Effective Removal of Cadmium Ions from a Simulated Gastrointestinal Fluid by Lentinus edodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of L. edodes Powder and Cadmium Solution
2.2. Effect of pH on Adsorption
2.3. Effect of Powder Size
2.4. Effect of Initial Cadmium Ion Concentration
2.5. Cadmium Adsorption Time Course
2.6. Simulated Intestinal Fluids Treatment
2.7. Analysis
3. Results and Discussion
3.1. Weak Acidic pH Favored Cadmium Adsorption/Removal
3.2. Smaller Antidote Powder Size Improved Cadmium Removal
3.3. Initial Cadmium Concentration Affected Effective Adsorption/Removal
3.4. Cadmium Ion Binds to L. edodes Rapidly
3.5. Hydroxyl, Carboxyl and –NH Groups of Polysaccharides and Proteins Provide the Sites for Cadmium Binding
3.6. Cadmium Adsorption Fitted well with the Languir and Freundlich Models
Model Parameters | Langmuir | Model Parameters | Freundlich |
---|---|---|---|
qmax(mg/g) | 333.33 | n (g/L) | 1.308 |
KL(L/mg) | 0.002 | KF(mg/g) | 2.72 |
R2 | 0.978 | R2 | 0.981 |
3.7. Effective Detoxication of Simulated “Cadmium Contaminated” Intestinal Fluids
Before Treatment (Cadmium, mg/L) | 1 | 5 | 100 | 200 |
---|---|---|---|---|
After treatment (cadmium, mg/L) | 0.2 | 1.57 | 39.27 | 98.33 |
Removal efficiency (%) | 80 | 68.6 | 61.73 | 50.8 |
4. Conclusions
Abbreviations
L. edodes | Lentinus edodes |
FTIR | Fourier transform infrared analysis |
DMSA | dimercaptosuccinic acid |
DMPS | dimercaptopropanesulfonate |
EDTA | ethylenediaminetetraacetic acid |
EDS | energy dispersive spectrometry |
GFAAS | atomic absorption spectrometry |
SEM | scanning electron microscope |
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Aravindhan, R.; Madhan, B.; Rao, J.R.; Nair, B.U.; Ramasami, T. Bioaccumulation of chromium from tannery wastewater: An approach for chrome recovery and reuse. Environ. Sci. Technol. 2004, 38, 300–306. [Google Scholar] [CrossRef]
- Sabolic, I. Common mechanisms in nephropathy induced by toxic metals. Nephron Physiol. 2006, 104, 107–114. [Google Scholar] [CrossRef]
- Barbier, O.; Jacquillet, G.; Tauc, M.; Cougnon, M.; Poujeol, P. Effect of heavy metals on, and handling by, the kidney. Nephron Physiol. 2005, 99, 105–110. [Google Scholar] [CrossRef]
- Foulkes, E.C. Transport of toxic heavy metals across cell membranes. Proc. Soc. Exp. Biol. Med. 2000, 223, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Xie, J.; Zhao, G. Comparative effects of five chelating agents on testicular toxicity in mice induced by acute exposure to cadmium. Toxicol. Environ. Chem. 2006, 88, 325–330. [Google Scholar] [CrossRef]
- Al-Saadi, A.A.; Saleh, T.A.; Gupta, V.K. Spectroscopic and computational evaluation of cadmium adsorption using activated carbon produced from rubber tires. J. Mol. Liq. 2013, 188, 136–142. [Google Scholar] [CrossRef]
- Shahid, M.; Austruy, A.; Echevarria, G.; Arshad, M.; Sanaullah, M.; Aslam, M.; Nadee, M.; Nasim, W.; Dumat, C. EDTA-enhanced phytoremediation of heavy metals: A review. Soil Sediment Contam. 2014, 23, 389–416. [Google Scholar] [CrossRef]
- Custos, J.M.; Moyne, C.; Treillon, T.; Sterckeman, T. Contribution of Cd-EDTA complexes to cadmium uptake by maize: A modelling approach. Plant Soil 2014, 374, 497–512. [Google Scholar] [CrossRef]
- George, G.N.; Prince, R.C.; Gailer, J.; Buttigieg, G.A.; Denton, M.B.; Harris, H.H.; Pickering, I.J. Mercury binding to the chelation therapy agents DMSA and DMPS and the rational design of custom chelators for mercury. Chem. Res. Toxicol. 2004, 17, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Fang, Y.; Peng, S.; Ma, D.; Zhao, J. Synthesis of novel chelating agents and their effect on cadmium decorporation. Chem. Res. Toxicol. 1999, 12, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Idouraine, A.; Khan, M.J.; Weber, C.W. In vitro mineral binding capacity of three fiber sources for Ca, Mg, Cu and Zn by two different methods. Int. J. Food Sci. Nutr. 1996, 47, 285–293. [Google Scholar] [CrossRef]
