Escherichia coli in Europe: An Overview
Abstract
:1. Introduction
Pathotype (acronym) | Diseases | Symptoms | Virulence factors | Ref. |
---|---|---|---|---|
Enteric E.coli | ||||
EnteroPathogenic E. coli (EPEC) | Diarrhoea in children | Watery diarrhoea and vomiting | Bfp, Intimin, LEE | [1] |
EnteroHaemorrhagic E. coli (EHEC) | Haemorrhagic colitis, HUS | Bloody diarrhoea | Shiga toxins, Intimin, Bfp | [1,3] |
EnteroToxigenic E. coli (ETEC) | Traveler’s diarrhoea | Watery diarrhoea and vomiting | Heat-labile and sheat-stable toxins, CFAs | [4,5] |
EnteroAggregative E. coli (EAEC) | Diarrhoea in children | Diarrhoea with mucus and vomiting | AAFs, cytotoxins | [6,7] |
Diffusely Adherent E. coli (DAEC) | Acute diarrhoea in children | Watery diarrhoea, recurring UTI | Daa, AIDA | [8] |
EnteroInvasive E. coli (EIEC) | Shigellosis-like | Watery diarrhoea; dysentery | Shiga toxin, hemolysin, Cellular invasion, Ipa | [1,7] |
Adherent Invasive E. coli (AIEC) | Associated with Crohn disease | Persistent intestinal inflammation | Type 1 fimbriae, Cellular invasion | [9,10] |
Extraintestinal E. coli (ExPEC) | ||||
UroPathogenic E. coli (UPEC) | Lower UTI and systemic infections | Cystitis, pyelonephritis | Type 1 and P fimbriae; AAFs, hemolysin | [1,11] |
Neonatal Meningitis E. coli (NMEC) | Neonatal meningitis | Acute meningitis, sepsi | S fimbrie; K1 capsule | [12,13] |
Avian Pathogenic E. coli (APEC) | Probable source of food-borne disease | - | Type 1 and P fimbriae; K1 capsule | [14,15] |
2. Mechanisms of Resistance
Mechanism | Example | Target | Ref. | |
---|---|---|---|---|
Enzyme inactivation | β-lactamases: TEM-type; SHV-type. | Broad-spectrum penicillins | [27] | |
ESBLs: TEM/SHV-type variants; Clusters: CTX-M-1, CTX-M-2, CTX-M-8, CTX-M-9, CTX-M-25; GES/PER/VEB types (less frequently). | Penicillins and cephalosporins | [27,28,29,30,31,32,33,34] | ||
Class A: serine-carbapenemases; Class B: active zinc site metallo-β-lactamases; Class D: OXA β-lactamases. | Carbapenems | [35,36,37,38,39,40] | ||
Chromosomal mutations | Alterated target enzymes: DNA gyrase, topoisomerase IV. Decreased antimicrobial uptake: decrease in membrane permeability; overexpression of efflux pumps. | Quinolones | [41,42] | |
Plasmid-mediated quinolone resistance | TMQRs: Qnr, AAC(6’)-Ib-cr), QepA, OqxAB. | [43,44] | ||
Enzyme inactivation | Acetyltransferases, nucleotidyltransferases, phosphotransferases. | Aminoglycosides | [46,47,48,49] | |
Decreased antimicrobial uptake | decrease in membrane permeability; overexpression of efflux pumps. | |||
16S rRNA methylation | ArmA/Rmt family |
3. Epidemiology of Resistance
Country | Third-generation cephalosporines | Fluoroquinolones | Aminoglycosides | Multi- resistance a | Ref. |
---|---|---|---|---|---|
Austria | 9.1 | 22.3 | 7.4 | 2.6 | [25] b |
Belgium | 6.0 | 21.5 | 9.3 | 1.4 | [25] |
Bosnia and Herzegovina | 3.0 | 15.0 | 3.0 | 0 | [57] c |
Bulgaria | 22.9 | 30.2 | 17.3 | 10.1 | [25] |
Croatia | 4.0 | 15.0 | 7.0 | 1.0 | [57] |
Cyprus | 36.2 | 47.4 | 23.9 | 18.2 | [25] |
Czech Republic | 11.4 | 23.5 | 8.8 | 3.7 | [25] |
Denmark | 8.5 | 14.1 | 6.4 | 3.0 | [25] |
Estonia | 12.2 | 9.9 | 4.8 | 1.1 | [25] |
Finland | 5.1 | 10.8 | 5.3 | 2.7 | [25] |
France | 8.2 | 17.9 | 7.9 | 2.6 | [25] |
Germany | 8.0 | 23.7 | 7.6 | 3.6 | [25] |
Greece | 14.9 | 26.6 | 16.8 | 10.8 | [25] |
Hungary | 15.1 | 31.2 | 14.8 | 8.3 | [25] |
Iceland | 6.2 | 14.0 | 6.2 | 0.8 | [25] |
Ireland | 9.0 | 22.9 | 10.2 | 3.6 | [25] |
Italy | 19.8 | 40.5 | 18.3 | 10.3 | [25] |
Latvia | 15.9 | 16.8 | 11.4 | 9.2 | [25] |
Lithuania | 7.0 | 12.9 | 9.7 | 2.4 | [25] |
Luxembourg | 8.2 | 24.1 | 8.2 | 2.8 | [25] |
Malta | 12.8 | 32.0 | 15.5 | 9.6 | [25] |
Netherlands | 5.7 | 14.3 | 7.8 | 2.2 | [25] |
Norway | 3.6 | 9.0 | 4.1 | 1.2 | [25] |
Poland | 11.7 | 27.3 | 8.4 | 4.0 | [25] |
Portugal | 11.3 | 27.2 | 16.1 | 7.5 | [25] |
Romania | 22.0 | 30.4 | 19.6 | 10.9 | [25] |
Slovakia | 31.0 | 41.9 | 17.9 | 12.9 | [25] |
