO production through the iNOS pathway. J. Food Sci. Nutr 2007, 12, 74–78. [Google Scholar]
- Schaeffer, DJ; Krylov, VS. Anti HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicol. Environ. Saf 2000, 45, 208–227. [Google Scholar]
- Hayashi, K; Nakano, T; Hashimoto, M; Kanekiyo, K; Hayashi, T. Defensive effects of a fucoidan from brown alga Undaria pinnatifida against herpes simplex virus infection. Int. Immunopharmacol 2008, 8, 109–116. [Google Scholar]
- Thompson, KD; Dragar, C. Antiviral activity of Undaria pinnatifida against herpes simplex virus. Phytother. Res 2004, 18, 551–555. [Google Scholar]
- Makarenkova, ID; Deriabin, PG; L’Vov, DK; Zviagintseva, TN; Besednova, NN. Antiviral activity of sulfated polysaccharide from the brown algae Laminaria japonica against avian Influenza A (H5N1) virus infection in the cultured cells. Vopr. Virusol 2010, 55, 41–45. [Google Scholar]
- Taoda, N; Shinji, E; Nishii, K; Nishioka, S; Yonezawa, Y; Uematsu, J; Hattori, E; Yamamoto, H; Kawano, M; Tsurudome, M; O’Brien, M; Yamashita, T; Komada, H. Fucoidan inhibits parainfluenza virus type 2 infection to LLCMK2 cells. Biomed. Res 2008, 29, 331–334. [Google Scholar]
- Cooper, R; Dragar, C; Elliot, K; Fitton, JH; Godwin, J; Thompson, K. GFS, a preparation of Tasmanian Undaria pinnatifida is associated with healing and inhibition of reactivation of herpes. BMC Complement. Altern. Med 2002, 2, 11–17. [Google Scholar]
- Hemmingson, J; Falshaw, R; Furneaux, R; Thompson, K. Structure and antiviral activity of the galactofucan sulfates extracted from Undaria Pinnatifida (Phaeophyta). J. Appl. Phycol 2006, 18, 185–193. [Google Scholar]
- Hidari, KI; Takahashi, N; Arihara, M; Nagaoka, M; Morita, K; Suzuki, T. Structure and anti-dengue virus activity of sulfated polysaccharide from a marine alga. Biochem. Biophys. Res. Commun 2008, 376, 91–95. [Google Scholar]
- Haneji, K; Matsuda, T; Tomita, M; Kawakami, H; Ohshiro, K; Uchihara, J-N; Masuda, M; Takasu, N; Tanaka, Y; Ohta, T; Mori, N. Fucoidan extracted from Cladosiphon okamuranus Tokida induces apoptosis of human T-cell leukemia virus type 1-infected T-cell lines and primary adult T-cell leukemia cells. Nutr. Cancer 2005, 52, 189–201. [Google Scholar]
- Romanos, MTV; Andrada-Serpa, MJ; Matos dos Santos, MG; Ribeiro, ACF; Yoneshigue-Valentin, Y; Costa, SS; Wigg, MD. Inhibitory effect of extracts of Brazilian marine algae on human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation in vitro. Cancer Invest 2002, 20, 46–54. [Google Scholar]
- Organisation W.H. Leishmaniasis. 2011. Available online: http://www.who.int/leishmaniasis/en/ accessed on 20 May 2011.
