Potential for Improved Glycemic Control with Dietary Momordica charantia in Patients with Insulin Resistance and Pre-Diabetes
Abstract
:1. Introduction
2. Description
Mode of Action | Model | Observed Effects |
---|---|---|
1. Insulin signaling pathway |
|
|
|
| |
|
| |
|
In skeletal muscle:
| |
2. Gluconeogenic & Glycolysis enzymes |
|
|
|
| |
|
| |
3. Pancreatic Beta cells |
|
|
|
| |
4. Lipid Regulation |
|
White adipose tissue:
|
| Epididymal adipose tissues (EAT) and brown adipose tissues (BAT)
| |
|
|
3. Clinical Reports
First Author [Ref.]
(Location) | Sample | Design | Treatment | Jadad Score | Results |
---|---|---|---|---|---|
Ahmad [32]
(Bangladesh) | 100 Moderate type II diabetics | Case series
(no referent group) | Aqueous homogenized suspension (single treatment),
Non-standardized dose | C | ↓Fasting serum glucose (
p < 0.001), ↓Post-prandial serum glucose (p < 0.001) |
Akhtar [33]
(Pakistan) | 8 Uncomplicated, maturity-onset diabetics | Case series
(no referent group) | Powdered bitter melon, 50 mg/kg body weight twice daily for 7 days after breakfast and dinner along with milk | C | ↓Mean blood sugar levels
(p < 0.05) |
Baldwa [34]
(India) | 5 Healthy volunteers,
5 Diabetic referents, 9 Pts. with diabetes mellitus | Unblinded,
Non-randomized, Clinical trial | Subcutaneous (single injection) of Polypepide-p,
Arbitrary dosing | C | ↓Fasting serum glucose
(p < 0.05) |
Dans [35]
(Philippines) | 40 Newly physician diagnosed or poorly controlled type 2 diabetes | Double-blind,
Randomized, Placebo-controlled, Intent-to-treat | 2 Capsules of bitter melon thrice daily for 3 months,
Medication prepared by 3rd party to conceal allocation | B | ↓Fasting plasma glucose (
p = 0.5862), Achieved study power was only 11% |
Fuangchan [36]
(Thailand) | 143 Newly diagnosed type 2 diabetes | Double-blind,
Active-control, Pill counting to monitor compliance , Intent-to-treat | 2 Capsules (500 mg) before and after meals for 4 weeks | A | ↓Mean fructosamine levels
(−10.2 µmol/L; 95%CI = −19.1 to −1.3) |
Grover [37]
(India) | 14 NIDDM (mixed sex),
6 IDDM (female only) | Case series (no referent group) | Bitter melon seeds,
Single treatment | C | ↓Post-prandial serum glucose
(p = 0.001) |
Habib [38] (Bangladesh) | 8 NIDDM (3F, 5M) taking ½–1 tablet glibenclamide randomly selected from diabetic center | Open-label, Cross-over design (15 day wash-out period between treatments) | Powdered, dried fruit (4 gm/patient) administered consecutively for 21 days | C | ↓Post-prandial serum glucose ( p = 0.001) |
John [39]
(India) | 26 Type 2 diabetics | Unblinded,
Randomized, Clinical trial | 2 Tablets (1 gm) dried fruit thrice daily after meals for 4 weeks | C | ↓Fasting serum glucose (
p > 0.05), ↓Post-prandial serum glucose (p > 0.05) |
Kasbia [14]
(Canada) | 5 Non-diabetic, overweight men | Randomized,
Blinded, Placebo-controlled, Cross-over study | Eligible participants underwent 3 experimental conditions in a randomized order: placebo, 50 mg/kg,100 mg/kg body weight of freeze-dried juice,
Single treatments separated by 1-week washout period, Placebo capsules filled with inert cellulose | C | No effect on plasma glucose |
Khanna [40]
(India) | 6 Juvenile referents,
5 Juvenile diabetes, 2 Maturity onset diabetes referents, 6 Maturity onset diabetes | Unblinded,
Non-randomized, Clinical trial | Subcutaneous,
Polypepide-p (single treatment), Arbitrary dosing depending upon severity of diabetes | C | ↓Serum glucose ( p < 0.05) at selected time point |
Kochhar [41] (India) | 60 Non-insulin-dependent male diabetics | Case series (no referent group) | Raw powered mixture (bitter melon fruit, fenugreek seeds, jambu seeds) in the form of capsules (Group I) or salty biscuits (Group 2),
Daily supplementation of 1 g for 1.5 months followed by 2 g for 1.5 months, Fresh, immature bitter melon fruit procured from a single lot grown locally and stored in airtight plastic containers until use | C | ↓Fasting glucose (
p < 0.01), ↓Postprandial glucose (p < 0.01), ↓Decreased oral hypoglycemic drug intake (p < 0.05) |
Leatherdale [42]
(England) | 9 NIDDM