Slovenia | 8.8 | 20.7 | 9.8 | 4.1 | [25] |
Spain | 12.0 | 34.5 | 14.8 | 4.9 | [25] |
Sweden | 3.0 | 7.9 | 3.7 | 1.0 | [25] |
Switzerland | 3.0 | 15.0 | 7.0 | 1.0 | [57] |
Turkey | 42.0 | 52.0 | 35.0 | 23.0 | [57] |
United Kingdom | 9.6 | 17.5 | 8.2 | 3.6 | [25] |
4. E. coli Outbreaks
5. Prevention and Control of E. coli Infections
6. Alternative Therapies
7. E. coli as a Biological Weapon
8. Conclusions
Acknowledgments
Conflicts of Interest
References
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Yoo, S.H.; Jeong, H.; Kwon, S.-K.; Kim, J.F. Genomics, Biological Features, and Biotechnological Applications of Escherichia coli B: Is B for better; Springer: Berlin, Germany, 2009. [Google Scholar]
- Bilinski, P.; Kapka-Skrzypczak, L.; Posobkiewicz, M.; Bondaryk, M.; Holownia, P.; Wojtyla, A. Public health hazards in Poland posed by foodstuffs contaminated with E. coli O104:H4 bacterium from the recent European outbreak. Ann. Agric. Environ. Med. 2012, 19, 3–10. [Google Scholar]
- Qadri, F.; Svennerholm, A.M.; Faruque, A.S.; Sack, R.B. Enterotoxigenic Escherichia coli in developing countries: Epidemiology, microbiology, clinical features, treatment, and prevention. Clin. Microbiol. Rev. 2005, 18, 465–483. [Google Scholar] [CrossRef]
- Al-Abri, S.S.; Beeching, N.J.; Nye, F.J. Traveller’s diarrhoea. Lancet Infect. Dis. 2005, 5, 349–360. [Google Scholar] [CrossRef]
- Weintraub, A. Enteroaggregative Escherichia coli: Epidemiology, virulence and detection. J. Med. Microbiol. 2007, 56, 4–8. [Google Scholar] [CrossRef]
- Nataro, J.P.; Steiner, T.; Guerrant, R.L. Enteroaggregative Escherichia coli. Emerg. Infect. Dis. 1998, 4, 251–261. [Google Scholar] [CrossRef]
- Servin, A.L. Pathogenesis of Afa/Dr diffusely adhering Escherichia coli. Clin. Microbiol. Rev. 2005, 18, 264–292. [Google Scholar] [CrossRef]
- Darfeuille-Michaud, A. Adherent-invasive Escherichia coli: A putative new E. coli pathotype associated with Crohn’s disease. Int. J. Med. Microbiol. 2002, 292, 185–193. [Google Scholar] [CrossRef]
- Negroni, A.; Costanzo, M.; Vitali, R.; Superti, F.; Bertuccini, L.; Tinari, A.; Minelli, F.; di Nardo, G.; Nuti, F.; Pierdomenico, M.; et al. Characterization of adherent-invasive Escherichia coli isolated from pediatric patients with inflammatory bowel disease. Inflamm. Bowel Dis. 2012, 18, 913–924. [Google Scholar] [CrossRef]
- Johnson, J.R.; Stell, A.L. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J. Infect. Dis. 2000, 181, 261–272. [Google Scholar] [CrossRef]
- Gaschignard, J.; Levy, C.; Romain, O.; Cohen, R.; Bingen, E.; Aujard, Y.; Boileau, P. Neonatal bacterial meningitis: 444 cases in 7 years. Pediatr. Infect. Dis. J. 2011, 30, 212–217. [Google Scholar] [CrossRef]
- Pouillot, F.; Chomton, M.; Blois, H.; Courroux, C.; Noelig, J.; Bidet, P.; Bingen, E.; Bonacorsi, S. Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b:H4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrob. Agents Chemother. 2012, 56, 3568–3575. [Google Scholar] [CrossRef]
- Johnson, T.J.; Kariyawasam, S.; Wannemuehler, Y.; Mangiamele, P.; Johnson, S.J.; Doetkott, C.; Skyberg, J.A.; Lynne, A.M.; Johnson, J.R.; Nolan, L.K. The genome sequence of avian pathogenic Escherichia coli strain O1:K1:H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. J. Bacteriol. 2007, 189, 3228–3236. [Google Scholar]
- Rodriguez-Siek, K.E.; Giddings, C.W.; Doetkott, C.; Johnson, T.J.; Fakhr, M.K.; Nolan, L.K. Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology 2005, 151, 2097–2110. [Google Scholar] [CrossRef]
- Tivendale, K.A.; Logue, C.M.; Kariyawasam, S.; Jordan, D.; Hussein, A.; Li, G.; Wannemuehler, Y.; Nolan, L.K. Avian-pathogenic Escherichia coli strains are similar to neonatal meningitis E. coli strains and are able to cause meningitis in the rat model of human disease. Infect. Immun. 2010, 78, 3412–3419. [Google Scholar] [CrossRef]
- The Evolving Threat of Antimicrobial Resistance: Options for Action; World Health Organization: Geneva, Switzerland, 2012.