- Kar, S; Sharma, G; Das, PK. Fucoidan cures infection with both antimony-susceptible and -resistant strains of Leishmania donovani through Th1 response and macrophage-derived oxidants. J. Antimicrob. Chemother 2011, 66, 618–625. [Google Scholar]
- Chen, JH; Lim, JD; Sohn, EH; Choi, YS; Han, ET. Growth-inhibitory effect of a fucoidan from brown seaweed Undaria pinnatifida on Plasmodium parasites. Parasitol. Res 2009, 104, 245–250. [Google Scholar]
- Manuelidis, L; Chakrabarty, T; Miyazawa, K; Nduom, NA; Emmerling, K. The kuru infectious agent is a unique geographic isolate distinct from Creutzfeldt-Jakob disease and scrapie agents. Proc. Natl. Acad. Sci. USA 2009, 106, 13529–13534. [Google Scholar]
- Liberski, PP; Brown, P. Kuru: Its ramifications after fifty years. Exp. Gerontol 2009, 44, 63–69. [Google Scholar]
- Doh-Ura, K; Kuge, T; Uomoto, M; Nishizawa, K; Kawasaki, Y; Iha, M. Prophylactic effect of dietary seaweed Fucoidan against enteral prion infection. Antimicrob. Agents Chemother 2007, 51, 2274–2277. [Google Scholar]
- Juffrie, M; Rosalina, I; Rosalina, A; Damayanti, W; Djumhana, A; Ahmad, H. The efficacy of fucoidan on gastric ulcer. Indones. J. Biotechnol 2006, 11, 908–913. [Google Scholar]
- Lutay, N; Nilsson, I; Wadstrom, T; Ljungh, A. Effect of heparin, fucoidan and other polysaccharides on adhesion of enterohepatic Helicobacter species to murine macrophage. Appl. Biochem. Biotechnol 2010, 164, 1–9. [Google Scholar]
- Choi, JI; Raghavendran, HR; Sung, NY; Kim, JH; Chun, BS; Ahn, DH; Choi, HS; Kang, KW; Lee, JW. Effect of fucoidan on aspirin-induced stomach ulceration in rats. Chem. Biol. Interact 2010, 183, 249–254. [Google Scholar]
- Bojakowski, K; Abramczyk, P; Bojakowska, M; Zwolinska, A; Przybylski, J; Gaciong, Z. Fucoidan improves the renal blood flow in the early stage of renal ischemia/reperfusion injury in the rat. J. Physiol. Pharmacol 2001, 52, 137–143. [Google Scholar]
- Zhang, Q; Li, N; Zhao, T; Qi, H; Xu, Z; Li, Z. Fucoidan inhibits the development of proteinuria in active Heymann nephritis. Phytother. Res 2005, 19, 50–53. [Google Scholar]
- Zhang, Q; Li, Z; Xu, Z; Niu, X; Zhang, H. Effects of fucoidan on chronic renal failure in rats. Planta Med 2003, 69, 537–541. [Google Scholar]
- Veena, CK; Josephine, A; Preetha, SP; Varalakshmi, P. Beneficial role of sulfated polysaccharides from edible seaweed Fucus vesiculosus in experimental hyperoxaluria. Food Chem 2007, 100, 1552–1559. [Google Scholar]
- Josephine, A; Amudha, G; Veena, CK; Preetha, SP; Rajeswari, A; Varalakshmi, P. Beneficial effects of sulfated polysaccharides from Sargassum wightii against mitochondrial alterations induced by Cyclosporine A in rat kidney. Mol. Nutr. Food Res 2007, 51, 1413–1422. [Google Scholar]
- Rucavado, A; Escalante, T; Shannon, J; Gutierrez, JM; Fox, JW. Proteomics of wound exudate in snake venom-induced pathology: Search for biomarkers to assess tissue damage and therapeutic success. J. Proteome Res 2011, 10, 1987–2005. [Google Scholar]
- Mora, J; Mora, R; Lomonte, B; Gutierrez, JM. Effects of bothrops asper snake venom on lymphatic vessels: Insights into a hidden aspect of envenomation. PLoS Negl. Trop. Dis 2008, 2, e318. [Google Scholar]
- Gutiérrez, JM; Theakston, RDG; Warrell, DA. Confronting the neglected problem of snake bite envenoming: The need for a global partnership. PLoS Med 2006, 3, e150. [Google Scholar]
- Angulo, Y; Lomonte, B. Inhibitory effect of fucoidan on the activities of crotaline snake venom myotoxic phospholipases A(2). Biochem. Pharmacol 2003, 66, 1993–2000. [Google Scholar]
- Vasanthi, HR; Jaswanth, A; Krishnaraj, V; Rajamanickam, GV; Saraswathy, A. In vitro snake venom detoxifying action of some marine algae of Gulf of Mannar, south-east coast of India. Phytother. Res 2003, 17, 1217–1219. [Google Scholar]
