Perspectives to Performance of Environment and Health Assessments and Models—From Outputs to Outcomes?
Abstract
:1. Introduction
- Process, the procedures and practices of assessment and modeling
- Output, the assessment and model results and products, and
- Use, the application of the assessment and model outputs
2. Perspectives to Assessment and Model Performance
2.1. Quality Assurance/Control
Type | Description |
---|---|
Stepwise procedural guidance | Ten iterative steps in development and evaluation of environmental models [27] |
HarmoniQuA guidance for quality assurance in multidisciplinary model-based water management [28] | |
Methodology for design and development of integrated models for policy support [29] | |
Framework for integrated environmental health impact assessment [11] | |
BRAFO tiered approach for benefit-risk assessment of foods [30] | |
Generic framework for effective decision support through integrated modeling and scenario analysis [31] | |
Formal framework for scenario development in support of environmental decision making [32] | |
Check list guidance | Seven attributes of good integrated assessment of climate change [33] |
List of end use independent process based considerations for integrated assessment [34] | |
QA/QC performance measurement scheme for risk assessment in Canada [35] | |
Check list for quality assistance in environmental modeling [36] | |
Evaluation of input quality | Pedigree analysis in model-based environmental assessment [37] |
Methodology for recording uncertainties about environmental data [38] | |
Method for analyzing assumptions in model-based environmental assessments [39] |
2.2. Uncertainty Analysis
Type | Description |
---|---|
Identification of kinds of uncertainty | Conceptual basis for uncertainty management in model-based decision support [44] |
Uncertainty in epidemiology and health risk and impact assessment [45] | |
Uncertainty in integrated assessment modeling [46] | |
Guidance on dealing with uncertainties | Knowledge quality assessment for complex policy decisions [47] |
Operationalizing uncertainty in integrated water resource management [48] | |
Framework for dealing with uncertainty in environmental modeling [49] | |
Methods for uncertainty analysis | Approaches for performing uncertainty analysis in large-scale energy/economic policy models [50] |
Modeling of risk and uncertainty underlying the cost and effectiveness of water quality measures [51] | |
Addressing uncertainty in decision making supported by Life Cycle Assessment [52] | |
Sensitivity analysis of model outputs with input constraints [53] |
2.3. Technical Assessment of Models
Type | Description |
---|---|
Means for model and software evaluation | Success factors for integrated spatial decision support systems [58] |
Criteria for environmental model and software evaluation [59] | |
Terminology and methodological framework for modeling and model evaluation [60] | |
Evaluation methods of environmental modeling and software in a comprehensive conceptual framework [2] | |
Top-down framework for watershed model evaluation and selection [61] | |
Overview of atmospheric model evaluation tool (AMET) [62] | |
Appropriateness framework for the Dutch Meuse decision support system [63] | |
Empirical evaluation of decision support systems [64] | |
Numerical and visual evaluation of hydrological and environmental models [65] | |
Evaluation of models | Evaluating an ecosystem model for wheat-maize cropping system in North China [66] |
Parameterization and evaluation of a Bayesian network for use in an ecological risk assessment [67] | |
Evaluation of quantitative and qualitative models for water erosion assessment in Ethiopia [68] | |
Evaluation of modeling techniques for forest site productivity prediction using SMAA [69] | |
Analysis of model uncertainty | Model uncertainty in the context of risk analysis [70] |
Scenario, model and parameter uncertainty in risk assessment [71] | |
Framework for dealing with uncertainty due to model structure error [72] |
2.4. Effectiveness
Type | Description |
---|---|
Frameworks and criteria for effectiveness | Framework for the effectiveness of prospective human impact assessment [74] |
Process, impact and outcome indicators for evaluating health impact assessment [76] | |
Criteria for appraisal of scientific inquiries with policy implications [77] | |
Necessary conditions and facilitating factors for effectiveness in strategic environmental assessment [78] | |
Components of policy effectiveness in participatory environmental assessment [79] | |
Dimensions of openness for analyzing the potential for effectiveness in participatory policy support [80] | |
Properties of good assessment for evaluating effectiveness of assessments [81] | |
Effectiveness evaluations | Several cases of evaluating effectiveness of health impact assessment in Europe [82] |
General effectiveness criteria for strategic environmental assessment and their adaptation for Italy [83] | |