| Case series (no referent group) | Water-soluble extract of bitter melon fruit (single treatment),
Later received fried bitter melon fruit for 8 to 11 weeks | C | ↓Blood glucose concentration during 50 g oral glucose tolerance test ( p < 0.05) |
Lim [43]
(Philippines) | 40 Newly diagnosed type 2 diabetes mellitus (18 males, 22 females) | Double-blind, placebo-controlled trial,
Medications prepared by a third party to conceal allocation | Tablets containing dried bitter melon leaves,
Single oral dose (3 treatment groups of 60, 80, 100 mg/kg/day), Placebo tablets matched in appearance to active compound | B/A(published in journal without impact factor or indexed in PubMed) | ↑Insulin levels at 15 min (
p = 0.0402), ↓Average plasma glucose levels at 15 min (p = 0.0121), 100 mg/kg/day dose of bitter melon was more effective than lower doses and placebo in reducing mealtime glycemic excursions within 4 hour postdose, with more rapid return to baseline levels |
Pons [44]
(Puerto Rico) | 8 Patients (7 diabetic, 1 normal) | Case series (no referent group) | 2 Pills (0.10g of bitter melon extract powder) taken after each meal,
Duration of administration varied up to 3 weeks | C | ↓Blood sugar in 2 patients ( p > 0.05) |
Purification, (unpublished report in Duque [45])
(Phillipines) | 260 Type 2 diabetics | Phase III trial,
Randomized block design, (bitter melon, n = 128; glibenclamide, n = 132) | Tablet (100 mg/kg/day) for 12 weeks | C (sufficient details not provided) | ↓Fasting plasma glucose (
p < 0.05), Bitter melon and glibenclamide were comparable in terms of efficacy and safety |
Rosales [46]
(Philippines) | 27 Type 2 diabetics with suboptimal glycemic control | Unblinded,
Randomized, Cross-over, Clinical trial | 200mL bitter melon tea after meals,
Placebo consisted of tea made from leaves of Camellia sinensis, 24 Week study | C | ↓HbA1c (63% reduction,
p = 0.005), ↓Fasting serum glucose (p = 0.403) |
Srivastava [47] (India) | 7 Mild to severe diabetics | Case series (no referent group) | 100 mL Aqueous extract,
Separate group given 15 g dried fruit powder thrice a day in equal doses of 5 g each, 3 Week treatment period | C | ↓Post-prandial serum glucose for aqueous group only ( p < 0.01) |
Tongia [48]
(India) | 15 NIDDM | Unblinded,
Non-random allocation | 200mg Twice daily soft bitter melon extract (7 days treatment), | C | ↓Post-prandial serum glucose ( p < 0.001) |
Tsai [49]
(Taiwan) | 42 Patients with metabolic syndrome (mean age 45.7; range 23 to 63 years) | Open-label,
Uncontrolled, Supplementation trial | 4.8 g Lyophilized bitter melon powder daily for 3 months | C | ↓Metabolic syndrome (
p = 0.021), Improved insulin resistance at visit 2 and return to nearly baseline levels after stopping bitter melon (p > 0.05) |
Welhinda [50]
(Sri Lanka) | 18 Newly diagnosed maturity onset diabetics | Cross-over design | 100 mL Aliquots of clear bitter melon juice given orally,
Placebo (same patients) received 100 mL distilled water, Single administration of treatment and placebo | C | ↓ Glucose tolerance curves compared with referent glucose tolerance curves ( p < 0.01) |
Zänker [51]
(Germany) | 124 Type 2 diabetes mellitus (age > 40 years) not treated with insulin but receiving anti-diabetics | Prospective, placebo-controlled, randomized, double-blinded,
Participants required to stop taking dietary supplements, Compliance not monitored | Special water soluble bitter melon standardized at 10% charantin,
Daily dose - 1 g (2 capsules), Second active group received chromium and zinc supplementation, Screening phase + 4-week depletion phase + 4-month intervention phase, No information provided on the country of origin for bitter melon, part of the plant used (e.g., seeds, pulp, leaves), or self-life | B/A
(published in journal without impact factor or indexed in PubMed) | ↓ HbA1c,
p = 0.0002, No hypoglycemic or other adverse events reported |
4. Synthesis of the Literature
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Center for Disease Control and Prevention (CDC). National Diabetes Fact Sheet. 2011. Available online: www.cdc.gov/diabetes/pubs/pdf/ndfs_2011.pdf (accessed on 14 December 2013).