Specificity of antibody | Seaweed source | Trial | Route of administration | Use | Reference |
---|---|---|---|---|---|
Heparin and fucoidan | Undaria pinnatifida | Human | Oral | Estimation of serum uptake | Irhimeh 2005 [19] |
Fucoidan | Cladosiphon okamuranus | Human | Oral | Estimation of serum, urine concentration | Tokita 2010 [20] |
Fucoidan | Cladosiphon okamuranus | Rat | Oral | Staining in liver | Nakazato 2009 [21] |
Fucoidan | Laminaria japonica and Kjellmania gyrate | Botanical stain | n/a | Staining | Mizuno 2009 [23] |
Fucoidan source | Characteristics | Studies | Dose | Species | Results | Ref. |
---|---|---|---|---|---|---|
Undaria pinnatifida | 53% total sugar 7.4% sulfate 27% Uronic acid 54% fucose 35% galactose | Acute in vivo Ames test Bone marrow micronucleus | 1000 mg/kg body weight per day for 28 days | Sprague Dawley rats | Not toxic to 1000 mg/kg bw; Increase in ALT at 200 mg/kg | Chung 2010 [25] |
Laminaria japonica | Fucoidan Fraction MW average “10–300 kD” | Oral dosing in experimental model; Toxicity by clinical observation | Escalation doses up to 20 mg/kg | Dogs with hemophilia A; Rats | No clinical toxicity | Prasad 2008 [31] |
Laminaria japonica | Fluorescent labeled fucoidan | Subcutaneous | 5 mg/kg | Rat | Half life 83 min | Prasad 2008 [31] |
Laminaria japonica | MW average 189 kDa Fucose 28% sulfate 29% total sugasr 48% | Acute and sub-chronic toxicity | 300, 900 and 2500 mg/kg bw to 6 months | Wistar Rats | Not toxic to 300 mg/kg bw Prolonged clotting at 900 and 1200 mg/kg bw | Li 2005 [26] |
Undaria pinnatifida | 64.4 ± 6.0% fucose, 31.9 ± 4.7% galactose, 3.6 ± 1.3% mannose, and 31.7 ± 2.2% sulfate | Genotoxicity Bacterial mutation Bone marrow Micronucleus formation | Up to 2000 mg/kg/bw orally | Sprague Dawley rats | Fucoidan presents no significant genotoxic concern. | Kim 2010 [32] |
Undaria pinnatifida | 64.4 ± 6.0% fucose, 31.9 ± 4.7% galactose, 3.6 ± 1.3% mannose, and 31.7 ± 2.2% sulfate | Toxicty measures—body weight, ophthalmoscopy urinalysis, hematology, and histopathology; Clotting paramaters; Prothrombin time or activated partial thromboplastin time | 1350 mg/kg bw/day for 4 weeks orally | Sprague Dawley rats | No changes to No change to prothrombin time or activated partial thromboplastin time | Kim 2009 [30] |
Undaria pinnatifida | 75% fucoidan | Full blood count, clinical biochemistry | 3 g per day for 12 days | Human | No toxicity noted | Irhimeh 2005, 2007, 2009 [19,28,29] |
Fucus vesiculosis Macrocystis pyrifera Laminaria japonica | 75% total fucoidan | Full blood count, clinical biochemistry | 0.1 and 1 g for 84 days | Human | No toxicity | Myers 2010 [27] |
Fucus vesiculosis Macrocystis pyrifera Laminaria japonica | 75% total fucoidan | Full blood count, clinical biochemistry | 0.1 and 1 g for 28 days | Human | No toxicity | Myers 2011 [33] |
Cladisiphon sp. | 85% fucoidan | Patients with HTLV1 were treated clinically | 6 g per day up to 13 months | Human | Four patients diarrhea; No other toxicity noted; Reduction in viral load | Araya 2011 [34] |
Fucoidan | Model | Adminstration | Observation | Reference |
---|---|---|---|---|
Fucus vesiculosis Macrocystis pyrifera Laminaria japonica | Human clinical | Oral daily 100 mg or 1000 mg for three months | No toxicity Up to 52% reduction in symptoms | Myers 2010 [27] |
Fucus fucoidan (Sigma) | Mouse with surgical destabilization of the medial meniscus | 20 mg/kg intraperitoneal injection | Fucoidan suppressed cellular infiltration of joint and suppress post-operative (3 days), but not late (16 weeks) pain | Mcnamee 2010 [70] |
Fucus fucoidan (Sigma) | Wistar rats with carrageenan induced local inflammation in the footpad | 20 mg/kg intravenously | Fucoidan inhibits mechanical hypernociception and neutrophil migration | Cunha 2008 [69] |