Environmental impact assessment evaluation model and its application in Taiwan [84] | |
Effectiveness of the Finnish environmental impact assessment system [85] | |
Example of outcome evaluation for environmental modeling and software [2] | |
Use of models, tools and outputs | User interaction during development of a decision support system [86] |
Review of factors influencing use and usefulness of information systems [87] | |
Bottlenecks of widespread usage of planning support systems [88] | |
Framework to assist decision makers in the use of ecosystem model predictions [89] | |
Analysis of contribution of land-use modeling to societal problem solving [90] | |
Use of decision and information support tools in desertification policy and management [91] | |
Developing tools to support environmental management and policy [92] | |
Role of computer modeling in participatory integrated assessments [93] | |
Usage and perceived effectiveness of decision support systems in participatory planning [94] | |
Credible uses of the distributed interactive simulation (DIS) system [95] | |
Analysis of interaction between environmental health assessment and policy [12] |
2.5. Other Perspectives
Type | Description |
---|---|
Information quality | A conceptual framework of data quality [98] |
An asset valuation approach to value of information [99] | |
Ten aspects that add value to information [100] | |
Knowledge quality in knowledge management systems [101] | |
Acceptance and credibility | Obtaining model credibility through peer-reviewed publication process [58] |
Model credibility in the context of policy appraisal [102] | |
Salience, credibility and legitimacy of assessments [103] | |
Communication | Uncertainty communication in environmental assessments [104] |
Check list for assessing and communicating uncertainties [105] | |
Communication challenges posed by release of a pathogen in an urban setting [106] | |
Clarity in knowledge communication [107] | |
Participation | Openness in participation, assessment and policy making [80] |
Purposes for participation in environmental impact assessment [108] | |
OECD/NEA stakeholder involvement techniques [109] | |
Participation guide for the Netherlands Environmental Assessment Agency [110] | |
Decision process facilitation | Rational analysis for a problematic world [111] |
Brief presentations of numerous decision support tools (website) [112] | |
Decision analysis as tool to support analytical reasoning [113] |
3. Discussion
3.1. Overview of Approaches and Perspectives
3.2. Towards New Approaches
4. Conclusions
- Conventional evaluation of assessments and models focuses on processes and outputs;
- Recently also societal outcomes of assessments and models have been emphasized;
- Effectiveness of assessments and models can be considered as their likelihood of delivering intended outcomes;
- An outcome-oriented turn is taking place in assessment, modeling and their evaluation;
- New approaches merge design, making and evaluation of assessments and models;
- Assessments and models are useful means for facilitating collective knowledge creation e.g., in societal decision making.
Acknowledgments
Conflict of Interest
References
- Pohjola, M. Assessments are to Change the World—Prerequisites for Effective Environmental Health Assessment. University of Eastern Finland: Kuopio, Finland, May 2013. [Google Scholar]
- McIntosh, B.S.; Alexandrov, G.; Matthews, K.; Mysiak, J.; van Ittersum, M. Thematic issue on the assessment and evaluation of environmental models and software. Environ. Model. Software 2011, 26, 245–336. [Google Scholar] [CrossRef]
- Matthews, K.B.; Rivington, M.; Blackstock, K.L.; McCrum, G.; Buchan, K.; Miller, D.G. Raising the bar?—The challenges of evaluating the outcomes of environmental modeling and software. Environ. Model. Software 2011, 26, 247–257. [Google Scholar] [CrossRef]
- Van Der Sluijs, J.P. Integrated Assessment. Responding to Global Environmental Change. In Encyclopedia of Global Environmental Change; Munn, T., Ed.; John Wiley & Sons Ltd: Chichester, UK, 2002; pp. 250–253. [Google Scholar]
- Health Impact Assessment (HIA), main concepts and suggested approach. Gothenburg consensus paper; World Health Organization: Brussels, Belgium, 1999.
- NRC, Risk Assessment in the Federal Government: Managing the Progress; The National Research Council National Academy Press: Washington, DC, USA, 1983.
- NRC, Understanding Risk: Informing Decisions in a Democratic Society; The National Research Council National Academy Press: Washington, DC, USA, 1996.
- NRC, Science and Decisions: Advancing Risk Assessment; The National Research Council National Academy Press: Washington, DC, USA, 2009.
- ECHA. Guidance on Information Requirements and Chemical Safety Assessment. Guidance for the implementation of REACH. Available online: echa.europa.eu/guidance-documents/guidance-on-information-requirements-and-chemical-safety-assessment (accessed on 18 June 2013).
