Assessment of Natural Radioactivity Levels of Cements and Cement Composites in the Slovak Republic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Sample Preparation
Cement Type | Title | Composition |
---|---|---|
CEM I | Portland cement | Clinker in range of 95%–100% |
CEM II/A-S | Portland slag cement | Portland cement and 6%–20% of slag |
CEM II/B-S | Portland slag cement | Portland cement and 21%–35% of slag |
CEM II/B-P | Portland puzzolanic cement | Portland cement and max 35% of natural puzzolana |
CEM II/A-LL | Portland limestone cement | Portland cement and 6%–20% of limestone |
CEM II/B-M | Portland composite cement | Portland cement and max 35% of slag, puzzolana, fly ash and limestone |
CEM III | Blastfurnace cement | Portland cement and max 65% of slag |
CEM V | Composite cement | Portland cement and more than 35% blastfurnace slag, puzzolana or fly ash |
Components | Samples Type | ||||
---|---|---|---|---|---|
C1 | C2 | C3 | C4 | ||
CEM I 42.5N (kg) | 360 | 360 | 360 | 360 | |
water (L) | 170 | 198 | 197 | 205 | |
zeolite (kg) | – | – | – | 20 | |
silica fume (kg) | – | – | 20 | 20 | |
aggregate (kg) | 0/4 mm | 825 | 825 | 800 | 750 |
4/8 mm | 235 | 235 | 235 | 235 | |
8/16 mm | 740 | 740 | 740 | 740 | |
plasticizer (L) | 3.1 | 2.6 | 3.1 | 3.1 | |
w/c | 0.47 | 0.55 | 0.49 | 0.45 |
2.2. Chemical Composition Measurements
2.3. Gamma Spectrometry Measurements
3. Results and Discussion
3.1. Chemical Analysis
3.2. Activity Concentration
Oxides (%) | CEM I | CEM II/A-S | CEM II/B-S | CEM II/B-P | CEM II/A-LL | CEM II/B-M | CEM III | CEM V | C1 | C2a | C2b | C3 | C4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MgO | 1.54–3.82 | 4.23–4.72 | 5.62–5.83 | 2.06–2.37 | 2.04–2.05 | 2.19–2.35 | 4.88–8.45 | 3.75–4.94 | 3.04 | 2.87 | 2.96 | 2.38 | 2.73 |
Al2O3 | 3.87–4.39 | 4.31–4.80 | 5.46–5.57 | 6.91–8.04 | 4.68–4.68 | 4.51–5.08 | 5.13–7.20 | 7.18–9.57 | 5.21 | 4.53 | 5.03 | 5.25 | 5.39 |
SiO2 | 17.8–19.8 | 20.9–22.2 | 26.0–26.4 | 36.2–40.4 | 19.0–19.2 | 17.1–19.1 | 26.7–36.7 | 37.9–39.1 | 30.16 | 25.97 | 29.75 | 39.82 | 45.63 |
SO3 | 2.83–3.31 | 3.04–3.08 | 2.85–3.22 | 1.97–3.20 | 3.09–3.17 | 2.61–3.23 | 1.75–3.34 | 2.34–2.58 | 2.89 | 2.95 | 2.885 | 2.81 | 2.72 |
K2O | 0.45–1.16 | 0.53–0.55 | 0.54–0.56 | 0.71–1.89 | 1.08–1.09 | 0.43–1.01 | 0.51–0.82 | 0.92–1.01 | 0.75 | 0.79 | 0.79 | 0.75 | 0.79 |