- Von Baum, H.; Marre, R. Antimicrobial resistance of Escherichia coli and therapeutic implications. Int. J. Med. Microbiol. 2005, 295, 503–511. [Google Scholar] [CrossRef]
- Van der Bij, A.K.; Pitout, J.D. The role of international travel in the worldwide spread of multiresistant Enterobacteriaceae. J. Antimicrob. Chemother. 2012, 67, 2090–2100. [Google Scholar] [CrossRef]
- Szmolka, A.; Nagy, B. Multidrug resistant commensal Escherichia coli in animals and its impact for public health. Front. Microbiol. 2013, 4, 258. [Google Scholar] [CrossRef] [Green Version]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Johnson, T.J.; Nolan, L.K. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol. Mol. Biol. Rev. 2009, 73, 750–774. [Google Scholar] [CrossRef]
- Johnson, T.J.; Logue, C.M.; Johnson, J.R.; Kuskowski, M.A.; Sherwood, J.S.; Barnes, H.J.; DebRoy, C.; Wannemuehler, Y.M.; Obata-Yasuoka, M.; Spanjaard, L.; et al. Associations between multidrug resistance, plasmid content, and virulence potential among extraintestinal pathogenic and commensal Escherichia coli from humans and poultry. Foodborne Pathog. Dis. 2012, 9, 37–46. [Google Scholar] [CrossRef]
- Erb, A.; Sturmer, T.; Marre, R.; Brenner, H. Prevalence of antibiotic resistance in Escherichia coli: Overview of geographical, temporal, and methodological variations. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 83–90. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2011; Annual Report of the European Antimicrobial Resistance Surveillance Network: Stockholm, Sweden, 2012. [Google Scholar]
- Critically Important Antimicrobials for Human Medicine: Categorization for the Development of Risk Management Strategies to Contain Antimicrobial Resistance due to Non-Human Antimicrobial Use. In Proccedings of Report of the 2nd WHO Expert Meeting, Copenhagen, Danmark, 29–31 May 2007.
- Poirel, L.; Bonnin, R.A.; Nordmann, P. Genetic support and diversity of acquired extended-spectrum beta-lactamases in Gram-negative rods. Infect. Genet. Evol. 2012, 12, 883–893. [Google Scholar] [CrossRef]
- Canton, R.; Coque, T.M. The CTX-M beta-lactamase pandemic. Curr. Opin. Microbiol. 2006, 9, 466–475. [Google Scholar] [CrossRef]
- Livermore, D.M.; Canton, R.; Gniadkowski, M.; Nordmann, P.; Rossolini, G.M.; Arlet, G.; Ayala, J.; Coque, T.M.; Kern-Zdanowicz, I.; Luzzaro, F.; et al. CTX-M: Changing the face of ESBLs in Europe. J. Antimicrob. Chemother. 2007, 59, 165–174. [Google Scholar]
- Lopez-Cerero, L.; Bellido, M.D.; Serrano, L.; Liro, J.; Cisneros, J.M.; Rodriguez-Bano, J.; Pascual, A. Escherichia coli O25b:H4/ST131 are prevalent in Spain and are often not associated with ESBL or quinolone resistance. Enferm. Infecc. Microbiol. Clin. 2013, 31, 385–388. [Google Scholar] [CrossRef]
- Rogers, B.A.; Sidjabat, H.E.; Paterson, D.L. Escherichia coli O25b-ST131: A pandemic, multiresistant, community-associated strain. J. Antimicrob. Chemother. 2011, 66, 1–14. [Google Scholar] [CrossRef]
- Walsh, F.; Rogers, T.R. Comparison of plasmid-mediated quinolone resistance and extended-spectrum beta-lactamases in third-generation cephalosporin-resistant Enterobacteriaceae from four Irish hospitals. J. Med. Microbiol. 2012, 61, 142–147. [Google Scholar] [CrossRef]
- Mugnaioli, C.; Luzzaro, F.; de Luca, F.; Brigante, G.; Perilli, M.; Amicosante, G.; Stefani, S.; Toniolo, A.; Rossolini, G.M. CTX-M-type extended-spectrum beta-lactamases in Italy: Molecular epidemiology of an emerging countrywide problem. Antimicrob. Agents Chemother. 2006, 50, 2700–2706. [Google Scholar] [CrossRef]
- Ewers, C.; Bethe, A.; Semmler, T.; Guenther, S.; Wieler, L.H. Extended-spectrum beta-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clin. Microbiol. Infect. 2012, 18, 646–655. [Google Scholar] [CrossRef]
- Queenan, A.M.; Bush, K. Carbapenemases: The versatile beta-lactamases. Clin. Microbiol. Rev. 2007, 20, 440–458. [Google Scholar] [CrossRef]
- Canton, R.; Akova, M.; Carmeli, Y.; Giske, C.G.; Glupczynski, Y.; Gniadkowski, M.; Livermore, D.M.; Miriagou, V.; Naas, T.; Rossolini, G.M.; et al. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin. Microbiol. Infect. 2012, 18, 413–431. [Google Scholar] [CrossRef]