- Wood, C. Environmental Impact Assessment: A Comparative Review; Longman Scientific & Technical: New York, NY, USA, 1995. [Google Scholar]
- Briggs, D.J. A framework for integrated environmental health impact assessment of systemic risks. Environ. Health 2008, 7, 61. [Google Scholar] [CrossRef]
- Pohjola, M.V.; Leino, O.; Kollanus, V.; Tuomisto, J.T.; Gunnlaugsdόttir, H.; Holm, F.; Kalogeras, N.; Luteijn, J.M.; Magnusson, S.H.; Odekerken, G.; et al. State of the art in benefit—Risk analysis: Environmental health. Food Chem. Toxicol. 2012, 50, 40–55. [Google Scholar] [CrossRef]
- McIntosh, B.S.; Alexandrov, G.; Matthews, K.; Mysiak, J.; van Ittersum, M. Preface: Thematic issue on the assessment and evaluation of environmental models and software. Environ. Model. Software 2011, 26, 245–246. [Google Scholar] [CrossRef]
- Hummel, J.; Huitt, W. What you measure is what you get. GaASCD Newsletter: The Reporter, 1994. Available online: www.edpsycinteractive.org/papers/wymiwyg.html (accessed on 18 June 2013).
- Norton, B.G. Integration or Reduction: Two Approaches to Environmental Values. In Searching for Sustainability, Interdisciplinary Essays in the Philosophy of Conservation Biology; Norton, B.G., Ed.; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Jakeman, A.J.; Letcher, R.A. Integrated assessment and modeling: Features, principles and examples for catchment management. Environ. Model. Software 2003, 18, 491–501. [Google Scholar] [CrossRef]
- Rizzoli, A.E.; Leavesley, G.; Ascough II, J.C.; Argent, R.M.; Athanasiadis, I.N.; Brilhante, V.; Claeys, F.H.A.; David, O.; Donatelli, M.; Gijsbergs, P.; et al. Integrated Modeling Frameworks for Environmental Assessment Decision Support. In Environmental modeling, Software and Decision Support; Jakeman, A.J., Voinov, A.A., Rizzoli, A.E., Chen, S.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 101–118. [Google Scholar]
- Pope, J.; Annandale, D.; Morrison-Saunders, A. Conceptualising sustainability assessment. Environ. Impact Assess. Rev. 2004, 24, 595–616. [Google Scholar] [CrossRef]
- Blackstock, K.L.; Kelly, G.J.; Horsey, B.L. Developing and applying a framework to evaluate participatory research for sustainability. Ecol. Econ. 2007, 60, 726–742. [Google Scholar] [CrossRef]
- Bina, O. Context and systems: Thinking more broadly about effectiveness in strategic environmental assessments in China. Environ. Manage. 2008, 42, 717–733. [Google Scholar] [CrossRef]
- Leviton, L.C. Evaluation use: Advances, challenges and applications. Am. J. Eval. 2003, 24, 525–535. [Google Scholar]
- Patton, M.Q. Utilization-Focused Evaluation; SAGE Publications Inc: Thousand Oakes, CA, USA, 2008. [Google Scholar]
- Reeves, C.A.; Bednar, D.A. Defining quality: Alternatives and implications. Acad. Manage. Rev. 1994, 19, 419–445. [Google Scholar]
- Harteloh, P.P.M. Quality systems in health care: A sociotechnical approach. Health Policy 2002, 64, 391–398. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Sackett, D.L.; Sinclair, J.C.; Hayward, R.; Cook, D.J.; Cook, R.J. Users’ guides to the medical literature. IX. A method for grading health care recommendations. JAMA 1995, 274, 1800–1804. [Google Scholar] [CrossRef]
- Cartwright, N. Are RCTs the gold standard? BioSocieties 2007, 2, 11–20. [Google Scholar]
- Jakeman, A.J.; Letcher, R.A.; Norton, J.P. Ten iterative steps in development and evaluation of environmental models. Environ. Model. Software 2006, 21, 602–614. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; Henriksen, H.J.; Harrar, W.G.; Scholten, H.; Kassahun, A. Quality assurance in model-based water management—Review of existing practice and outline of new approaches. Environ. Model. Software 2005, 20, 1201–1215. [Google Scholar] [CrossRef]
- van Delden, H.; Seppelt, R.; White, R.; Jakeman, A.J. A methodology for the design and development of integrated models for policy support. Environ. Model. Software 2011, 26, 266–279. [Google Scholar] [CrossRef]
- Hoekstra, J.; Hart, A.; Boobis, A.; Claupein, E.; Cockburn, A.; Hunt, A.; Knudsen, I.; Richardson, D.; Schilter, B.; Schütte, K.; et al. BRAFO tiered approach for benefit-risk assessment of foods. Food Chem. Toxicol. 2012, 50, S684–S698. [Google Scholar] [CrossRef]