- Chen, G.; Zeng, G.; Tang, L.; Du, C.Y.; Jiang, X.Y.; Huang, G.H.; Liu, H.L.; Shen, G.L. Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes. Bioresour. Technol. 2008, 99, 7034–7040. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Jie, S.; Hanchuan, D.; Moucheng, W. Characterization and immunomodulating activities of polysaccharide from Lentinus edodes. Int. Immunopharmacol. 2005, 5, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Costantino, H.R.; Griebenow, K.; Langer, R.; Klibanov, A.M. On the pH memory of lyophilized compounds containing protein functional groups. Biotechnol. Bioengin. 1997, 53, 345–348. [Google Scholar] [CrossRef]
- Siao, F.Y.; Lu, J.F.; Wang, J.S.; Inbaraj, B.S.; Chen, B.H. In vitro binding of heavy metals by an edible biopolymer poly(γ-glutamic acid). J. Agric. Food Chem. 2009, 57, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.; Gao, K.; Li, Y. An in vitro study of wheat bran binding capacity for Hg, Cd and Pb. J. Agric. Food Chem. 1999, 47, 4714–4717. [Google Scholar] [CrossRef] [PubMed]
- Oberleas, D.; Muhrer, M.E.; O’Dell, B.L. Dietary metal-complexing agents and zinc availability in the rat. J. Nutr. 1966, 90, 56–62. [Google Scholar]
- Ghimire, K.N.; Inoue, K.; Yamaguchi, H.; Makino, K.; Miyajima, T. Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Res. 2003, 37, 4945–4953. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Sharma, S. Removal of cadmium and zinc from aqueous solutions using red mud. Environ. Sci. Technol. 2002, 36, 3612–3617. [Google Scholar] [CrossRef] [PubMed]
- Herrero, R.; Cordero, B.; Lodeiro, P.; Rey-Castro, C.; de Vicente, M.E.S. Interactions of cadmium(II) and protons with dead biomass of marine algae Fucus. sp. Mar. Chem. 2006, 99, 106–116. [Google Scholar] [CrossRef]
- Say, R.; Yilmaz, N.; Denizli, A. Biosorption of cadmium, lead, mercury, and arsenic ions by the fungus Penicilliumpur purogenum. Sep. Sci. Technol. 2003, 38, 2039–2053. [Google Scholar] [CrossRef]
- Mohanty, K.; Jha, M.; Meikap, B.C.; Biswas, M.N. Biosorption of Cr (VI) from aqueous solutions by Eichhornia crassipes. Chem. Eng. J. 2006, 117, 71–77. [Google Scholar] [CrossRef]
- Vigneshwaran, N.; Ashtaputre, N.M.; Varadarajan, P.V.; Nachane, R.P.; Paralikar, K.M.; Balasubramanya, R.H. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett. 2007, 61, 1413–1418. [Google Scholar] [CrossRef]
- Yalcin, S. The mechanism of heavy metal biosorption on green marine Macroalga Enteromorpha linza. CLEAN-Soil Air Water 2014, 42, 251–259. [Google Scholar] [CrossRef]
- Davis, T.A.; Volesky, B.; Mucci, A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003, 37, 4311–4330. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, G.; Thakur, I.S. Adsorption of colored pollutants from distillery spent wash by native and treated fungus: Neurospora intermedia. Environ. Sci. Pollut. Res. 2013, 20, 1070–1078. [Google Scholar] [CrossRef]
- Lim, A.P.; Aris, A.Z. A novel approach for the adsorption of cadmium ions in aqueous solution by dead calcareous skeletons. Desalin. Water Treat. 2014, 52, 3169–3177. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, X.; Huang, W.; Bian, Y. Effective Removal of Cadmium Ions from a Simulated Gastrointestinal Fluid by Lentinus edodes. Int. J. Environ. Res. Public Health 2014, 11, 12486-12498. https://doi.org/10.3390/ijerph111212486
Qiao X, Huang W, Bian Y. Effective Removal of Cadmium Ions from a Simulated Gastrointestinal Fluid by Lentinus edodes. International Journal of Environmental Research and Public Health. 2014; 11(12):12486-12498. https://doi.org/10.3390/ijerph111212486
Chicago/Turabian StyleQiao, Xin, Wen Huang, and Yinbing Bian. 2014. "Effective Removal of Cadmium Ions from a Simulated Gastrointestinal Fluid by Lentinus edodes" International Journal of Environmental Research and Public Health 11, no. 12: 12486-12498. https://doi.org/10.3390/ijerph111212486
APA StyleQiao, X., Huang, W., & Bian, Y. (2014). Effective Removal of Cadmium Ions from a Simulated Gastrointestinal Fluid by Lentinus edodes. International Journal of Environmental Research and Public Health, 11(12), 12486-12498. https://doi.org/10.3390/ijerph111212486