- Garber, A.J.; Abrahamson, M.J.; Barzilay, J.I.; Blonde, L.; Bloomgarden, Z.T.; Bush, M.A.; Dagogo-Jack, S.; Davidson, M.B.; Einhorn, D.; Garvey, W.T.; et al. American Association of Clinical Endocrinologists’ comprehensive diabetes management algorithm 2013 consensus statement—Executive summary. Endocr. Pract. 2013, 19, 536–557. [Google Scholar] [CrossRef]
- Shah, A.S.; Gao, Z.; Urbina, E.M.; Kimball, T.R.; Dolan, L.M. Pre-diabetes: The effects on arterial thickness and stiffness in obese youth. J. Clin. Endocrinol. Metab. 2014. [Google Scholar] [CrossRef]
- Milman, S.; Crandall, J.P. Mechanisms of vascular complications in prediabetes. Med. Clin. North Am. 2011, 95, 309–325. [Google Scholar] [CrossRef]
- Handelsman, Y.; Mechanick, J.I.; Blonde, L.; Grunberger, G.; Bloomgarden, Z.T.; Bray, G.A.; Dagogo-Jack, S.; Davidson, J.A.; Einhorn, D.; Ganda, O.; et al. AACE task force for developing diabetes comprehensive care plan. American Association of Clinical Endocrinologists medical guidelines for clinical practice for developing a diabetes mellitus comprehensive care plan. Endocr. Pract. 2011, 17 (Suppl 2), 1–53. [Google Scholar]
- National Center for Complementary and Alternative Medicine (NCCAM). Complementary, Alternative, or Integrative Health: What’s in a Name? U.S. Department of Health and Human Services, National Institutes of Health: Bethesda, MD, USA. Available online: http://nccam.nih.gov/health/whatiscam (accessed on 6 November 2013).
- Dham, S.; Shah, V.; Hirsch, S.; Banerji, M.A. The role of complementary and alternative medicine in diabetes. Curr. Diab Rep. 2006, 6, 251–258. [Google Scholar] [CrossRef]
- Abel, W.M.; Efird, J.T. The association between trust in health care providers and medication adherence among Black women with hypertension. Front. Public. Health. 2013, 1. [Google Scholar] [CrossRef]
- Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Aspects Med. 2006, 27, 1–93. [Google Scholar] [CrossRef]
- Mahomoodally, M.F.; Subratty, A.H.; Gurib-Fakim, A.; Choudhary, M.I.; Nahar Khan, S. Traditional medicinal herbs and food plants have the potential to inhibit key carbohydrate hydrolyzing enzymes in vitro and reduce postprandial blood glucose peaks. Sci. World J. 2012. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, H.; Ye, J. Traditional Chinese medicine in treatment of metabolic syndrome. Endocr. Metab. Immune Disord. Drug Targets 2008, 8, 99–111. [Google Scholar] [CrossRef]
- Rizvi, S.I.; Mishra, N. Traditional Indian medicines used for the management of diabetes mellitus. J. Diabetes Res. 2013. [Google Scholar] [CrossRef]
- Raman, A.; Lau, C. Anti-diabetic properties and phytochemistry of Momordica charantia I. (Cucurbitaceae). Phytomedicine 1996, 2, 349–362. [Google Scholar] [CrossRef]
- Kasbia, G.S.; Arnason, J.T.; Imbeault, P. No effect of acute, single dose oral administration of Momordica charantia Linn., on glycemia, energy expenditure and appetite: A pilot study in non-diabetic overweight men. J. Ethnopharmacol. 2009, 126, 127–133. [Google Scholar] [CrossRef]
- Singh, J.; Cumming, E.; Manoharan, G.; Kalasz, H.; Adeghate, E. Medicinal chemistry of the anti-diabetic effects of Momordica charantia: Active constituents and modes of actions. Open Med. Chem. J. 2011, 5, 70–77. [Google Scholar] [CrossRef]