- Liu, Y.; Gupta, H.; Springer, E.; Wagener, T. Linking science with environmental decision making: Experiences from an integrated modeling approach to supporting sustainable water resources management. Environ. Model. Software 2008, 23, 846–858. [Google Scholar] [CrossRef]
- Mahmoud, M.; Liu, Y.; Hartmann, H.; Stewart, S.; Wagener, T.; Semmens, D.; Stewart, R.; Gupta, H.; Dominguez, D.; Dominguez, F.; et al. A formal framework for scenario development in support of environmental decision-making. Environ. Model. Software 2009, 24, 798–808. [Google Scholar] [CrossRef]
- Granger Morgan, M.; Dowlatadabi, H. Learning from integrated assessment of climate change. Climatic change 1996, 34, 337–368. [Google Scholar] [CrossRef]
- Risbey, J.; Kandlikar, M.; Patwardhan, A. Assessing integrated assessment. Climatic Change 1996, 34, 369–395. [Google Scholar] [CrossRef]
- Forristal, P.M.; Wilke, D.L.; McCarthy, L.S. Improving the quality of risk assessments in Canada using a principle-based apporach. Regul. Toxicol. Pharmacol. 2008, 50, 336–344. [Google Scholar] [CrossRef]
- Risbey, J.; van der Sluijs, J.P.; Kloprogge, P.; Ravetz, J.; Funtowicz, S.; Corral Quintana, S. Application of a checklist for quality assistance in environmental modeling to an energy model. Environ. Model. Assess. 2005, 10, 63–79. [Google Scholar] [CrossRef]
- van der Sluijs, J.P.; Craye, M.; Funtowicz, S.; Kloprogge, P.; Ravetz, J.; Risbey, J. Combining quantitative and qualitative measures of uncertainty in model-based environmental assessment: The NUSAP system. Risk Anal. 2005, 25, 481–492. [Google Scholar] [CrossRef]
- Brown, J.D.; Heuvelink, G.B.; Refsgaard, J.C. An integrated methodology for recording uncertainties about environmental data. Water Sci. Technol. 2005, 52, 153–160. [Google Scholar]
- Kloprogge, P.; van der Sluijs, J.P.; Petersen, A.C. A method for the analysis of assumptions in model-based environmental assessments. Environ. Model. Software 2011, 26, 289–301. [Google Scholar] [CrossRef]
- O’Hagan, A. Probabilistic uncertainty specification: Overview, elaboration techniques and their application to a mechanistic model of carbon flux. Environ. Model. Software 2012, 36, 35–48. [Google Scholar] [CrossRef]
- Colyvan, M. Is probability the only coherent approach to uncertainty? Risk Anal. 2008, 28, 645–652. [Google Scholar] [CrossRef]
- Chutia, R.; Mahanta, S.; Datta, D. Non-probabilistic sensitivity and uncertainty analysis of atmospheric dispersion. AFMI 2013, 5, 213–228. [Google Scholar]
- Moens, D.; Vandepitte, D. A survey of non-probabilistic uncertainty treatment in finite element analysis. Comput. Method. Appl. Mech. Eng. 2005, 194, 1527–1555. [Google Scholar] [CrossRef]
- Walker, W.E.; Harremoës, P.; Rotmans, J.; van der Sluijs, J.P.; van Asselt, M.B.A.; Janssen, P.; Krayer von Krauss, M.P. Defining uncertainty: A conceptual basis for uncertainty management in model-based decision support. Integrated Assess. 2003, 4, 5–17. [Google Scholar] [CrossRef]
- Briggs, D.J.; Sable, C.E.; Lee, K. Uncertainty in epidemiology and health risk and impact assessment. Environ. Geochem. Health 2009, 31, 189–203. [Google Scholar] [CrossRef]
- van Asselt, M.B.A.; Rotmans, J. Uncertainty in integrated assessment modeling: From positivism to Pluralism. Climatic Change 2002, 54, 75–105. [Google Scholar] [CrossRef]
- van der Sluijs, J.P.; Petersen, A.C.; Janssen, P.H.M.; Risbey, J.S.; Ravetz, J.R. Exploring the quality of evidence for complex and contested policy decisions. Environ. Res. Lett. 2008, 3. [Google Scholar] [CrossRef]
- Blind, M.W.; Refsgaard, J.C. Operationalising uncertainty in data and models for integrated water resource management. Water Sci. Technol. 2007, 56, 1–12. [Google Scholar]
- Refsgaard, J.C.; van der Sluijs, J.P.; Lajer Højberg, A.; Vanrolleghem, P.A. Uncertainty in the environmental modeling process—A framework and guidance. Environ. Model. Software 2007, 22, 1543–1556. [Google Scholar] [CrossRef]
- Kann, A.; Weyant, J.P. Approaches for performing uncertainty analysis in large-scale energy/economic policy models. Environ. Model. Assess. 2000, 5, 29–46. [Google Scholar] [CrossRef]
- Brouwer, R.; De Blois, C. Integrated modeling of risk and uncertainty underlying the cost and effectiveness of water quality measures. Environ. Model. Software 2008, 23, 922–937. [Google Scholar] [CrossRef]
