Assessing the Influence of Land Use and Land Cover Datasets with Different Points in Time and Levels of Detail on Watershed Modeling in the North River Watershed, China
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Land Use Classification
2.3. Parameterization, Calibration and Verification of the SWAT Model
Data | Data Format | Data Source |
---|---|---|
DEM | Grid (cell size 30 × 30 m) | DEMs from Fujian Provincial Geomatics Center |
Land use map | Grid (cell size 30 × 30 m) | TM/ETM+ images classification |
Soil map | Vector map (Shapefile) | Soil surveys in Fujian province |
Meteorological data | Table (.dbf and text) | Climate stations |
2.4. Scenarios Designed to Evaluate the Influence of LULC Datasets on Watershed Modeling
2.4.1. An Investigation of the Relative Impact of an Old LULC Dataset (the 2002 LULC Dataset Used for Calibration and Validation) versus Two Later LULC Datasets (LULC Datasets in 2007 and 2010)
2.4.2. An Investigation of the Relative Impact of Finer Classification versus Coarser Classification
3. Results and Discussion
3.1. Detection of Land Use and Land Cover Change Over Time
10 categories | Forest | Agriculture | Water | Orchard | Reservoir | Barren | Industrial land | HDRA * | LDRA * | Transportation | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2002 | 71.81 | 14.96 | 1.05 | 10.48 | 0.25 | 0.05 | 0.01 | 0.52 | 0.80 | 0.07 | ||
2007 | 75.26 | 15.71 | 1.51 | 3.96 | 0.16 | 0.66 | 0.21 | 0.73 | 1.60 | 0.20 | ||
2010 | 78.15 | 12.15 | 0.78 | 4.34 | 0.18 | 0.46 | 0.46 | 1.42 | 1.82 | 0.24 | ||
5 categories | Forest | Agriculture | Water | Barren | Built-up | |||||||
2002 | 71.81 | 25.44 | 1.30 | 0.05 | 1.40 | |||||||
2007 | 75.26 | 19.67 | 1.67 | 0.66 | 2.74 | |||||||
2010 | 78.15 | 16.49 | 0.96 | 0.46 | 3.94 | |||||||
3 categories | Natural | Agriculture | Built-up | |||||||||
2002 | 73.16 | 25.44 | 1.40 | |||||||||
2007 | 77.59 | 19.67 | 2.74 | |||||||||
2010 | 79.57 | 16.49 | 3.94 |
3.2. Calibration and Validation Results
Monthly Streamflow (m3/s) | Daily Streamflow (m3/s) | |||||||
---|---|---|---|---|---|---|---|---|
Calibration | Validation | Calibration | Validation | |||||
Observed | Simulated | Observed | Simulated | Observed | Simulated | Observed | Simulated | |
Mean | 255.7 | 222.9 | 255.7 | 222.9 | 256.4 | 223.3 | 266.9 | 272.1 |
SD * | 194.9 | 176.3 | 246.0 | 227.5 | 314.3 | 254.4 | 314.3 | 254.4 |
Sample numbers | 48 | 48 | 48 | 48 | 1,461 | 1,461 | 1,461 | 1,461 |
ENS | 0.86 | 0.86 | 0.64 | 0.60 | ||||
R2 | 0.89 | 0.95 | 0.65 | 0.64 |
Monthly NH4+-N Load | Monthly TP Load | |||
---|---|---|---|---|
Calibration | Validation | Calibration | Validation | |
ENS | 0.69 | 0.57 | 0.56 | 0.49 |
R2 | 0.71 | 0.61 | 0.90 | 0.63 |
3.3. Influence of LULC Datasets with Different Points in Time on Watershed Modeling
Land Use Type | Streamflow (m3/s) | NH4+-N Load (×103 kg N) | TP Load (×103 kg P) | ||||||
---|---|---|---|---|---|---|---|---|---|
02LU | 07LU | 10LU | 02LU | 07LU | 10LU | 02LU | 07LU | 10LU | |
Monthly mean | 301.65 | 299.79 | 302.34 | 569.49 | 506.71 | 525.14 | 881.72 | 839.23 | 802.22 |
Changed amount | - | −1.86 | 0.69 | - | −62.78 | −44.35 | - | −42.49 | −79.50 |
Monthly Changed percentage (%) | - | −0.62 | 0.23 | - | −11.02 | −7.79 | - | −4.82 | −9.02 |