- Shevchenko, O.V.; Mudrak, D.Y.; Skleenova, E.Y.; Kozyreva, V.K.; Ilina, E.N.; Ikryannikova, L.N.; Alexandrova, I.A.; Sidorenko, S.V.; Edelstein, M.V. First detection of VIM-4 metallo-beta-lactamase-producing Escherichia coli in Russia. Clin. Microbiol. Infect. 2012, 18, E214–E217. [Google Scholar] [CrossRef]
- Nordmann, P.; Naas, T.; Poirel, L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 2011, 17, 1791–1798. [Google Scholar] [CrossRef]
- Mushtaq, S.; Irfan, S.; Sarma, J.B.; Doumith, M.; Pike, R.; Pitout, J.; Livermore, D.M.; Woodford, N. Phylogenetic diversity of Escherichia coli strains producing NDM-type carbapenemases. J. Antimicrob. Chemother. 2011, 66, 2002–2005. [Google Scholar] [CrossRef]
- Glasner, C.; Albiger, B.; Buist, G.; Tambic Andrasevic, A.; Canton, R.; Carmeli, Y.; Friedrich, A.; Giske, C.; Glupczynski, Y.; Gniadkowski, M.; et al. Carbapenemase-producing Enterobacteriaceae in Europe: A survey among national experts from 39 countries, February 2013. Euro Surveill 2013, 18. Available online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20525 (accessed on 5 November 2013). [Google Scholar]
- Hopkins, K.L.; Davies, R.H.; Threlfall, E.J. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: Recent developments. Int. J. Antimicrob. Agents 2005, 25, 358–373. [Google Scholar] [CrossRef]
- Hooper, D.C. Mechanisms of fluoroquinolone resistance. Drug Resist. Updats 1999, 2, 38–55. [Google Scholar] [CrossRef]
- Ruiz, J.; Pons, M.J.; Gomes, C. Transferable mechanisms of quinolone resistance. Int. J. Antimicrob. Agents 2012, 40, 196–203. [Google Scholar] [CrossRef]
- Robicsek, A.; Jacoby, G.A.; Hooper, D.C. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect. Dis. 2006, 6, 629–640. [Google Scholar] [CrossRef]
- Schito, G.C.; Naber, K.G.; Botto, H.; Palou, J.; Mazzei, T.; Gualco, L.; Marchese, A. The ARESC study: An international survey on the antimicrobial resistance of pathogens involved in uncomplicated urinary tract infections. Int. J. Antimicrob. Agents 2009, 34, 407–413. [Google Scholar] [CrossRef]
- Schultsz, C.; Geerlings, S. Plasmid-mediated resistance in Enterobacteriaceae: Changing landscape and implications for therapy. Drugs 2012, 72, 1–16. [Google Scholar] [CrossRef]
- Över, U.; Gur, D.; Ünal, S.; Miller, G.H.; Aminoglycoside Resistance Study Group. The changing nature of aminoglycoside resistance mechanisms and prevalence of newly recognized resistance mechanisms in Turkey. Clin. Microbiol. Infect. 2001, 7, 470–478. [Google Scholar]
- Zarubica, T.; Baker, M.R.; Wright, H.T.; Rife, J.P. The aminoglycoside resistance methyltransferases from the ArmA/Rmt family operate late in the 30S ribosomal biogenesis pathway. RNA 2011, 17, 346–355. [Google Scholar] [CrossRef]
- Lindemann, P.C.; Risberg, K.; Wiker, H.G.; Mylvaganam, H. Aminoglycoside resistance in clinical Escherichia coli and Klebsiella pneumoniae isolates from western Norway. APMIS 2012, 120, 495–502. [Google Scholar]
- Livermore, D.M.; Mushtaq, S.; Warner, M.; Zhang, J.C.; Maharjan, S.; Doumith, M.; Woodford, N. Activity of aminoglycosides, including ACHN-490, against carbapenem-resistant Enterobacteriaceae isolates. J. Antimicrob. Chemother. 2011, 66, 48–53. [Google Scholar] [CrossRef]
- Galimand, M.; Sabtcheva, S.; Courvalin, P.; Lambert, T. Worldwide disseminated armA aminoglycoside resistance methylase gene is borne by composite transposon Tn1548. Antimicrob. Agents Chemother. 2005, 49, 2949–2953. [Google Scholar] [CrossRef]
- Van Duijn, P.J.; Dautzenberg, M.J.; Oostdijk, E.A. Recent trends in antibiotic resistance in European ICUs. Curr. Opin. Crit. Care 2011, 17, 658–665. [Google Scholar] [CrossRef]
- Kronvall, G. Antimicrobial resistance 1979–2009 at Karolinska hospital, Sweden: Normalized resistance interpretation during a 30-year follow-up on Staphylococcus aureus and Escherichia coli resistance development. APMIS 2010, 118, 621–639. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Annual Epidemiological Report 2012, Reporting on 2010 Surveillance Data and 2011 Epidemic Intelligence Data: Stockholm, Sweden, 2013.