- Basson, L.; Petrie, J.G. An integrated approach for the consideration of uncertainty in decision making supported by Life Cycle Assessment. Environ. Model. Software 2007, 22, 167–176. [Google Scholar] [CrossRef]
- Borgonovo, E. Sensitivity analysis of model output with input constraints: A generalized rationale for local methods. Risk Anal. 2008, 28, 667–680. [Google Scholar] [CrossRef]
- Beck, B. Model Evaluation and Performance. In Encyclopedia of Environmetrics; El-Shaarawi, A.H., Piegorsch, W.W., Eds.; John Wiley & Sons Ltd: Chichester, UK, 2002; Volume 3, pp. 1275–1279. [Google Scholar]
- Sargent, R. Verification and validation of simulation models. J. Simulat. 2013, 7, 12–24. [Google Scholar] [CrossRef]
- Thacker, B.H.; Doebling, S.W.; Hemez, F.M.; Anderson, M.C.; Pepin, J.E.; Rodriguez, E.A. Concepts of Model Verification and Validation; Los Alamos National Laboratory: Los Alamos, NM, USA, 2004. [Google Scholar]
- Oreskes, N. Evaluation (not validation) of quantitative models. Environ. Health Perspect. 1998, 106, 1453–1458. [Google Scholar] [CrossRef]
- Van Delden, H. Lessons Learnt in the Development, Implementation and Use of Integrated Spatial Decision Support Systems. In Proceedings of 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation, Cairns, Australia, 13–17 July 2009; Anderssen, R.S., Braddock, R.D., Newham, L.T.H., Eds.; Modelling and Simulation Society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation: Cairns, Australia, 2009; pp. 2922–2928. [Google Scholar]
- Alexandrov, G.A.; Ames, D.; Bellochi, G.; Bruen, M.; Crout, N.; Erechtchoukova, M.; Hildebrandt, A.; Hoffman, F.; Jackisch, C.; Khaiter, P.; et al. Technical assessment and evaluation of environmental models and software: Letter to the editor. Environ. Model. Software 2011, 26, 328–336. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; Henriksen, H.J. Modeling guidelines—Terminology and guiding principles. Adv. Water Resour. 2004, 27, 71–82. [Google Scholar] [CrossRef]
- Bai, Y.; Wagener, T.; Reed, P. A top-down framework for watershed model evaluation and selection under uncertainty. Environ. Model. Software 2009, 24, 901–916. [Google Scholar] [CrossRef]
- Wyat Appel, K.; Gilliam, R.C.; Davis, N.; Howard, S.C. Overview of the atmospheric model evaluation tool (AMET) v1.1 for evaluating meteorological and air quality models. Environ. Model. Software 2011, 26, 434–443. [Google Scholar] [CrossRef]
- Xu, Y.; Booij, M.J.; Mynett, A.E. An appropriateness framework for the Dutch Meuse decision support system. Environ. Model. Software 2007, 22, 1667–1678. [Google Scholar] [CrossRef]
- Sojda, R.S. Empirical evaluation of decision support systems: Needs, definitions, potential methods, and an example pertaining to waterfowl management. Environ. Model. Software 2007, 22, 269–277. [Google Scholar] [CrossRef]
- Wagener, T.; Kollat, J. Numerical and visual evaluation of hydrological and environmental models using the Monte Carlo analysis toolbox. Environ. Model. Software 2007, 22, 1021–1033. [Google Scholar] [CrossRef]
- Mo, X.; Liu, S.; Lin, Z. Evaluation of an ecosystem model for a wheat-maize double cropping system over the North China Plain. Environ. Model. Software 2012, 32, 61–73. [Google Scholar] [CrossRef]
- Pollino, C.A.; Woodberry, O.; Nicholson, A.; Korb, K.; Hart, B.T. Parameterisation and evaluation of a Bayesian network for use in an ecological risk assessment. Environ. Model. Software 2007, 22, 1140–1152. [Google Scholar] [CrossRef]
- Sonneveld, B.G.J.S.; Keyzer, M.A.; Stroosnijder, L. Evaluating quantitative and qualitative models: An application for nationwide water erosion assessment in Ethiopia. Environ. Model. Software 2011, 26, 1161–1170. [Google Scholar] [CrossRef]
- Aertsen, W.; Kint, V.; van Orshoven, J.; Muys, B. Evaluation of modeling techniques for forest site productivity prediction in contrasting ecoregions using stochastic multicriteria acceptability analysis (SMAA). Environ. Model. Software 2011, 26, 929–937. [Google Scholar] [CrossRef] [Green Version]
- Nilsen, T.; Aven, T. Models and model uncertainty in the context of risk analysis. Reliab. Eng. Syst. Safety 2003, 79, 309–317. [Google Scholar] [CrossRef]