CaO | 54.2–63.6 | 55.8–56.4 | 52.8–53.1 | 32.6–42.6 | 57.5–58.2 | 52.7–57.7 | 46.1–52.4 | 40.0–42.6 | 31.27 | 31.56 | 32.00 | 25.12 | 26.17 |
TiO2 | 0.21–0.26 | 0.21–0.22 | 0.26–0.30 | 0.26–0.51 | 0.21–0.22 | 0.21–0.47 | 0.23–0.37 | 0.24–0.32 | 0.27 | 0.26 | 0.26 | 0.27 | 0.26 |
MnO | 0.03–0.38 | 0.35–0.36 | 0.38–0.45 | 0.09–0.62 | 0.04–0.33 | 0.07–0.33 | 0.24–0.49 | 0.35–0.38 | 0.38 | 0.38 | 0.37 | 0.38 | 0.36 |
Fe2O3 | 2.63–3.29 | 2.64–2.70 | 2.46–2.50 | 3.29–3.74 | 2.77–2.70 | 2.28–2.50 | 1.13–2.08 | 2.06–5.21 | 4.04 | 3.78 | 3.82 | 4.63 | 3.75 |
Sample | Activity Concentration (Bq·kg−1) | |||||
---|---|---|---|---|---|---|
226Ra | 232Th | 40K | ||||
Range | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | |
(a) Cement samples | ||||||
CEM I | 3.69–36.8 | 11.8 ± 9.0 | 11.8–24.9 | 18.4 ± 3.7 | 36.98–331.4 | 156.5 ± 101 |
CEM II/A-S | 10.8–15.9 | 12.9 ± 2.6 | 18.9–32.8 | 23.9 ± 7.7 | 107.8–478.3 | 300.2 ± 186 |
CEM II/B-S | 12.4–13.9 | 13.4 ± 0.8 | 17.1–34.2 | 23.8 ± 9.1 | 150.2–460.3 | 321.7 ± 158 |
CEM II/B-P | 13.0–13.2 | 13.1 ± 0.1 | 16.7–26.7 | 21.7 ± 7.1 | 328.4–650.5 | 489.4 ± 228 |
CEM II/A-LL | 8.19–8.98 | 8.58 ± 0.6 | 8.53–18.6 | 13.6 ± 7.2 | 178.9–516.0 | 347.5 ± 238 |
CEM II/B-M | 12.1–13.8 | 12.9 ± 1.2 | 3.59–15.9 | 9.78 ± 8.8 | 145.9–479.9 | 312.9 ± 236 |
CEM III | 15.8–23.3 | 19.1 ± 2.9 | 8.04–37.5 | 23.0 ± 9.5 | 111.3–452.3 | 293.3 ± 148 |
CEM V | 14.6–20.9 | 18.7 ± 3.6 | 16.8–38.2 | 26.3 ± 11 | 219.6–733.7 | 397.2 ± 291 |
(b) Cement composite samples | ||||||
C1 | 6.11–12.6 | 9.38 ± 4.6 | 12.4–28.5 | 20.5 ± 11 | 227.3–273.5 | 250.4 ± 32.6 |
C2a | 5.24–10.9 | 7.94 ± 2.8 | 3.96–24.9 | 13.1 ± 10 | 306.9–681.8 | 494.4 ± 265 |
C2b | 8.03–13.5 | 10.8 ± 3.9 | 6.92–24.4 | 15.6 ± 12 | 310.3–340.8 | 325.6 ± 21.6 |
C3 | 6.33–8.98 | 7.65 ± 1.9 | 13.8–14.0 | 13.9 ± 0.2 | 301.8–473.7 | 387.7 ± 121 |
C4 | 5.88–7.88 | 6.84 ± 1.0 | 16.6–21.9 | 19.3 ± 2.5 | 261.0–366.8 | 313.9 ± 74.7 |
Country | 226Ra (Bq·kg−1) | 232Th (Bq·kg−1) | 40K (Bq·kg−1) | Reference |
---|---|---|---|---|
Australia | 51.8 | 48.1 | 114.7 | [14] |
Austria | 26.7 | 14.2 | 210 | [15] |
Bangladesh | 61 | 80 | 1133 | [16] |
Brazil | 61.7 | 58.5 | 564 | [17] |
China | 51.7 | 32 | 207.7 | [18] |
Egypt | 35 | 19 | 93 | [19] |
Finland | 40.2 | 19.9 | 251 | [20] |
Greece | 92 | 31 | 310 | [8] |