Daily mean | 301.12 | 299.27 | 301.79 | 18.72 | 16.66 | 17.26 | 28.99 | 27.59 | 26.37 |
Daily Changed amount | - | −1.85 | 0.67 | - | −2.06 | −1.46 | - | −1.40 | −2.62 |
Daily Changed percentage (%) | - | −0.61 | 0.22 | - | −11.00 | −7.80 | - | −4.83 | −9.04 |
3.4. Sensitivity of Watershed Modeling to LULC Datasets with Different Levels of Detail
Streamflow (m3/s) | NH4+-N Load (× 103 kg N) | TP Load (× 103 kg P) | |||||||
---|---|---|---|---|---|---|---|---|---|
LULC Categories | 3 | 5 | 10 | 3 | 5 | 10 | 3 | 5 | 10 |
Monthly mean | 300.98 | 302.26 | 301.65 | 532.74 | 531.95 | 569.49 | 817.06 | 764.32 | 881.72 |
Changed amount | −0.67 | 0.61 | - | −36.75 | −37.54 | - | −64.66 | −117.40 | |
Monthly Changed percentage (%) | −0.22 | 0.20 | - | −6.45 | −6.59 | - | −7.33 | −13.31 | |
Daily mean | 300.42 | 301.66 | 301.12 | 17.51 | 17.49 | 18.72 | 26.86 | 25.13 | 28.99 |
Daily Changed amount | −0.70 | 0.54 | - | −1.21 | −1.23 | - | −2.13 | −3.86 | - |
Daily Changed percentage (%) | −0.23 | 0.18 | - | −6.46 | −6.57 | - | −7.35 | −13.31 | - |
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Burian, S.; Brown, M.; McPherson, T. Evaluation of land use/land cover datasets for urban watershed modeling. Water Sci. Technol. 2002, 45, 269–276. [Google Scholar]
- Tu, J. Combined impact of climate and land use changes on streamflow and water quality in eastern Massachusetts, USA. J. Hydrol. 2009, 379, 268–283. [Google Scholar] [CrossRef]
- De Girolamo, A.M.; Lo Porto, A. Land use scenario development as a tool for watershed management within the Rio Mannu Basin. Land Use Policy 2012, 29, 691–701. [Google Scholar] [CrossRef]
- Huang, J.; Hong, H. Comparative study of two models to simulate diffuse nitrogen and phosphorus pollution in a medium-sized watershed, southeast China. Estuar. Coastal Shelf Sci. 2010, 86, 387–394. [Google Scholar] [CrossRef]
- Huang, J.; Li, Q.; Tu, Z.; Pan, C.; Zhang, L.; Ndokoye, P.; Lin, J.; Hong, H. Quantifying land-based pollutant loads in coastal area with sparse data: Methodology and application in China. Ocean Coastal Manage. 2012. [Google Scholar] [CrossRef]
- Ackerman, D.; Schiff, K. Modeling storm water mass emissions to the Southern California Bight. J. Environ. Eng. 2003, 129, 308–317. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Hong, N.-M.; Wu, P.-J.; Wu, C.-F.; Verburg, P.H. Impacts of land use change scenarios on hydrology and land use patterns in the Wu-Tu watershed in Northern Taiwan. Landscape Urban Plan. 2007, 80, 111–126. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, Y.; Pan, Y.; Yu, Z. Land use pattern optimization based on CLUE-S and SWAT model for agricultural non-point source pollution control. Math. Comput. Model. 2011. [Google Scholar] [CrossRef]
- Croke, B.F.W.; Merritt, W.S.; Jakeman, A.J. A dynamic model for predicting hydrologic response to land cover changes in gauged and ungauged catchments. J. Hydrol. 2004, 291, 115–131. [Google Scholar] [CrossRef]
- Oeurng, C.; Sauvage, S.; Sanchez-Perez, J.-M. Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using the SWAT model. J. Hydrol. 2011, 401, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Yang, D.; Hu, H.; Gao, B. Detecting the effect of land-use change on streamflow, sediment and nutrient losses by distributed hydrological simulation. J. Hydrol. 2011, 409, 172–182. [Google Scholar] [CrossRef]
