Effects of Nutrition and Exercise Health Behaviors on Predicted Risk of Cardiovascular Disease among Workers with Different Body Mass Index Levels
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Assessment of Nutrition and Exercise Health Behaviors
2.3. Anthropometric Measurements
2.4. Assessment of the CVD Risk
2.5. Statistical Analysis
3. Results
3.1. Participants’ Baseline Characteristics
Characteristic ‡ | Total | Male | Female | p † |
---|---|---|---|---|
(n = 3350) | (n = 2569) | (n = 781) | ||
Age (year) | 47.8 ± 8.4 | 48.3 ± 8.8 | 46.4 ± 7.0 | <0.001 |
Nutrition health behaviors score | 2.5 ± 0.4 | 2.5 ± 0.4 | 2.6 ± 0.4 | <0.001 |
Exercise health behaviors score | 2.0 ± 0.6 | 2.1 ± 0.6 | 2.0 ± 0.5 | 0.001 |
Body mass index (kg/m2) | 24.1 ± 3.4 | 24.4 ± 3.3 | 23.0 ± 3.5 | <0.001 |
Framingham risk score (%) | 4.7 ± 5.0 | 6.1 ± 5.0 | 0.5 ± 0.8 | <0.001 |
Total cholesterol (mg/dL) | 194.3 ± 34.1 | 194.1 ± 34.1 | 195.0 ± 34.0 | 0.552 |
Systolic blood pressure (mmHg) | 125.5 ± 15.4 | 127.7 ± 14.3 | 118.1 ± 16.3 | <0.001 |
Smoking | ||||
With | 528 (17.5) | 520 (22.6) | 8 (1.1) | <0.001 |
Without | 2486 (82.5) | 1778 (77.4) | 708 (98.9) |
Framingham risk score levels | ||||
---|---|---|---|---|
Low risk (<10%) (n = 2470) | Moderate risk (10%–20%) (n = 461) | High risk (>20%) (n = 29) | p † | |
BMI (kg/m2) ‡ | <0.001 | |||
BMI < 18.5 (underweight) | 82 (94.3) | 5 (5.7) | - | |
18.5 ≤ BMI < 24 (ideal weight) | 1241 (88.2) | 157 (11.2) | 9 (0.6) | |
24 ≤ BMI < 27 (overweight) | 774 (79.8) | 189 (19.5) | 7 (0.7) | |
BMI ≥ 27 (obesity) | 373 (75.2) | 110 (22.2) | 13 (2.6) | |
Health behaviors * | ||||
Nutrition health behavior score § | 2.6 ± 0.4 | 2.5 ± 0.4 | 2.6 ± 0.5 | 0.012 |
Exercise health behavior score | 2.0 ± 0.6 | 2.1 ± 0.6 | 2.1 ± 0.6 | 0.157 |
3.2. FRS Levels by BMI and Health Behaviors
3.3. Relationship between Health Behaviors and Log FRS by BMI Levels
Variable | Log Framingham risk score (%) | |||
---|---|---|---|---|
B | β | p | 95% CI for B | |
Gender | 1.029 | 0.606 | <0.001 | (0.997, 1.062) |
Age | 0.050 | 0.544 | <0.001 | (0.048, 0.052) |
Health behaviors | ||||
Nutrition health behavior | −0.073 | −0.044 | <0.001 | (−0.107, −0.038) |
Exercise health behavior | −0.018 | −0.014 | 0.176 | (−0.044, 0.008) |
BMI (kg/m2) | 0.024 | 0.110 | <0.001 | (0.020, 0.028) |
Nutrition health behavior × BMI | −0.005 | −0.009 | 0.376 | (−0.015, 0.006) |
Exercise health behavior × BMI | 0.010 | 0.026 | 0.012 | (0.002, 0.018) |
BMI levels | ||||
Underweight | ||||
Gender | 1.000 | 0.680 | <0.001 | (0.847, 1.153) |
Age | 0.053 | 0.687 | <0.001 | (0.044, 0.061) |
Exercise health behavior score | −0.086 | −0.057 | 0.294 | (−0.247, 0.076) |
Ideal weight | ||||
Gender | 1.068 | 0.652 | <0.001 | (1.024, 0.051) |
Age | 0.049 | 0.539 | <0.001 | (0.046, 0.051) |
Exercise health behavior score | −0.056 | −0.044 | 0.001 | (−0.090, −0.022) |
Overweight | ||||
Gender | 0.990 | 0.569 | <0.001 | (0.931, 1.048) |
Age | 0.052 | 0.574 | <0.001 | (0.049, 0.056) |
Exercise health behavior score | −0.040 | −0.034 | 0.046 | (−0.079, 0.000) |
Obesity | ||||
Gender | 1.081 | 0.598 | <0.001 | (0.992, 1.169) |
Age | 0.047 | 0.546 | <0.001 | (0.043, 0.051) |
Exercise health behavior score | 0.004 | 0.003 | 0.910 | (−0.058, 0.065) |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nabel, E.G. Cardiovascular disease. N. Engl. J. Med. 2003, 349, 60–72. [Google Scholar] [CrossRef]
- World Health Organization. Cardiovascular Diseases (CVDs) Fact Sheet. Available online: http://www.who.int/mediacentre/factsheets/fs317/en/index.html (accessed on 18 December 2013).