Italy | 46 | 42 | 316 | [21] |
Japan | 36 | 21 | 139 | [22] |
Malaysia | 81.4 | 59.2 | 203.5 | [9] |
Netherlands | 27 | 19 | 230 | [23] |
Norway | 29.6 | 18.5 | 259 | [24] |
Pakistan | 26.1 | 28.7 | 272.9 | [5] |
Turkey | 41 | 26 | 267 | [3] |
Slovakia | 11.8 | 18.4 | 156.5 | Present study |
3.3. Radium Equivalent Activity (Raeq)
Sample | Raeq (Bq·kg−1) | D (nGy·h−1) | Iγ | Iα | Hex | Hin |
---|---|---|---|---|---|---|
(a) Cement samples | ||||||
CEM I | 51.33 ± 14.9 | 44.55 ± 14.6 | 0.188 ± 0.06 | 0.060 ± 0.04 | 0.139 ± 0.04 | 0.171 ± 0.07 |
CEM II/A-S | 70.36 ± 16.7 | 62.31 ± 15.8 | 0.263 ± 0.07 | 0.065 ± 0.01 | 0.190 ± 0.05 | 0.225 ± 0.04 |
CEM II/B-S | 72.18 ± 22.1 | 64.22 ± 19.8 | 0.271 ± 0.09 | 0.067 ± 0.01 | 0.195 ± 0.06 | 0.231 ± 0.06 |
CEM II/B-P | 81.87 ± 7.47 | 75.11 ± 10.4 | 0.315 ± 0.04 | 0.066 ± 0.01 | 0.221 ± 0.02 | 0.256 ± 0.02 |
CEM II/A-LL | 54.77 ± 8.68 | 50.64 ± 11.7 | 0.212 ± 0.05 | 0.043 ± 0.01 | 0.148 ± 0.02 | 0.171 ± 0.03 |
CEM II/B-M | 51.05 ± 6.85 | 45.05 ± 15.4 | 0.196 ± 0.04 | 0.043 ± 0.02 | 0.130 ± 0.05 | 0.153 ± 0.05 |
CEM III | 74.54 ± 15.6 | 66.31 ± 14.0 | 0.276 ± 0.06 | 0.095 ± 0.02 | 0.201 ± 0.04 | 0.253 ± 0.04 |
CEM V | 86.87 ± 15.9 | 77.89 ± 19.6 | 0.326 ± 0.13 | 0.094 ± 0.02 | 0.235 ± 0.09 | 0.285 ± 0.08 |
(b) Cement composites samples | ||||||
C1 | 57.90 ± 9.18 | 51.15 ± 5.69 | 0.217 ± 0.03 | 0.047 ± 0.02 | 0.156 ± 0.03 | 0.182 ± 0.01 |
C2a | 66.75 ± 3.24 | 62.83 ± 8.60 | 0.264 ± 0.03 | 0.040 ± 0.02 | 0.180 ± 0.01 | 0.202 ± 0.02 |
C2b | 58.22 ± 12.1 | 53.17 ± 8.26 | 0.223 ± 0.04 | 0.054 ± 0.02 | 0.157 ± 0.03 | 0.186 ± 0.02 |
C3 | 57.37 ± 7.26 | 53.34 ± 7.83 | 0.224 ± 0.03 | 0.038 ± 0.01 | 0.155 ± 0.02 | 0.176 ± 0.02 |
C4 | 55.65 ± 3.14 | 50.36 ± 3.75 | 0.214 ± 0.02 | 0.034 ± 0.02 | 0.150 ± 0.01 | 0.169 ± 0.01 |
3.4. Estimation of the Absorbed Gamma Dose Rate
3.5. Gamma Index
3.6. Alpha Index
3.7. External Hazard Index
3.8. Internal Hazard Index
4. Conclusions
- The mean activity concentrations of 226Ra, 232Th, and 40K were 13.82, 20.07 and 327.36 Bq·kg−1 in cement samples and 8.52, 16.47 and 354.39 Bq·kg−1 in cement composites samples, respectively. A comparison of the concentrations obtained in the study in Slovakia with the results abroad indicates that the radioactivity content of the Portland cement samples was quite lower, but it is not significantly different.