- Hazarika, R.; Parida, P.; Neog, B.; Yadav, R.N. Binding energy calculation of GSK-3 protein of human against some anti-diabetic compounds of Momordica charantia Linn. (Bitter Melon). Bioinformation 2012, 8, 251–254. [Google Scholar] [CrossRef]
- Tan, M.J.; Ye, J.M.; Turner, N.; Hohnen-Behrens, C.; Ke, C.Q.; Tang, C.P.; Chen, T.; Weiss, H.C.; Gesing, E.R.; Rowland, A.; et al. Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem. Biol. 2008, 15, 263–273. [Google Scholar] [CrossRef]
- Klomann, S.D.; Mueller, A.S.; Pallauf, J.; Krawinkel, M.B. Antidiabetic effects of bitter gourd extracts in insulin-resistant db/db mice. Br. J. Nutr. 2010, 104, 1613–1620. [Google Scholar] [CrossRef]
- Chhabra, G.; Dixit, A. Structure modeling and antidiabetic activity of a seed protein of Momordica charantia in non-obese diabetic (nod) mice. Bioinformation 2013, 9, 766–770. [Google Scholar] [CrossRef]
- Nerurkar, P.V.; Lee, Y.K.; Motosue, M.; Adeli, K.; Nerurkar, V.R. Momordica charantia (Bitter Melon) reduces plasma apolipoprotein B-100 and increases hepatic insulin receptor substrate and phosphoinositide-3 kinase interactions. Br. J. Nutr. 2008, 100, 751–759. [Google Scholar]
- Wang, Z.Q.; Zhang, X.H.; Yu, Y.; Poulev, A.; Ribnicky, D.; Floyd, Z.E.; Cefalu, W.T. Bioactives from bitter melon enhance insulin signaling and modulate acyl carnitine content in skeletal muscle in high-fat diet-fed mice. J. Nutr. Biochem. 2011, 22, 1064–1073. [Google Scholar] [CrossRef]
- Meir, P.; Yaniv, Z. An in vitro study on the effect of Momordica charantia on glucose uptake and glucose metabolism in rats. Planta Med. 1986, 51, 12–16. [Google Scholar]
- Shibib, B.A.; Khan, L.A.; Rahman, R. Hypoglycaemic activity of Coccinia indica and Momordica charantia in diabetic rats: Depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase. Biochem. J. 1993, 292, 267–270. [Google Scholar]
- Shih, C.C.; Lin, C.H.; Lin, W.L. Effects of Momordica charantia on insulin resistance and visceral obesity in mice on high-fat diet. Diabetes Res. Clin. Pract. 2008, 81, 134–143. [Google Scholar] [CrossRef]
- Hafizur, R.M.; Kabir, N.; Chishti, S. Modulation of pancreatic beta-cells in neonatally streptozotocin-induced type 2 diabetic rats by the ethanolic extract of Momordica charantia fruit pulp. Nat. Prod. Res. 2011, 25, 353–367. [Google Scholar] [CrossRef]
- Singh, N.; Gupta, M. Regeneration of Beta cells in islets of langerhans of pancreas of alloxan diabetic rats by acetone extract of Momordica charantia (Linn.) (Bitter Gourd) fruits. Indian. J. Exp. Biol. 2007, 45, 1055–1062. [Google Scholar]
- Chen, P.H.; Chen, G.C.; Yang, M.F.; Hsieh, C.H.; Chuang, S.H.; Yang, H.L.; Kuo, Y.H.; Chyuan, J.H.; Chao, P.M. Bitter melon seed oil-attenuated body fat accumulation in diet-induced obese mice is associated with cAMP-dependent protein kinase activation and cell death in white adipose tissue. J. Nutr. 2012, 142, 1197–1204. [Google Scholar] [CrossRef]
- Bao, B.; Chen, Y.G.; Zhang, L.; Na Xu, Y.L.; Wang, X.; Liu, J.; Qu, W. Momordica charantia (Bitter Melon) reduces obesity-associated macrophage and mast cell infiltration as well as inflammatory cytokine expression in adipose tissues. PLoS One 2013, 8. [Google Scholar] [CrossRef]