- Thorsteinsdottir, T.R.; Haraldsson, G.; Fridriksdottir, V.; Kristinsson, K.G.; Gunnarsson, E. Prevalence and genetic relatedness of antimicrobial-resistant Escherichia coli isolated from animals, foods and humans in Iceland. Zoonoses Public Health 2010, 57, 189–196. [Google Scholar] [CrossRef]
- Priamchuk, S.D.; Fursova, N.K.; Abaev, I.V.; Kovalev Iu, N.; Shishkova, N.A.; Pecherskikh, E.I.; Korobova, O.V.; Astashkin, E.I.; Pachkunov, D.M.; Kruglov, A.N.; et al. Genetic determinants of antibacterial resistance among nosocomial Escherichia coli, Klebsiella spp., and Enterobacter spp. isolates collected in Russia within 2003–2007. Antibiot. Khimioter. 2010, 55, 3–10. [Google Scholar]
- European Antimicrobial Resistance Surveillance System. EARSS Annual Report 2008; EARSS: Bilthoven, The Netherland, 2009. [Google Scholar]
- Tonkic, M.; Goic-Barisic, I.; Punda-Polic, V. Prevalence and antimicrobial resistance of extended-spectrum beta-lactamases-producing Escherichia coli and Klebsiella pneumoniae strains isolated in a university hospital in Split, Croatia. Int. Microbiol. 2005, 8, 119–124. [Google Scholar]
- Balode, A.; Punda-Polic, V.; Dowzicky, M.J. Antimicrobial susceptibility of gram-negative and gram-positive bacteria collected from countries in eastern Europe: Results from the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) 2004–2010. Int. J. Antimicrob. Agents 2013, 41, 527–535. [Google Scholar] [CrossRef]
- Pitout, J.D. Multiresistant Enterobacteriaceae: New threat of an old problem. Expert Rev. Anti Infect. Ther. 2008, 6, 657–669. [Google Scholar] [CrossRef]
- Pitout, J.D. Extraintestinal pathogenic Escherichia coli: An update on antimicrobial resistance, laboratory diagnosis and treatment. Expert Rev. Anti Infect. Ther. 2012, 10, 1165–1176. [Google Scholar] [CrossRef]
- Paterson, D.L. Resistance in Gram-negative bacteria: Enterobacteriaceae. Am. J. Med. 2006, 119, S20–S28. [Google Scholar] [CrossRef]
- Kirchner, M.; Wearing, H.; Teale, C. Plasmid-mediated quinolone resistance gene detected in Escherichia coli from cattle. Vet. Microbiol. 2011, 148, 434–435. [Google Scholar] [CrossRef]
- Snow, L.C.; Warner, R.G.; Cheney, T.; Wearing, H.; Stokes, M.; Harris, K.; Teale, C.J.; Coldham, N.G. Risk factors associated with extended spectrum beta-lactamase Escherichia coli (CTX-M) on dairy farms in North West England and North Wales. Prev. Vet. Med. 2012, 106, 225–234. [Google Scholar] [CrossRef]
- Platell, J.L.; Johnson, J.R.; Cobbold, R.N.; Trott, D.J. Multidrug-resistant extraintestinal pathogenic Escherichia coli of sequence type ST131 in animals and foods. Vet. Microbiol. 2011, 153, 99–108. [Google Scholar] [CrossRef]
- Hendriksen, R.S.; Mevius, D.J.; Schroeter, A.; Teale, C.; Jouy, E.; Butaye, P.; Franco, A.; Utinane, A.; Amado, A.; Moreno, M.; et al. Occurrence of antimicrobial resistance among bacterial pathogens and indicator bacteria in pigs in different European countries from year 2002–2004: The ARBAO-II study. Acta Vet. Scand. 2008, 50, 19. [Google Scholar] [CrossRef] [Green Version]
- Giufrè, M.; Graziani, C.; Accogli, M.; Luzzi, I.; Busani, L.; Cerquetti, M.; Escherichia coli Study Group. Escherichia coli of human and avian origin: Detection of clonal groups associated with fluoroquinolone and multidrug resistance in Italy. J. Antimicrob. Chemother. 2012, 67, 860–867. [Google Scholar] [CrossRef]
- Cengiz, M.; Buyukcangaz, E.; Arslan, E.; Mat, B.; Sahinturk, P.; Sonal, S.; Gocmen, H.; Sen, A. Molecular characterisation of quinolone resistance in Escherichia coli from animals in Turkey. Vet. Rec. 2012, 171, 151–154. [Google Scholar] [CrossRef]
- Aleisa, A.M.; Ashgan, M.H.; Alnasserallah, A.A.; Mahmoud, M.H.; Moussa, I.M. Molecular detection of β-lactamases and aminoglycoside resistance genes among Escherichia coli isolates recovered from medicinal plant. Afr. J. Microbiol. Res. 2013, 7, 2305–2310. [Google Scholar]
- Gonzalez-Zorn, B.; Escudero, J.A. Ecology of antimicrobial resistance: Humans, animals, food and environment. Int. Microbiol. 2012, 15, 101–109. [Google Scholar]
- Da Costa, P.M.; Loureiro, L.; Matos, A.J. Transfer of multidrug-resistant bacteria between intermingled ecological niches: The interface between humans, animals and the environment. Int. J. Environ. Res. Public Health 2013, 10, 278–294. [Google Scholar] [CrossRef]
