Response to Baverstock, K. Comments on Rithidech, K.N.; et al. Lack of Genomic Instability in Bone Marrow Cells of SCID Mice Exposed Whole-Body to Low-Dose Radiation. Int. J. Environ. Res. Public Health 2013, 10, 1356–1377.
References
- Baverstock, K. Comments on Rithidech, K.N.; et al. Lack of genomic instability in bone marrow cells of SCID mice exposed whole-body to low-dose radiation. Int. J. Environ. Res. Public Health 2013, 9, 1356–1377. Int. J. Environ. Res. Public Health 2013, 10, 2732–2734. [Google Scholar]
- Rithidech, K.; Udomtanakunchai, C.; Honikel, L.; Whorton, E. Lack of genomic instability in bone marrow cells of SCID mice exposed whole-body to low-dose radiation. Int. J Environ. Res. Public Health 2013, 10, 1356–1377. [Google Scholar] [CrossRef]
- Morgan, W.F. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat. Res. 2003, 159, 567–580. [Google Scholar] [CrossRef]
- Morgan, W.F. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic and transgenerational effects. Radiat. Res. 2003, 159, 581–596. [Google Scholar] [CrossRef]
- Morgan, W.F.; Day, J.P.; Kaplan, M.I.; McGhee, E.M.; Limoli, C.L. Genomic instability induced by ionizing radiation. Radiat. Res. 1996, 146, 247–258. [Google Scholar] [CrossRef]
- Baverstock, K. Radiation-induced genomic instability: A paradigm-breaking phenomenon and its relevance to environmentally induced cancer. Mutat. Res. 2000, 454, 89–109. [Google Scholar] [CrossRef]
- Little, J.B. Radiation-induced genomic instability. Int. J. Radiat. Biol. 1998, 74, 663–671. [Google Scholar] [CrossRef]
- Harms-Ringdahl, M. Some aspects on radiation induced transmissible genomic instability. Mutat. Res. 1998, 404, 27–33. [Google Scholar] [CrossRef]
- Lorimore, S.A.; Coates, P.J.; Wright, E.G. Radiation-induced genomic instability and bystander effects: Inter-related nontargeted effects of exposure to ionizing radiation. Oncogene 2003, 22, 7058–7069. [Google Scholar] [CrossRef]
- Kadhim, M.A.; Macdonald, D.A.; Goodhead, D.T.; Lorimore, S.A.; Marsden, S.J.; Wright, E.G. Transmission of chromosomal instability after plutonium alpha-particle irradiation. Nature 1992, 355, 738–740. [Google Scholar] [CrossRef]
- Koterov, A.N. Genomic instability at exposure of low dsoe radiation with low LET. Mythical mechanism of unproved carcinogneic effects. Int. Low Radiat. 2005, 1, 376–451. [Google Scholar] [CrossRef]
- Kadhim, M.A.; Lorimore, S.A.; Hepburn, M.D.; Goodhead, D.T.; Buckle, V.J.; Wright, E.G. Alpha-particle-induced chromosomal instability in human bone marrow cells. Lancet 1994, 344, 987–988. [Google Scholar] [CrossRef]
- Kadhim, M.A.; Lorimore, S.A.; Townsend, K.M.; Goodhead, D.T.; Buckle, V.J.; Wright, E.G. Radiation-induced genomic instability: Delayed cytogenetic aberrations and apoptosis in primary human bone marrow cells. Int. J. Radiat. Biol. 1995, 67, 287–293. [Google Scholar] [CrossRef]
- Sabatier, L.; Dutrillaux, B.; Martin, M.B. Chromosomal instability. Nature 1992, 357, 548–548. [Google Scholar] [CrossRef]
- Martins, M.B.; Sabatier, L.; Ricoul, M.; Pinton, A.; Dutrillaux, B. Specific chromosome instability induced by heavy ions: A step towards transformation of human fibroblasts? Mutat. Res. 1993, 285, 229–237. [Google Scholar] [CrossRef]
- Holmberg, K.; Fält, S.; Johansson, A.; Lambert, B. Clonal chromosome aberrations and genomic instability in X-irradiated human T-lymphocyte cultures. Mutat. Res. 1993, 286, 321–330. [Google Scholar] [CrossRef]
- Marder, B.A.; Morgan, W.F. Delayed chromosomal instability induced by DNA damage. Mol. Cell Biol. 1993, 13, 6667–6677. [Google Scholar]