- Chen, Q.; Li, E.T. Reduced adiposity in bitter melon (Momordica charantia) fed rats is associated with lower tissue triglyceride and higher plasma catecholamines. Br. J. Nutr. 2005, 93, 747–754. [Google Scholar] [CrossRef]
- Nerurkar, P.V.; Pearson, L.; Efird, J.T.; Adeli, K.; Theriault, A.G.; Nerurkar, V.R. Microsomal triglyceride transfer protein gene expression and ApoB secretion are inhibited by bitter melon in Hepg2 cells. J. Nutr. 2005, 135, 702–706. [Google Scholar]
- Sasa, M.; Inoue, I.; Shinoda, Y.; Takahashi, S.; Seo, M.; Komoda, T.; Awata, T.; Katayama, S. Activating effect of momordin extract of bitter melon (Momordica charantia L.), on the promoter of human PPAR Delta. J. Atheroscler. Thromb. 2009, 16, 888–892. [Google Scholar]
- Ahmad, N.; Hassan, M.R.; Halder, H.; Bennoor, K.S. Effect of Momordica charantia (Karolla) extracts on fasting and postprandial serum glucose levels in NIDDM patients. Bangladesh Med. Res. Counc. Bull. 1999, 25, 11–13. [Google Scholar]
- Akhtar, M.S. Trial of Momordica charantia Linn. (Karela) powder in patients with maturity-onset diabetes. J. Pak. Med. Assoc. 1982, 32, 106–107. [Google Scholar]
- Baldwa, V.S.; Bhandari, C.M.; Pangaria, A.; Goyal, R.K. Clinical trial in patients with diabetes mellitus of an insulin-like compound obtained from plant source. UPS J. Med. Sci. 1977, 82, 39–41. [Google Scholar] [CrossRef]
- Dans, A.M.; Villarruz, M.V.; Jimeno, C.A.; Javelosa, M.A.; Chua, J.; Bautista, R.; Velez, G.G. The effect of Momordica charantia capsule preparation on glycemic control in type 2 diabetes mellitus needs further studies. J. Clin. Epidemiol. 2007, 60, 554–559. [Google Scholar] [CrossRef]
- Fuangchan, A.; Sonthisombat, P.; Seubnukarn, T.; Chanouan, R.; Chotchaisuwat, P.; Sirigulsatien, V.; Ingkaninan, K.; Plianbangchang, P.; Haines, S.T. Hypoglycemic effect of bitter melon compared with metformin in newly diagnosed type 2 diabetes patients. J. Ethnopharmacol. 2011, 134, 422–428. [Google Scholar] [CrossRef]
- Grover, J.; Gupta, S. Hypoglycemic activity of seeds of Momordica Charantia. Eur. J. Pharmacol. 1990, 183, 1026–1027. [Google Scholar] [CrossRef]
- Habib, A.; Gafur, A. The hypoglycaemic activity of karela fruits and fenugreek seeds in non-insulin dependent diabetic patients. Pakistan J. Pharm. 2003, 20, 37–40. [Google Scholar]
- John, A.J.; Cherian, R.; Subhash, H.S.; Cherian, A.M. Evaluation of the efficacy of bitter gourd (Momordica charantia) as an oral hypoglycemic agent—A randomized controlled clinical trial. Indian J. Physiol. Pharmacol. 2003, 47, 363–365. [Google Scholar]
- Khanna, P.; Jain, S.C.; Panagariya, A.; Dixit, V.P. Hypoglycemic activity of polypeptide-P from a plant source. J. Nat. Prod. 1981, 44, 648–655. [Google Scholar] [CrossRef]
- Kochhar, A.; Nagi, M. Effect of supplementation of traditional medicinal plants on blood glucose in non-insulin-dependent diabetics: A pilot study. J. Med. Food 2005, 8, 545–549. [Google Scholar] [CrossRef]
- Leatherdale, B.A.; Panesar, R.K.; Singh, G.; Atkins, T.W.; Bailey, C.J.; Bignell, A.H. Improvement in glucose tolerance due to Momordica charantia (Karela). Br. Med. J. (Clin. Res. Ed) 1981, 282, 1823–1824. [Google Scholar] [CrossRef]