- Moschandreas, D.J.; Karuchit, S. Scenario-model-parameter: A new method of cumulative risk uncertainty analysis. Environ. Int. 2002, 28, 247–261. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; van der Sluijs, J.P.; Brown, J.; van der Keur, P. A framework for dealing with uncertainty due to model structure error. Adv. Water Resour. 2006, 29, 1586–1597. [Google Scholar] [CrossRef]
- Hokkanen, P.; Kojo, M. How Environmental Impact Assessment Influences Decision-Making (in Finnish); Ympäristöministeriö: Helsinki, Finland, 2003. [Google Scholar]
- Kauppinen, T.; Nelimarkka, K.; Perttilä, K. The effectiveness of human impact assessment in the Finnish Health Cities Network. Public Health 2006, 120, 1033–1041. [Google Scholar] [CrossRef]
- Ekboir, J. Why impact analysis should not be used for research evaluation and what the alternatives are. Agr. Syst. 2003, 78, 166–184. [Google Scholar] [CrossRef]
- Quigley, R.J.; Taylor, L.C. Evaluating health impact assessment. Public Health 2004, 118, 544–552. [Google Scholar] [CrossRef]
- Clark, W.C.; Majone, G. The critical appraisal of scientific inquiries with policy implications. Sci. Technol. Hum. Val. 1985, 10, 6–19. [Google Scholar] [CrossRef]
- Hildén, M.; Furman, E.; Kaljonen, M. Views on planning and expectations of SEA: The case of transport planning. Environ. Impact Assess. Rev. 2004, 24, 519–536. [Google Scholar] [CrossRef]
- Baker, D.C.; McLelland, J.N. Evaluating the effectiveness of British Columbia’s environmental assessment process for first nations’ participation in mining development. Environ. Impact Assess. Rev. 2003, 23, 581–603. [Google Scholar] [CrossRef]
- Pohjola, M.V.; Tuomisto, J.T. Openness in participation, assessment, and policy making upon issues of environment and environmental health: a review of literature and recent project results. Environ. Health 2011, 10, 58. [Google Scholar] [CrossRef]
- Sandström, V.; Tuomisto, J.T.; Majaniemi, S.; Rintala, T.; Pohjola, M.V. Evaluating Effectiveness of Open Assessments on Alternative Biofuel Sources. Available online: www.julkari.fi/bitstream/handle/10024/104443/URN_ISBN_978-952-245-883-4.pdf?sequence= 1#page=179 (accessed on 18 June 2013).
- Wismar, M.; Blau, J.; Ernst, K.; Figueras, J. The Effectiveness of Health Impact Assessment: Scope and Limitations of Supporting Decision-Making in Europe; WHO: Copenhagen, Denmark, 2007. [Google Scholar]
- Fischer, T.B.; Gazzola, P. SEA effectiveness criteria—Equally valid in all countries? The case of Italy. Environ. Impact Assess. Rev. 2006, 26, 396–409. [Google Scholar] [CrossRef]
- Leu, W.; Williams, W.P.; Bark, A.W. Development of an environmental impact assessment evaluation model and its application: Taiwan case study. Environ. Impact Assess. Rev. 1996, 16, 115–133. [Google Scholar] [CrossRef]
- Pölönen, I.; Hokkanen, P.; Jalava, K. The effectiveness of the Finnish EIA system—What works, what doesn’t, and what could be improved? Enviro. Impact Assess. Rev. 2011, 31, 120–128. [Google Scholar] [CrossRef]
- Van Delden, H.; Phyn, D.; Fenton, T.; Huser, B.; Rutledge, D.; Wedderburn, L. User interaction during the development of the Waikato Integrated Scenario Explorer. In Proceedings of the iEMSs Fifth Biennial Meeting: “Modelling for Environment’s sake”, Ottawa, Canada, 5–8 July 2008; Swayne, D.A., Yang, W., Rizzoli, A., Voinov, A., Filatova, T., Eds.; International Environmental Modelling and Software Society: Ottawa, Canada, 2008. [Google Scholar]
- Diez, E.; McIntosh, B.S. A review of the factors which influence the use and usefulness of information systems. Environ. Model. Software 2009, 24, 588–602. [Google Scholar] [CrossRef]
- Vonk, G.; Geertman, S.; Schot, P. Bottlenecks blocking widespread usage of planning support systems. Environ. Plan. A 2005, 37, 909–924. [Google Scholar] [CrossRef]
- Larocque, G.R.; Bhatti, J.S.; Ascough, J.C., II; Liu, J.; Luckai, N.; Mailly, D.; Archambault, L.; Gordon, A.M. An analytical framework to assist decision makers in the use of forest ecosystem model predictions. Environ. Model. Software 2011, 26, 280–288. [Google Scholar] [CrossRef]
- Sterk, B.; van Ittersum, M.K.; Leeuwis, C. How, when, and for what reasons does land use modeling contribute to societal problem solving? Enviro. Model. Software 2011, 26, 310–316. [Google Scholar] [CrossRef]