- Watson, G.E.; Lorimore, S.A.; Macdonald, D.A.; Wright, E.G. Chromosomal instability in unirradiated cells induced in vivo by a bystander effect of ionizing radiation. Cancer Res. 2000, 60, 5608–5611. [Google Scholar]
- Watson, G.E.; Lorimore, S.A.; Wright, E.G. Long-term in vivo transmission of alpha-particle-induced chromosomal instability in murine haemopoietic cells. Int. J. Radiat. Biol. 1996, 69, 175–182. [Google Scholar] [CrossRef]
- Mothersill, C.; Seymour, C.B. Mechanisms and implications of genomic instability and other delayed effects of ionizing radiation exposure. Mutagenesis 1998, 13, 421–426. [Google Scholar] [CrossRef]
- Huang, L.; Snyder, A.R.; Morgan, W.F. Radiation-induced genomic instability and its implications for radiation carcinogenesis. Oncogene 2003, 22, 5848–5854. [Google Scholar] [CrossRef]
- Baverstock, K.; Rönkkö, M. Epigenetic regulation of the mammalian cell. PLoS One 2008, 3. [Google Scholar] [CrossRef]
- Merrifield, M.; Kovalchuk, O. Epigenetics in radiation biology: A new research frontier. Front. Genet. 2013. [Google Scholar] [CrossRef]
- Morgan, W.F.; Bair, W.J. Issues in low dose radiation biology: The controversy continues. A perspective. Radiat. Res. 2013, 179, 501–510. [Google Scholar] [CrossRef]
- Fält, S.; Holmberg, K.; Lambert, B.; Wennborg, A. Long-term global gene expression patterns in irradiated human lymphocytes. Carcinogenesis 2003, 24, 1837–1845. [Google Scholar] [CrossRef]
- Kadhim, M.A.; Marsden, S.J.; Goodhead, D.T.; Malcolmson, A.M.; Folkard, M.; Prise, K.M.; Michael, B.D. Long-term genomic instability in human lymphocytes induced by single-particle irradiation. Radiat. Res. 2001, 155, 122–126. [Google Scholar] [CrossRef]
- Watson, G.E.; Pocock, D.A.; Papworth, D.; Lorimore, S.A.; Wright, E.G. In vivo chromosomal instability and transmissible aberrations in the progeny of haemopoietic stem cells induced by high- and low-LET radiations. Int. J. Radiat. Biol. 2001, 77, 409–417. [Google Scholar] [CrossRef]
- Rithidech, K.N.; Udomtanakunchai, C.; Honikel, L.M.; Whorton, E.B. No evidence for the in vivo induction of genomic instability by low doses of 137Cs gamma rays in bone marrow cells of BALB/CJ and C57BL/6J mice. Dose Response 2012, 10, 11–36. [Google Scholar] [CrossRef]
- Ponnaiya, B.; Cornforth, M.N.; Ullrich, R.L. Radiation-induced chromosomal instability in BALB/c and C57BL/6 mice: The difference is as clear as black and white. Radiat. Res. 1997, 147, 121–125. [Google Scholar] [CrossRef]
- Kadhim, M.A. Role of genetic background in induced instability. Oncogene 2003, 22, 6994–6999. [Google Scholar] [CrossRef]
- Watson, G.E.; Lorimore, S.A.; Clutton, S.M.; Kadhim, M.A.; Wright, E.G. Genetic factors influencing alpha-particle-induced chromosomal instability. Int. J. Radiat. Biol. 1997, 71, 497–503. [Google Scholar] [CrossRef]
- Lorimore, S.A.; Mukherjee, D.; Robinson, J.I.; Chrystal, J.A.; Wright, E.G. Long-lived inflammatory signaling in irradiated bone marrow is genome dependent. Cancer Res. 2011, 71, 6485–6491. [Google Scholar] [CrossRef]
- Rithidech, K.N.; Supanpaiboon, W.; Honikel, L.; Whorton, E.B. Induction of genomic instability after an acute whole-body exposure of mice to 56Fe ions. Adv. Space Res. 2009, 44, 895–906. [Google Scholar] [CrossRef]
- Mothersill, C.; Harney, J.; Lyng, F.; Cottell, D.; Parsons, K.; Murphy, D.M.; Seymou, C.B. Primary explants of human uroepithelium show an unusual response to low-dose irradiation with cobalt-60 gamma rays. Radiat. Res. 1995, 142, 181–187. [Google Scholar] [CrossRef]