- Lim, S.T.; Jimeno, C.A.; Razon-Gonzales, E.B.; Velasquez, E.N. The MOCHA DM study: The effect of Momordica charantia tablets on glucose and insulin levels during the postprandial state among patients with type 2 diabetes mellitus. Phil. J. Inter. Med. 2010, 48, 19–25. [Google Scholar]
- Pons, J.; Stevenson, D. The effects of Momordica charantia L. (“Cundeamor”) in diabetes mellitus. Puert Rico J. Public Health Trop. Med. 1943, 19, 196–215. [Google Scholar]
- Phillippine Council for Health Research and Development. DOH Reinstates Ampalaya as Diabetes Cure. Available online: http://asianjournalusa.com/doh-reinstates-ampalaya-as-diabetes-cure-p2449-59.htm (accessed on 27 October 2013).
- Rosales, R.; Fernando, R. An inquiry to the hypoglycemic action of Momordica charantia among type 2 diabetic patients. Phil. J. Inter. Med. 2001, 39, 213–216. [Google Scholar]
- Srivastava, Y.; Venkatakrishna-Bhatt, H.; Verma, Y.; Venkaiah, K.; Raval, B. Antidiabetic and adaptogenic properties of Momordica charantia extract: An experimental and clinical evaluation. Phytother. Res. 1993, 7, 285–289. [Google Scholar] [CrossRef]
- Tongia, A.; Tongia, S.K.; Dave, M. Phytochemical determination and extraction of Momordica charantia fruit and its hypoglycemic potentiation of oral hypoglycemic drugs in diabetes mellitus (NIDDM). Indian J. Physiol. Pharmacol. 2004, 48, 241–244. [Google Scholar]
- Tsai, C.H.; Chen, E.C.; Tsay, H.S.; Huang, C.J. Wild bitter gourd improves metabolic syndrome: A preliminary dietary supplementation trial. Nutr. J. 2012, 11. [Google Scholar] [CrossRef]
- Welihinda, J.; Karunanayake, E.H.; Sheriff, M.H.; Jayasinghe, K.S. Effect of Momordica charantia on the glucose tolerance in maturity onset diabetes. J. Ethnopharmacol. 1986, 17, 277–282. [Google Scholar] [CrossRef]
- Zanker, K.S.; Mang, B.; Wolters, M.; Hahn, A. Personalized diabetes and cancer medicine: A rationale for anti-diabetic nutrition (bitter melon) in a supportive setting. Curr. Cancer Ther. Rev. 2012, 8, 66–77. [Google Scholar] [CrossRef]
- Aslam, M.; Stockley, I.H. Interaction between curry ingredient (Karela) and drug (Chlorpropamide). Lancet 1979, 1, 607. [Google Scholar]
- Duque, F. Reinstating Ampalaya (Momordica charantia, L.) as Scientifically-Validated Herbal Medicinal Plant; Department of Health, Republic of the Philippines: Manila, Philippines, 2007. [Google Scholar]
- Ooi, C.P.; Yassin, Z.; Hamid, T.A. Momordica charantia for type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2010. [Google Scholar] [CrossRef]
- Basch, E.; Gabardi, S.; Ulbricht, C. Bitter melon (Momordica charantia): A review of efficacy and safety. Am. J. Health. Syst. Pharm. 2003, 60, 356–359. [Google Scholar]
- Erden, I.; Ordu, S.; Erden, E.C.; Caglar, S.O. A case of atrial fibrillation due to Momordica charantia (bitter melon). Ann. Saudi Med. 2010, 30, 86–87. [Google Scholar]
- Aguwa, C.N.; Mittal, G.C. Abortifacient effects of the roots of Momordica angustisepala. J. Ethnopharmacol. 1983, 7, 169–173. [Google Scholar] [CrossRef]