- Diez, E.; McIntosh, B.S. Organisational drivers for, constraints on and impacts of decision and information support tool use in desertification policy and management. Environ. Model. Software 2011, 26, 317–327. [Google Scholar] [CrossRef]
- McIntosh, B.S.; Giupponi, C.; Voinov, A.A.; Smith, C.; Matthews, K.B.; Monticino, M.; Kolkman, M.J.; Crossman, N.; van Ittersum, M.; Haase, D.; et al. Bridging the Gaps between Design and Use: Developing Tools to Support Environmental Management and Policy. In Environmental Modeling, Software and Decision Support; Jakeman, A.J., Voinov, A.A., Rizzoli, A.E., Chen, S.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 33–48. [Google Scholar]
- Siebenhüner, B.; Barth, V. The role of computer modeling in participatory integrated assessments. Environ. Impact Assess. Rev. 2005, 25, 367–389. [Google Scholar] [CrossRef]
- Inman, D.; Blind, M.; Ribarova, I.; Krause, A.; Roosenschoon, O.; Kassahun, A.; Scholten, H.; Arampatzis, G.; Abrami, G.; McIntosh, B.; Jeffrey, P. Perceived effectiveness of environmental decision support systems in participatory planning: Evidence from small groups of end-users. Environ. Model. Software 2011, 26, 302–309. [Google Scholar] [CrossRef]
- Dewar, J.A.; Bankes, S.C.; Hodges, J.S.; Lucas, T.; Saunders-Newton, D.K.; Vye, P. Credible Uses of the Distributed Interactive Simulation (DIS) System; RAND: Santa Monica, CA, USA, 1996. [Google Scholar]
- Funtowicz, S.O.; Ravetz, J.R. Uncertainty and Quality in Science for Policy; Kluwer Academic Publishers: Dordrecht, the Netherlands, 1990. [Google Scholar]
- Food Safety Risk Analysis: A Guide for National Food Safety Authorities; World Health Organization, Food and Agriculture Organization of the United Nations: Rome, Italy, 2006.
- Wang, R.Y.; Strong, D.M. Beyond accuracy: What data quality means to data consumers. J. Manage. Inform. Syst. 1996, 12, 5–34. [Google Scholar]
- Moody, D.; Walsh, P. Measuring the Value of Information: An Asset Valuation Approach. In Proceedings of Seventh European Conference on Information System (ECIS’99), Copenhagen Business School, Frederiksberg, Denmark, 23–25 June 1999.
- Skyrme, D.J. Ten ways to add value to your business. Manag. Inform. 1994, 1, 20–25. [Google Scholar]
- Tongchuay, C.; Praneetpolgrang, P. Knowledge Quality and Quality Metrics in Knowledge Management Systems. In roceedings of the Fifth International Conference on ELearning for Knowledge-Based Society, Bangkok Metro, Thailand, 11–12 December 2008.
- Aumann, C.A. Constructing model credibility in the context of policy appraisal. Environ. Model. Software 2011, 26, 258–265. [Google Scholar] [CrossRef]
- Cash, D.W.; Clark, W.; Alcock, F.; Dickson, N.; Eckley, N.; Jäger, J. Salience, Credibility, Legitimacy and Boundaries: Linking Research, Assessment and Decision Making; Harvard University: Boston, MA, USA, 2002. [Google Scholar]
- Wardekker, J.A.; van der Sluijs, J.P.; Janssen, P.H.M.; Kloprogge, P.; Petersen, A.C. Uncertainty communication in environmental assessments: Views from the Dutch science-policy interface. Environ. Sci. Policy 2008, 11, 627–641. [Google Scholar] [CrossRef]
- Janssen, P.H.M.; Petersen, A.C.; van der Sluijs, J.P.; Risbey, J.S.; Ravetz, J.R. A guidance for assessing and communicating uncertainties. Water Sci. Technol. 2005, 52, 125–131. [Google Scholar]
- Covello, V.T.; Peters, R.G.; Wojtecki, J.G.; Hyde, R.C. Risk communication, the west nile virus epidemic, and bioterrorism: Responding to the communication challenges posed by the intentional or unintentional release of a pathogen in an urban setting. J. Urban Health: Bull. N. Y. Acad. Med. 2001, 78, 382–391. [Google Scholar]
- Bischof, N.; Eppler, M.J. Caring for clarity in knowledge communication. J. Univers. Comput. Sci. 2011, 17, 1455–1473. [Google Scholar]
- O’Faircheallaigh, C. Public participation and environmental impact assessment: Purposes, implications, and lessons for public policy making. Environ. Impact Assess. Rev. 2010, 30, 19–27. [Google Scholar] [CrossRef]
- OECD. Stakeholder Involvement Techniques—Short Guide and Annotated Bibliography. Available online: www.oecd-nea.org/rwm/reports/2004/nea5418-stakeholder.pdf (accessed on 18 June 2013).