- Mothersill, C.; Seymour, C. Uncomfortable issues in radiation protection posed by low-dose radiobiology. Radiat. Environ. Biophys. 2013. [Google Scholar] [CrossRef]
- Selzer, E.; Hebar, A. Biological effects and tumor risk of diagnostic X rays: The war of theories. Radiologe 2012, 52, 892–897. [Google Scholar] [CrossRef]
- Cohen, B.L. The linear no-threshold theory of radiation carcinogenesis should be rejected. J. Am. Phys. Surg. 2008, 13, 70–76. [Google Scholar]
- Averbeck, D. Does scientific evidence support a change from the LNT model for low-dose radiation risk extrapolation? Health Phys. 2009, 97, 493–504. [Google Scholar] [CrossRef]
- Cuttler, J.M. Health effects of low level radiation: When will we acknowledge the reality? Dose Response 2007, 5, 292–298. [Google Scholar] [CrossRef]
- Dauer, L.T.; Brooks, A.L.; Hoel, D.G.; Morgan, W.F.; Stram, D.; Tran, P. Review and evaluation of updated research on the health effects associated with low-dose ionising radiation. Radiat. Protect. Dosimetr. 2010, 140, 103–136. [Google Scholar] [CrossRef]
- Feinendegen, L.; Neumann, R.D.; Pollycove, M. Systems-related facts and consequences in assessing risk from low-level irradiation. Health Phys. 2011, 100, 274–276. [Google Scholar] [CrossRef]
- Jaworowski, Z. The paradigm that failed. Int. J. Low Radiat. 2008, 5, 151–155. [Google Scholar] [CrossRef]
- Ogura, K.; Magae, J.; Kawakami, Y.; Koana, T. Reduction in mutation frequency by very low-dose gamma irradiation of Drosophila melanogaster germ cells. Radiat. Res. 2009, 171, 1–8. [Google Scholar] [CrossRef]
- Scott, B.R. Low-dose radiation-induced protective process and implications for risk assessment, cancer prevention, and cancer therapy. Dose Response 2007, 5, 131–144. [Google Scholar] [CrossRef]
- Tubiana, M.; Feinendegen, L.E.; Yang, C.; Kaminski, J.M. The linear no-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology 2009, 251, 13–22. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rithidech, K.N.; Udomtanakunchai, C.; Honikel, L.; Whorton, E. Response to Baverstock, K. Comments on Rithidech, K.N.; et al. Lack of Genomic Instability in Bone Marrow Cells of SCID Mice Exposed Whole-Body to Low-Dose Radiation. Int. J. Environ. Res. Public Health 2013, 10, 1356–1377. Int. J. Environ. Res. Public Health 2013, 10, 2735-2740. https://doi.org/10.3390/ijerph10072735
Rithidech KN, Udomtanakunchai C, Honikel L, Whorton E. Response to Baverstock, K. Comments on Rithidech, K.N.; et al. Lack of Genomic Instability in Bone Marrow Cells of SCID Mice Exposed Whole-Body to Low-Dose Radiation. Int. J. Environ. Res. Public Health 2013, 10, 1356–1377. International Journal of Environmental Research and Public Health. 2013; 10(7):2735-2740. https://doi.org/10.3390/ijerph10072735
Chicago/Turabian StyleRithidech, Kanokporn Noy, Chatchanok Udomtanakunchai, Louise Honikel, and Elbert Whorton. 2013. "Response to Baverstock, K. Comments on Rithidech, K.N.; et al. Lack of Genomic Instability in Bone Marrow Cells of SCID Mice Exposed Whole-Body to Low-Dose Radiation. Int. J. Environ. Res. Public Health 2013, 10, 1356–1377." International Journal of Environmental Research and Public Health 10, no. 7: 2735-2740. https://doi.org/10.3390/ijerph10072735
APA StyleRithidech, K. N., Udomtanakunchai, C., Honikel, L., & Whorton, E. (2013). Response to Baverstock, K. Comments on Rithidech, K.N.; et al. Lack of Genomic Instability in Bone Marrow Cells of SCID Mice Exposed Whole-Body to Low-Dose Radiation. Int. J. Environ. Res. Public Health 2013, 10, 1356–1377. International Journal of Environmental Research and Public Health, 10(7), 2735-2740. https://doi.org/10.3390/ijerph10072735