- The calculated mean radium equivalent activity (Raeq = 67.87 Bq·kg−1), gamma index (Iγ = 0.256), alpha index (Iα = 0.067), the absorbed gamma dose rate (D = 60.76 nGy·h−1), external hazard index (Hex = 0.182) and internal hazard index (Hin = 0.218) in cement samples were lower than the recommended limits.
- The calculate radiological parameters Raeq, Iγ, Iα, D, Hex and Hin in composites samples were 59.18 Bq·kg−1, 0.228, 0.043, 54.17 nGy·h−1, 0.160 and 0.183, respectively. These values were lower than the recommended limits, therefore, the use of these concrete materials in the construction of dwellings is considered to be safe for the dwellers.
- The calculated radiological parameters of cement composites were lower than values calculated for cement from which they made, except for values of Raeq, Iγ, D and Hex calculated in sample C2a, which were higher than in cement. This is probably due to high value of 40K specific activity in sample C2a.
Acknowledgments
Conflicts of Interest
References
- Trevisi, R.; Risica, S.; D’Alessandro, M.; Paradiso, D.; Nuccetelli, C. Natural radioactivity in building materials in the European Union: A database and an estimate of radiological significance. J. Environ. Radioact. 2012, 105, 11–20. [Google Scholar] [CrossRef]
- Markkanen, M. Radiation Dose Assessments for Materials with Elevated Natural Radioactivity; Painatuskeskus Oy: Helsinki, Finland, 1995; p. 38. [Google Scholar]
- Turhan, Ş. Assessment of the natural radioactivity and radiological hazards in Turkish cement and its raw materials. J. Environ. Radioact. 2008, 99, 404–414. [Google Scholar] [CrossRef]
- Righi, S.; Bruzzi, L. Natural radioactivity and radon exhalation in building materials used in Italian dwellings. J. Environ. Radioact. 2006, 88, 158–170. [Google Scholar] [CrossRef]
- Khan, K.; Khan, H.M. Natural gamma-emiting radionuclides in Pakistani Portland cement. Appl. Radiat. Isotopes 2001, 54, 861–865. [Google Scholar] [CrossRef]
- El-Taher, A.; Makhluf, S.; Nossair, A.; Abdel Halim, A.S. Assessment of natural radioactivity levels and radiation hazards due to cement industry. Appl. Radiat. Isotopes 2010, 68, 169–174. [Google Scholar] [CrossRef]
- Damla, D.; Cevik, U.; Kobya, A.I.; Celik, A.; Celik, N.; van Grieken, R. Radiation dose estimation and mass attenuation coefficients of cement samples used in Turkey. J. Hazard. Mater. 2010, 176, 644–649. [Google Scholar] [CrossRef]
- Stoulos, S.; Manolopoulou, M.; Papastefanou, C. Assessment of natural radiation exposure and radon exhalation from building materials in Greece. J. Environ. Radioact. 2003, 69, 225–240. [Google Scholar] [CrossRef]
- Chong, C.S.; Ahmed, G.U. Gamma activity in some building materials in west Malaysia. Health Phys. 1982, 43, 272–273. [Google Scholar]
- Hizem, N.; Fredj, A.B.; Ghedira, L. Determination of natural radioactivity in building materials used in Tunisian dwellings by gamma ray spectrometry. Radiat. Prot. Dosim. 2005, 114, 533–537. [Google Scholar] [CrossRef]
- STN EN 197–1: 2002. In Cement Part 1: Composition, Specifications and Conformity Criteria for Common Cements; (in Slovak). Slovak Standard Institute: Bratislava, Slovak Republic, 2002.
- STN EN 206–1: 2002. In Concrete Part 1: Specification, Performance, Production and Conformity; (in Slovak). Slovak Standard Institute: Bratislava, Slovak Republic, 2002.