- Arnold, J.G.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrol. Process. 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Chiang, L.C; Chaubey, I.; Hong, N.M.; Lin, Y.P.; Huang, T. Implementation of BMP strategies for adaptation to climate change and land use change in a pasture-dominated watershed. Int. J. Environ. Res. Public Health. 2012, 9, 3654–3684. [Google Scholar]
- Chaplot, V.; Saleh, A.; Jaynes, D.; Arnold, J. Predicting water, sediment and NO3-N loads under scenarios of land-use and management practices in a flat watershed. Water Air Soil Pollut. 2004, 154, 271–293. [Google Scholar] [CrossRef]
- Kannan, N.; White, S.M.; Worrall, F.; Whelan, M.J. Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modelling in SWAT-2000. J. Hydrol. 2007, 332, 456–466. [Google Scholar] [CrossRef]
- Romanowicz, A.A.; Vanclooster, M.; Rounsevell, M.; La Junesse, I. Sensitivity of the SWAT model to the soil and land use data parametrisation: A case study in the Thyle catchment, Belgium. Ecol. Model. 2005, 187, 27–39. [Google Scholar] [CrossRef]
- Shen, Z.; Hong, Q.; Yu, H.; Niu, J. Parameter uncertainty analysis of non-point source pollution from different land use types. Sci. Total Environ. 2010, 408, 1971–1978. [Google Scholar] [CrossRef]
- Huang, J.; Pontius, R.G., Jr; Li, Q.; Zhang, Y. Use of intensity analysis to link patterns with processes of land change from 1986 to 2007 in a coastal watershed of southeast China. Appl. Geogr. 2012, 34, 371–384. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J. Large area hydrologic modeling and assessment part I: Model development1. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Neitsch, S.; Arnold, J.; Kiniry, J.; Srinivasan, R.; Williams, J. Soil and Water Assessment Tool (SWAT). SWAT User Manual, Version 2000; Water Resource Institute: College Station, TX, USA, 2002. [Google Scholar]
- Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J.; King, K. Soil and Water Assessment Tool Theoretical Documentation, Version 2000; Water Resource Institute: College Station, TX, USA, 2002. [Google Scholar]
- Chen, J. Study on soil classification correlation and keys to soil taxonomical classification of Fujian Province. Geo-inf. Sci. 2002, 1, 66–70. [Google Scholar]
- Shi, X.; Yu, D.; Xu, S.; Warner, E.; Wang, H.; Sun, W.; Zhao, Y.; Gong, Z. Cross-reference for relating genetic soil classification of China with WRB at different scales. Geoderma 2010, 155, 344–350. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Eisenhauer, J.G. Regression through the origin. Teaching Statistics 2003, 25, 76–80. [Google Scholar] [CrossRef]
- Hundecha, Y.; Bárdossy, A. Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. J. Hydrol. 2004, 292, 281–295. [Google Scholar] [CrossRef]
- Niehoff, D.; Fritsch, U.; Bronstert, A. Land-use impacts on storm-runoff generation: Scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany. J. Hydrol. 2002, 267, 80–93. [Google Scholar] [CrossRef]
- Schilling, K.; Zhang, Y.-K. Baseflow contribution to nitrate-nitrogen export from a large, agricultural watershed, USA. J. Hydrol. 2004, 295, 305–316. [Google Scholar] [CrossRef]
- Yang, X. An assessment of landscape characteristics affecting estuarine nitrogen loading in an urban watershed. J. Environ. Manage. 2012, 94, 50–60. [Google Scholar] [CrossRef]