- MNP, Stakeholder Participation Guide for the Netherlands Environmental Assessment Agency: Main Document, Practice Guide & Checklist; Netherlands Environmental Assessment Agency and Radboud University: Nijmegen, The Netherlands, 2008.
- Rosenhead, J.; Mingers, J. Rational Analysis for a Problematic World Revisited: Problem Structuring Methods For complexity, Uncertainty and Conflict; Wiley: Chichester, UK, 2001. [Google Scholar]
- University of Cambridge. Institute for Manufacturing. Decision Support Tools (Website). Available online: www.ifm.eng.cam.ac.uk/research/dstools/ (accessed on 18 June 2013).
- Narayan, S.M.; Corcoran-Perry, S.; Drew, D.; Hoyman, K.; Lewis, M. Decision analysis as a tool to support an analytical pattern-of-reasoning. Nurs. Health Sci. 2003, 5, 229–243. [Google Scholar] [CrossRef]
- Harris, G. Integrated assessment and modeling: An essential way of doing science. Environ. Model. Software 2002, 17, 201–207. [Google Scholar] [CrossRef]
- Pohjola, M.V.; Pohjola, P.; Paavola, S.; Bauters, M.; Tuomisto, J.T. Pragmatic Knowledge Services. J. Univers. Comput. Sci. 2011, 17, 472–497. [Google Scholar]
- Koivisto, J.; Pohjola, P. Practices, modifications and generativity—REA: A practical tool for managing the innovation processes of practices. Syst. Signs Actions 2012, 5, 100–116. [Google Scholar]
- Tijhuis, M.J.; Pohjola, M.V.; Gunnlaugsdόttir, H.; Kalogeras, N.; Leino, O.; Luteijn, J.M.; Magnússon, S.H.; Odekerken, G.; Poto, M.; Tuomisto, J.T.; et al. Looking beyond Borders: Integrating best practices in benefit-risk analysis into the field of food and nutrition. Food Chem. Toxicol. 2012, 50, 77–93. [Google Scholar]
- Miles, S.B. Towards Policy Relevant Environmental Modeling: Contextual Validity and Pragmatic Models. U.S. Department of the Interior, U.S. Geological Survey. Available online: geopubs.wr.usgs.gov/open-file/of00-401/of00-401.pdf (accessed on 18 June 2013).
- Oreskes, N.; Schrader-Frechette, K.; Belitz, K. Verification, validation, and confirmation of numerical models in the earth science. Science 1994, 263, 641–646. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pohjola, M.V.; Pohjola, P.; Tainio, M.; Tuomisto, J.T. Perspectives to Performance of Environment and Health Assessments and Models—From Outputs to Outcomes? Int. J. Environ. Res. Public Health 2013, 10, 2621-2642. https://doi.org/10.3390/ijerph10072621
Pohjola MV, Pohjola P, Tainio M, Tuomisto JT. Perspectives to Performance of Environment and Health Assessments and Models—From Outputs to Outcomes? International Journal of Environmental Research and Public Health. 2013; 10(7):2621-2642. https://doi.org/10.3390/ijerph10072621
Chicago/Turabian StylePohjola, Mikko V., Pasi Pohjola, Marko Tainio, and Jouni T. Tuomisto. 2013. "Perspectives to Performance of Environment and Health Assessments and Models—From Outputs to Outcomes?" International Journal of Environmental Research and Public Health 10, no. 7: 2621-2642. https://doi.org/10.3390/ijerph10072621
APA StylePohjola, M. V., Pohjola, P., Tainio, M., & Tuomisto, J. T. (2013). Perspectives to Performance of Environment and Health Assessments and Models—From Outputs to Outcomes? International Journal of Environmental Research and Public Health, 10(7), 2621-2642. https://doi.org/10.3390/ijerph10072621