- Lam, H.K.; Barford, J.P.; McKay, G. Utilization of incineration waste ash residues as Portland cement clinker. Chem. Eng. Trans. 2010, 21, 757–762. [Google Scholar]
- Beretka, J.; Mathew, P.J. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys. 1985, 48, 87–95. [Google Scholar] [CrossRef]
- Sorantin, P.; Steger, F. Natural radioactivity of building materials in Austria. Radiat. Prot. Dosim. 1984, 7, 59–61. [Google Scholar]
- Roy, S.; Alam, M.S.; Begum, M.; Alam, B. Radioactivity in building materials used in and around Dhaka city. Radiat. Prot. Dosim. 2005, 114, 527–532. [Google Scholar] [CrossRef]
- Malanca, A.; Pessina, V.; Dallara, G. Radionuclide content of building materials and gamma-ray dose rates in dwellings of Rio-Grande Do-Norte Brazil. Radiat. Prot. Dosim. 1993, 48, 199–203. [Google Scholar]
- Lu, X.; Yang, G.; Ren, C. Natural radioactivity and radiological hazards of building materials in Xianyang, China. Radiat. Phys. Chem. 2012, 81, 780–784. [Google Scholar] [CrossRef]
- El-Bahi, S.M. Assessment of radioactivity and radon exhalation rate in Egyptian cement. Health Phys. 2004, 86, 517–522. [Google Scholar] [CrossRef]
- Mustonen, R. Natural radioactivity and radon exhalation rate from Finnish building materials. Health Phys. 1984, 46, 1195–1203. [Google Scholar] [CrossRef]
- Sciocchetti, G.; Scacco, F.; Baldassini, P.G. Indoor measurement of airborne natural radioactivity in Italy. Radiat. Prot. Dosim. 1984, 7, 347–351. [Google Scholar]
- Suzuki, A.; Lida, T.; Moriizumi, J.; Sakuma, Y. The effects of different types of concrete on population doses. Radiat. Prot. Dosim. 2000, 90, 437–443. [Google Scholar] [CrossRef]
- Ackers, J.G.; den-Boer, J.F.; de-Jong, P.; Wolschrijn, R.A. Radioactivity and exhalation rates of building materials in the Netherlands. Sci. Total Environ. 1985, 45, 151–156. [Google Scholar] [CrossRef]
- Stranden, E.; Berteiz, L. Radon in dwellings and influencing factors. Health Phys. 1980, 39, 275–284. [Google Scholar] [CrossRef]
- United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation; United Nations Publication, UNSCEAR: New York, NY, USA, 2000. [Google Scholar]
- EC (European Commission). Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials; Radiation Protection 112; Directorate-General Environment, Nuclear Safety and Civil Protection: Luxembourg, Belgium, 2000. [Google Scholar]
- Naturally Occurring Radiation in the Nordic Countries - Recommendations. In The Flag-Book Series; The Radiation Protection Authorities in Denmark, Finland, Iceland, Norway and Sweden: Stockholm, Sweden, 2000.
- Krieger, R. Radioactivity of construction materials. Betonwerk Fertigteil-Technik 1981, 47, 468–473. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Eštoková, A.; Palaščáková, L. Assessment of Natural Radioactivity Levels of Cements and Cement Composites in the Slovak Republic. Int. J. Environ. Res. Public Health 2013, 10, 7165-7179. https://doi.org/10.3390/ijerph10127165
Eštoková A, Palaščáková L. Assessment of Natural Radioactivity Levels of Cements and Cement Composites in the Slovak Republic. International Journal of Environmental Research and Public Health. 2013; 10(12):7165-7179. https://doi.org/10.3390/ijerph10127165
Chicago/Turabian StyleEštoková, Adriana, and Lenka Palaščáková. 2013. "Assessment of Natural Radioactivity Levels of Cements and Cement Composites in the Slovak Republic" International Journal of Environmental Research and Public Health 10, no. 12: 7165-7179. https://doi.org/10.3390/ijerph10127165
APA StyleEštoková, A., & Palaščáková, L. (2013). Assessment of Natural Radioactivity Levels of Cements and Cement Composites in the Slovak Republic. International Journal of Environmental Research and Public Health, 10(12), 7165-7179. https://doi.org/10.3390/ijerph10127165