- Huang, J.; Li, Q.; Pontius, R.G.; Klemas, V.; Hong, H. Detecting the dynamic linkage between landscape characteristics and water quality in a subtropical coastal watershed, Southeast China. Environ. Manage. 2011. [Google Scholar] [CrossRef]
- Baker, A. Land use and water quality. Hydrol. Process. 2003, 17, 2499–2501. [Google Scholar] [CrossRef]
- Wilson, C.O.; Weng, Q. Simulating the impacts of future land use and climate changes on surface water quality in the Des Plaines River watershed, Chicago Metropolitan Statistical Area, Illinois. Sci. Total Environ. 2011, 409, 4387–4405. [Google Scholar] [CrossRef]
- You, Y.; Jin, W.; Xiong, Q.; Xue, L.; Ai, T.; Li, B. Simulation and validation of non-point source nitrogen and phosphorus loads under different land uses in Sihu Basin, Hubei Province, China. Procedia Environ. Sci. 2012, 13, 1781–1797. [Google Scholar] [CrossRef]
- Pontius, R.G., Jr.; Malizia, N.R. Effect of Category Aggregation on Map Comparison. In Geographic Information Science; Egenhofer, M.J., Freksa, C., Miller, H.J., Eds.; Springer: Berlin, Germany, 2004; pp. 251–268. [Google Scholar]
- Guo, H.; Hu, Q.; Jiang, T. Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake Basin, China. J. Hydrol. 2008, 355, 106–122. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.; Zhang, X.; Zheng, F. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. J. Hydrol. 2009, 377, 35–42. [Google Scholar] [CrossRef]
- Palamuleni, L.G.; Ndomba, P.M.; Annegarn, H.J. Evaluating land cover change and its impact on hydrological regime in Upper Shire river catchment, Malawi. Reg. Environ. Change 2011, 11, 845–855. [Google Scholar] [CrossRef]
- Pan, Y.; Gong, H.; Zhou, D.; Li, X.; Nakagoshi, N. Impact of land use change on groundwater recharge in Guishui River Basin, China. Chinese Geogr. Sci. 2011, 21, 734–743. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Huang, J.; Zhou, P.; Zhou, Z.; Huang, Y. Assessing the Influence of Land Use and Land Cover Datasets with Different Points in Time and Levels of Detail on Watershed Modeling in the North River Watershed, China. Int. J. Environ. Res. Public Health 2013, 10, 144-157. https://doi.org/10.3390/ijerph10010144
Huang J, Zhou P, Zhou Z, Huang Y. Assessing the Influence of Land Use and Land Cover Datasets with Different Points in Time and Levels of Detail on Watershed Modeling in the North River Watershed, China. International Journal of Environmental Research and Public Health. 2013; 10(1):144-157. https://doi.org/10.3390/ijerph10010144
Chicago/Turabian StyleHuang, Jinliang, Pei Zhou, Zengrong Zhou, and Yaling Huang. 2013. "Assessing the Influence of Land Use and Land Cover Datasets with Different Points in Time and Levels of Detail on Watershed Modeling in the North River Watershed, China" International Journal of Environmental Research and Public Health 10, no. 1: 144-157. https://doi.org/10.3390/ijerph10010144
APA StyleHuang, J., Zhou, P., Zhou, Z., & Huang, Y. (2013). Assessing the Influence of Land Use and Land Cover Datasets with Different Points in Time and Levels of Detail on Watershed Modeling in the North River Watershed, China. International Journal of Environmental Research and Public Health, 10(1), 144-157. https://doi.org/10.3390/ijerph10010144