- Korzeniewska, E.; Korzeniewska, A.; Harnisz, M. Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment. Ecotoxicol. Environ. Saf. 2013, 91, 96–102. [Google Scholar] [CrossRef]
- Bedenic, B.; Vranes, J.; Hofmann-Thiel, S.; Tonkic, M.; Novak, A.; Bucevic-Popovic, V.; Hoffmann, H. Characterization of the extended-spectrum beta-lactamases and determination of the virulence factors of uropathogenic Escherichia coli strains isolated from children. Wien. Klin. Wochenschr. 2012, 124, 504–515. [Google Scholar] [CrossRef] [Green Version]
- Dedeic-Ljubovic, A.; Hukic, M.; Bekic, D.; Zvizdic, A. Frequency and distribution of diarrhoeagenic Escherichia coli strains isolated from pediatric patients with diarrhoea in Bosnia and Herzegovina. Bosn. J. Basic Med. Sci. 2009, 9, 148–155. [Google Scholar]
- Coban, A.Y.; Nohut, O.K.; Tanriverdi Cayci, Y.; Bayramoglu, G.; Pirincciler, M.; Cetinkaya, E.; Cekic Cihan, C.; Bozdogan, B.; Durupinar, B. Investigation of plasmid-mediated quinolone resistance determinants in enterobacteriaceae: A multicenter study. Mikrobiyol. Bul. 2012, 46, 366–374. [Google Scholar]
- Karch, H.; Denamur, E.; Dobrindt, U.; Finlay, B.B.; Hengge, R.; Johannes, L.; Ron, E.Z.; Tonjum, T.; Sansonetti, P.J.; Vicente, M. The enemy within us: Lessons from the 2011 European Escherichia coli O104:H4 outbreak. EMBO Mol. Med. 2012, 4, 841–848. [Google Scholar] [CrossRef]
- Marejkova, M.; Rohacova, H.; Reisingerova, M.; Petras, P. An imported case of bloody diarrhea in the Czech Republic caused by a hybrid enteroaggregative hemorrhagic Escherichia coli (EAHEC) O104:H4 strain associated with the large outbreak in Germany, May 2011. Folia Microbiol. 2012, 57, 85–89. [Google Scholar] [CrossRef]
- Bielaszewska, M.; Mellmann, A.; Bletz, S.; Zhang, W.; Kock, R.; Kossow, A.; Prager, R.; Fruth, A.; Orth-Holler, D.; Marejkova, M.; et al. Enterohemorrhagic Escherichia coli O26:H11/H−: A new virulent clone emerges in Europe. Clin. Infect. Dis. 2013, 56, 1373–1381. [Google Scholar] [CrossRef]
- Markovska, R.; Schneider, I.; Ivanova, D.; Keuleyan, E.; Stoeva, T.; Sredkova, M.; Markova, B.; Bojkova, K.; Gergova, R.; Bauernfeind, A.; et al. High prevalence of CTX-M-15-producing O25b-ST131 Escherichia coli clone in Bulgarian hospitals. Microb. Drug Resist. 2012, 18, 390–395. [Google Scholar] [CrossRef]
- Boyer-Mariotte, S.; Duboc, P.; Bonacorsi, S.; Lemeland, J.F.; Bingen, E.; Pinquier, D. CTX-M-15-producing Escherichia coli in fatal neonatal meningitis: Failure of empirical chemotherapy. J. Antimicrob. Chemother. 2008, 62, 1472–1474. [Google Scholar] [CrossRef]
- Mielke, M. Prevention and control of nosocomial infections and resistance to antibiotics in Europe - Primum non-nocere: Elements of successful prevention and control of healthcare-associated infections. Int. J. Med. Microbiol. 2010, 300, 346–350. [Google Scholar] [CrossRef]
- Global Strategy for Containment of Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2001.
- Seib, K.L.; Zhao, X.; Rappuoli, R. Developing vaccines in the era of genomics: A decade of reverse vaccinology. Clin. Microbiol. Infect. 2012, 18, 109–116. [Google Scholar]
- Gillings, M.R. Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Front. Microbiol. 2013, 4, 4. [Google Scholar] [CrossRef]
- De Vrese, M.; Schrezenmeir, J. Probiotics, prebiotics, and synbiotics. Adv. Biochem. Eng. Biotechnol. 2008, 111, 1–66. [Google Scholar]
- Preidis, G.A.; Hill, C.; Guerrant, R.L.; Ramakrishna, B.S.; Tannock, G.W.; Versalovic, J. Probiotics, enteric and diarrheal diseases, and global health. Gastroenterology 2011, 140, 8–14. [Google Scholar] [CrossRef]
- Mennigen, R.; Bruewer, M. Effect of probiotics on intestinal barrier function. Ann. N. Y. Acad. Sci. 2009, 1165, 183–189. [Google Scholar] [CrossRef]
- Amdekar, S.; Singh, V.; Singh, D.D. Probiotic therapy: Immunomodulating approach toward urinary tract infection. Curr. Microbiol. 2011, 63, 484–490. [Google Scholar] [CrossRef]
- Tobias, J.; Svennerholm, A.M. Strategies to overexpress enterotoxigenic Escherichia coli (ETEC) colonization factors for the construction of oral whole-cell inactivated ETEC vaccine candidates. Appl. Microbiol. Biotechnol. 2012, 93, 2291–2300. [Google Scholar] [CrossRef]