Undaria pinnatifida fucoidan | Collagen induced arthritis in mice | 100 kDa, 3.5 kDa and 1 kDa fractions orally administered daily 300 mg/kg to 49 days | 1 kDa fraction effectively inhibited whereas 100 kDa exacerbated disease | Park 2010 [41] |
Fucoidan | Model | Treatment | Result | Ref. |
---|---|---|---|---|
Fucus vesiculosis fucoidan (Sigma) | Concanavalin induced liver injury in mice | 1–30 mg/kg intravenously 30 min before concanavalin A | Significantly inhibited raised levels of TNF-alpha and IFN-gamma. Increased endogenous IL-10 production | Saito 2006 [73] |
Fucus vesiculosis fucoidan (Sigma) | CCl4 induced liver fibrosis in mice | fucoidan (50 mg/kg body weight) administered intraperitoneally for 8 weeks | Protection of normal hepatocytes. Inhibition of hepatic stellate cell proliferation | Hayashi 2008 [72] |
Cladosiphon okamuranus fractions Crude (28 kDa) and HMW (41.4 kDa) | N-nitrosodiethylamine (DEN) induced liver fibrosis model in Sprague dawley rats | 2% fucoidan in drinking water for 12 weeks | Protection from damage Increased metallothionein Down regulation of TGFbeta 1 and SDF1 | Nakazato 2010 [21] |
Fucus vesiculosis fucoidan (Sigma) | Ex vivo human hepatoma (hepatitis B and C) and Cirrhosis | Inhibition of biotidinase in tissue samples was assessed | Fucoidan decreased the disease elevated activity of biotinidase | Hayakawa 2009 [77] |
Fucus vesiculosis fucoidan (Sigma) | Rats with d-galactosamine-induced hepatopathy | Dietary inclusion of ~1.2% fucoidan for 8 days | Fucoidan was protective against d-galactosamineinduced hepatopathy in rat | Kawano 2007 [75,76] |
Fucoidan type | Model | Effects | Reference |
---|---|---|---|
Fucus vesiculosis fucoidan (Sigma) | Rat neuron in vitro | Inhibits neurotoxic effects of amyloid | Jhamandas 2005 [91] |
Laminaria japonica fuucoidan average MW 7000 | Lipopolysaccharide activated microglial cells in vitro | Inhibits NO production in LPS activated microglial cells | Cui 2010 [92] |
Sea cucumber fucoidan | Neuronal stem cells in vitro | Protection from radiation | Zhang 2010 [98] |
Laminaria japonica fuucoidan average MW 7000 | MPTP-induced Parkinsonism in mice Fucoidan delivered IP | Protects against Parkinsons disease model of neuronal damage | Luo 2009 [97] |
Fucus vesiculosis fucoidan (Sigma) | Microglial cells in vitro | Fucoidan completely blocks microglial uptake of fDNA at only 40 ng/mL | Li 2004 [93] |
Fucus vesiculosis fucoidan (Sigma) | In vitro microglial clustering assay | Fucoidan inhibits beta amyloid induced microglial clustering at 10 μM | Huang 2009 [95] |
Fucus vesiculosis fucoidan (Sigma) | Microglial cells in vitro | Inhibits LPS uptake into microglia by scavenger receptors | Pei 2007 [94] |
Fucus vesiculosis fucoidan (Sigma) | Glioma cells in vitro | Fucoidan inhibits TNF-alpha- and IFN-gamma-stimulated NO production via p38 MAPK, AP-1, JAK/STAT and IRF-1 | Do 2009 [96] |
Fucus vesiculosis fucoidan (Sigma) | NO production in neuronal blastoma cells in vitro | Fucoidan has protective effect via inducible nitric oxide synthase (iNOS) | Lee 2007 [99] |
© 2011 by the authors; licensee MDPI, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Fitton, J.H. Therapies from Fucoidan; Multifunctional Marine Polymers. Mar. Drugs 2011, 9, 1731-1760. https://doi.org/10.3390/md9101731
Fitton JH. Therapies from Fucoidan; Multifunctional Marine Polymers. Marine Drugs. 2011; 9(10):1731-1760. https://doi.org/10.3390/md9101731
Chicago/Turabian StyleFitton, Janet Helen. 2011. "Therapies from Fucoidan; Multifunctional Marine Polymers" Marine Drugs 9, no. 10: 1731-1760. https://doi.org/10.3390/md9101731
APA StyleFitton, J. H. (2011). Therapies from Fucoidan; Multifunctional Marine Polymers. Marine Drugs, 9(10), 1731-1760. https://doi.org/10.3390/md9101731