- Mahmood, A.; Raja, G.; Mahmood, T.; Gulfraz, M.; Khanum, A. Isolation and characterization of antimicrobial activity conferring component(s) from seeds of bitter gourd (Momordica charantia). J. Med. Plants Res. 2013, 6, 566–573. [Google Scholar]
- Schulz, K.F.; Chalmers, I.; Hayes, R.J.; Altman, D.G. Empirical evidence of bias—Dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA 1995, 273, 408–412. [Google Scholar] [CrossRef]
- Colditz, G.A.; Miller, J.N.; Mosteller, F. How study design affects outcomes in comparisons of therapy. I: Medical. Stat. Med. 1989, 8, 441–454. [Google Scholar] [CrossRef]
- DerSimonian, R.; Charette, L.J.; McPeek, B.; Mosteller, F. Reporting on methods in clinical trials. N. Engl. J. Med. 1982, 306, 1332–1337. [Google Scholar] [CrossRef]
- Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.; Gavaghan, D.J.; McQuay, H.J. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control. Clin. Trials 1996, 17, 1–12. [Google Scholar] [CrossRef]
- Lord, J.M.; Flight, I.H.; Norman, R.J. Metformin in polycystic ovary syndrome: Systematic review and meta-analysis. BMJ 2003, 327, 951–953. [Google Scholar] [CrossRef]
- Abbasi, F.; Chu, J.W.; McLaughlin, T.; Lamendola, C.; Leary, E.T.; Reaven, G.M. Effect of metformin treatment on multiple cardiovascular disease risk factors in patients with type 2 diabetes mellitus. Metabolism 2004, 53, 159–164. [Google Scholar] [CrossRef]
- Misra, P.; Upadhyay, R.P.; Misra, A.; Anand, K.A. Review of the epidemiology of diabetes in rural India. Diabetes Res. Clin. Pract. 2011, 92, 303–311. [Google Scholar] [CrossRef]
- Snee, L.S.; Nerurkar, V.R.; Dooley, D.A.; Efird, J.T.; Shovic, A.C.; Nerurkar, P.V. Strategies to improve palatability and increase consumption intentions for Momordica charantia (bitter melon): A vegetable commonly used for diabetes management. Nutr. J. 2011, 10. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Efird, J.T.; Choi, Y.M.; Davies, S.W.; Mehra, S.; Anderson, E.J.; Katunga, L.A. Potential for Improved Glycemic Control with Dietary Momordica charantia in Patients with Insulin Resistance and Pre-Diabetes. Int. J. Environ. Res. Public Health 2014, 11, 2328-2345. https://doi.org/10.3390/ijerph110202328
Efird JT, Choi YM, Davies SW, Mehra S, Anderson EJ, Katunga LA. Potential for Improved Glycemic Control with Dietary Momordica charantia in Patients with Insulin Resistance and Pre-Diabetes. International Journal of Environmental Research and Public Health. 2014; 11(2):2328-2345. https://doi.org/10.3390/ijerph110202328
Chicago/Turabian StyleEfird, Jimmy T., Yuk Ming Choi, Stephen W. Davies, Sanjay Mehra, Ethan J. Anderson, and Lalage A. Katunga. 2014. "Potential for Improved Glycemic Control with Dietary Momordica charantia in Patients with Insulin Resistance and Pre-Diabetes" International Journal of Environmental Research and Public Health 11, no. 2: 2328-2345. https://doi.org/10.3390/ijerph110202328
APA StyleEfird, J. T., Choi, Y. M., Davies, S. W., Mehra, S., Anderson, E. J., & Katunga, L. A. (2014). Potential for Improved Glycemic Control with Dietary Momordica charantia in Patients with Insulin Resistance and Pre-Diabetes. International Journal of Environmental Research and Public Health, 11(2), 2328-2345. https://doi.org/10.3390/ijerph110202328