- Isidean, S.D.; Riddle, M.S.; Savarino, S.J.; Porter, C.K. A systematic review of ETEC epidemiology focusing on colonization factor and toxin expression. Vaccine 2011, 29, 6167–6178. [Google Scholar] [CrossRef]
- Brumbaugh, A.R.; Mobley, H.L. Preventing urinary tract infection: Progress toward an effective Escherichia coli vaccine. Expert Rev. Vaccines 2012, 11, 663–676. [Google Scholar] [CrossRef]
- Moriel, D.G.; Bertoldi, I.; Spagnuolo, A.; Marchi, S.; Rosini, R.; Nesta, B.; Pastorello, I.; Corea, V.A.; Torricelli, G.; Cartocci, E.; et al. Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 2010, 107, 9072–9077. [Google Scholar] [CrossRef]
- Nikaido, H. Multidrug resistance in bacteria. Annu. Rev. Biochem. 2009, 78, 119–146. [Google Scholar] [CrossRef]
- Worthington, R.J.; Melander, C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol. 2013, 31, 177–184. [Google Scholar] [CrossRef]
- Haq, I.U.; Chaudhry, W.N.; Akhtar, M.N.; Andleeb, S.; Qadri, I. Bacteriophages and their implications on future biotechnology: A review. Virol. J. 2012, 9, 9. [Google Scholar] [CrossRef]
- Fjell, C.D.; Hiss, J.A.; Hancock, R.E.; Schneider, G. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Discov. 2012, 11, 37–51. [Google Scholar]
- Parisien, A.; Allain, B.; Zhang, J.; Mandeville, R.; Lan, C.Q. Novel alternatives to antibiotics: Bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J. Appl. Microbiol. 2008, 104, 1–13. [Google Scholar]
- Kutateladze, M.; Adamia, R. Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol. 2010, 28, 591–595. [Google Scholar] [CrossRef]
- Abedon, S.T.; Kuhl, S.J.; Blasdel, B.G.; Kutter, E.M. Phage treatment of human infections. Bacteriophage 2011, 1, 66–85. [Google Scholar] [CrossRef]
- Sulakvelidze, A.; Alavidze, Z.; Morris, J.G., Jr. Bacteriophage therapy. Antimicrob. Agents Chemother. 2001, 45, 649–659. [Google Scholar] [CrossRef]
- Brüssow, H. Phage therapy: The Escherichia coli experience. Microbiology 2005, 151, 2133–2140. [Google Scholar] [CrossRef]
- Maura, D.; Galtier, M.; Le Bouguenec, C.; Debarbieux, L. Virulent bacteriophages can target O104:H4 enteroaggregative Escherichia coli in the mouse intestine. Antimicrob. Agents Chemother. 2012, 56, 6235–6242. [Google Scholar] [CrossRef]
- Tsonos, J.; Adriaenssens, E.M.; Klumpp, J.; Hernalsteens, J.P.; Lavigne, R.; de Greve, H. Complete genome sequence of the novel Escherichia coli phage phAPEC8. J. Virol. 2012, 86, 13117–13118. [Google Scholar] [CrossRef]
- Chibeu, A.; Lingohr, E.J.; Masson, L.; Manges, A.; Harel, J.; Ackermann, H.W.; Kropinski, A.M.; Boerlin, P. Bacteriophages with the ability to degrade uropathogenic Escherichia coli biofilms. Viruses 2012, 4, 471–487. [Google Scholar] [CrossRef]
- Sillankorva, S.M.; Oliveira, H.; Azeredo, J. Bacteriophages and their role in food safety. Int. J. Microbiol. 2012, 2012, 863945. [Google Scholar] [CrossRef] [Green Version]
- Merabishvili, M.; de Vos, D.; Verbeken, G.; Kropinski, A.M.; Vandenheuvel, D.; Lavigne, R.; Wattiau, P.; Mast, J.; Ragimbeau, C.; Mossong, J.; et al. Selection and characterization of a candidate therapeutic bacteriophage that lyses the Escherichia coli O104:H4 strain from the 2011 outbreak in Germany. PLoS One 2012, 7, e52709. [Google Scholar] [CrossRef] [Green Version]
- Doolittle, M.M.; Cooney, J.J.; Caldwell, D.E. Lytic infection of Escherichia coli biofilms by bacteriophage T4. Can. J. Microbiol. 1995, 41, 12–18. [Google Scholar] [CrossRef]
- Lacroix-Gueu, P.; Briandet, R.; Leveque-Fort, S.; Bellon-Fontaine, M.N.; Fontaine-Aupart, M.P. In situ measurements of viral particles diffusion inside mucoid biofilms. C. R. Biol. 2005, 328, 1065–1072. [Google Scholar] [CrossRef]
- Johnson, R.P.; Gyles, C.L.; Huff, W.E.; Ojha, S.; Huff, G.R.; Rath, N.C.; Donoghue, A.M. Bacteriophages for prophylaxis and therapy in cattle, poultry and pigs. Anim. Health Res. Rev. 2008, 9, 201–215. [Google Scholar] [CrossRef]
- Li, H.; Ma, M.L.; Xie, H.J.; Kong, J. Biosafety evaluation of bacteriophages for treatment of diarrhea due to intestinal pathogen Escherichia coli 3-2 infection of chickens. World J. Microbiol. Biotechnol. 2012, 28, 1–6. [Google Scholar] [CrossRef]
- Rangel, J.M.; Sparling, P.H.; Crowe, C.; Griffin, P.M.; Swerdlow, D.L. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerg. Infect. Dis. 2005, 11, 603–609. [Google Scholar] [CrossRef]
- Niu, Y.D.; Stanford, K.; Kropinski, A.M.; Ackermann, H.W.; Johnson, R.P.; She, Y.M.; Ahmed, R.; Villegas, A.; McAllister, T.A. Genomic, proteomic and physiological characterization of a T5-like bacteriophage for control of Shiga toxin-producing Escherichia coli O157:H7. PLoS One 2012, 7, e34585. [Google Scholar] [CrossRef]
- Fischetti, V.A. Bacteriophage endolysins: A novel anti-infective to control Gram-positive pathogens. Int. J. Med. Microbiol. 2010, 300, 357–362. [Google Scholar] [CrossRef]
- Rodriguez-Rubio, L.; Martinez, B.; Donovan, D.M.; Rodriguez, A.; Garcia, P. Bacteriophage virion-associated peptidoglycan hydrolases: Potential new enzybiotics. Crit. Rev. Microbiol. 2013, 39, 427–434. [Google Scholar] [CrossRef]
- Hassan, M.; Kjos, M.; Nes, I.F.; Diep, D.B.; Lotfipour, F. Natural antimicrobial peptides from bacteria: Characteristics and potential applications to fight against antibiotic resistance. J. Appl. Microbiol. 2012, 113, 723–736. [Google Scholar] [CrossRef]
- Pande, J.; Szewczyk, M.M.; Grover, A.K. Phage display: Concept, innovations, applications and future. Biotechnol. Adv. 2010, 28, 849–858. [Google Scholar] [CrossRef]
- Lung, F.D.; Wang, K.S.; Liao, Z.J.; Hsu, S.K.; Song, F.Y.; Liou, C.C.; Wu, Y.S. Discovery of potent antimicrobial peptide analogs of Ixosin-B. Bioorg. Med. Chem. Lett. 2012, 22, 4185–4188. [Google Scholar]
- Pini, A.; Giuliani, A.; Falciani, C.; Runci, Y.; Ricci, C.; Lelli, B.; Malossi, M.; Neri, P.; Rossolini, G.M.; Bracci, L. Antimicrobial activity of novel dendrimeric peptides obtained by phage display selection and rational modification. Antimicrob. Agents Chemother. 2005, 49, 2665–2672. [Google Scholar] [CrossRef]
- Corrales-Garcia, L.; Ortiz, E.; Castaneda-Delgado, J.; Rivas-Santiago, B.; Corzo, G. Bacterial expression and antibiotic activities of recombinant variants of human beta-defensins on pathogenic bacteria and M. tuberculosis. Protein Expr. Purif. 2013. [Google Scholar] [CrossRef]
- Lira, F.; Perez, P.S.; Baranauskas, J.A.; Nozawa, S.R. Synthetic peptides antimicrobial activity prediction using decision tree model. Appl. Environ. Microbiol. 2013, 79, 3156–3159. [Google Scholar] [CrossRef]
- Tamma, P.D.; Cosgrove, S.E.; Maragakis, L.L. Combination therapy for treatment of infections with gram-negative bacteria. Clin. Microbiol. Rev. 2012, 25, 450–470. [Google Scholar] [CrossRef]
- Peleg, A.Y.; Hooper, D.C. Hospital-acquired infections due to gram-negative bacteria. N. Engl. J. Med. 2010, 362, 1804–1813. [Google Scholar] [CrossRef]
- Schweizer, H.P. Understanding efflux in Gram-negative bacteria: Opportunities for drug discovery. Expert Opin. Drug Discov. 2012, 7, 633–642. [Google Scholar] [CrossRef]
- Piddock, L.J.V. Multidrug-resistance efflux pumps—Not just for resistance. Nat. Rev. Microbiol. 2006, 4, 629–636. [Google Scholar] [CrossRef]
- Bioterrorism Agents/Diseases in Centers for Disease Control and Prrevention. Available online: www.bt.cdc.gov/agent/agentlist-category.asp (accessed on 5 October 2013).
- Anderson, P.D.; Bokor, G. Bioterrorism: Pathogens as weapons. J. Pharm. Pract. 2012, 25, 521–529. [Google Scholar] [CrossRef]
- Masterton, R. The importance and future of antimicrobial surveillance studies. Clin. Infect. Dis. 2008, 47, S21–S31. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Allocati, N.; Masulli, M.; Alexeyev, M.F.; Di Ilio, C. Escherichia coli in Europe: An Overview. Int. J. Environ. Res. Public Health 2013, 10, 6235-6254. https://doi.org/10.3390/ijerph10126235
Allocati N, Masulli M, Alexeyev MF, Di Ilio C. Escherichia coli in Europe: An Overview. International Journal of Environmental Research and Public Health. 2013; 10(12):6235-6254. https://doi.org/10.3390/ijerph10126235
Chicago/Turabian StyleAllocati, Nerino, Michele Masulli, Mikhail F. Alexeyev, and Carmine Di Ilio. 2013. "Escherichia coli in Europe: An Overview" International Journal of Environmental Research and Public Health 10, no. 12: 6235-6254. https://doi.org/10.3390/ijerph10126235
APA StyleAllocati, N., Masulli, M., Alexeyev, M. F., & Di Ilio, C. (2013). Escherichia coli in Europe: An Overview. International Journal of Environmental Research and Public Health, 10(12), 6235-6254. https://doi.org/10.3390/ijerph10126235