- Ueshima, H.; Sekikawa, A.; Miura, K.; Turin, T.C.; Takashima, N.; Kita, Y.; Watanabe, M.; Kadota, A.; Okuda, N.; Kadowaki, T.; et al. Cardiovascular disease and risk factors in Asia: A selected review. Circulation 2008, 118, 2702–2709. [Google Scholar] [CrossRef]
- Abdel-Megeid, F.Y.; Abdelkarem, H.M.; El-Fetouh, A.M. Unhealthy nutritional habits in university students are a risk factor for cardiovascular diseases. Saudi Med. J. 2011, 32, 621–627. [Google Scholar]
- Haskell, W.L.; Lee, I.M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 2007, 39, 1423–1434. [Google Scholar] [CrossRef]
- Barengo, N.C.; Hu, G.; Lakka, T.A.; Pekkarinen, H.; Nissinen, A.; Tuomilehto, J. Low physical activity as a predictor for total and cardiovascular disease mortality in middle-aged men and women in Finland. Eur. Heart J. 2004, 25, 2204–2211. [Google Scholar] [CrossRef]
- Yang, H.; Schnall, P.L.; Jauregui, M.; Su, C.T.; Baker, D. Work hours and self-reported hypertension among working people in California. Hypertension 2006, 48, 744–750. [Google Scholar] [CrossRef]
- Park, J.; Kim, Y.; Cho, Y.; Woo, K.H.; Chung, H.K.; Iwasaki, K.; Oka, T.; Sasaki, T.; Hisanaga, N. Regular overtime and cardiovascular functions. Ind. Health 2001, 39, 244–249. [Google Scholar] [CrossRef]
- Kivimäki, M.; Batty, G.D.; Hamer, M.; Ferrie, J.E.; Vahtera, J.; Virtanen, M.; Marmot, M.G.; Singh-Manoux, A.; Shipley, M.J. Using additional information on working hours to predict coronary heart disease: A cohort study. Ann. Intern. Med. 2011, 154, 457–463. [Google Scholar] [CrossRef]
- Belkic, K.L.; Landsbergis, P.A.; Schnall, P.L.; Baker, D. Is job strain a major source of cardiovascular disease risk? Scand. J. Work Environ. Heath 2004, 30, 85–128. [Google Scholar] [CrossRef]
- Su, C.T.; Yang, H.J.; Lin, C.F.; Tsai, M.C.; Shieh, Y.H.; Chin, W.T. Arterial blood pressure and blood lipids as cardiovascular risk factors and occupational stress in Taiwan. Int. J. Cardiol. 2001, 81, 181–187. [Google Scholar]
- Chiu, C.J.; Liu, G.L. Cognition, attitude and demands regarding health promotion of employees and their healthy lifestyles-current situation and related factors. Health Promot. Health Educ. J. 2003, 23, 29–42. [Google Scholar]
- Ni Mhurchu, C.; Aston, L.M.; Jebb, S.A. Effects of worksite health promotion interventions on employee diets: A systematic review. BMC Public Health 2010, 10. [Google Scholar] [CrossRef] [Green Version]
- Buller, D.; Buller, M.K.; Larkey, L.; Sennott-Miller, L.; Taren, D.; Aickin, M.; Wentzel, T.M.; Morrill, C. Implementing a 5-a-day peer health educator program for public sector labor and trades employees. Health Educ. Behav. 2000, 27, 232–240. [Google Scholar] [CrossRef]
- Stokes, G.C.; Henley, N.S.; Herget, C. Creating a culture of wellness in workplaces. N. C. Med. J. 2006, 67, 445–448. [Google Scholar]
- Lutsey, P.L.; Steffen, L.M.; Stevens, J. Dietary intake and the development of the metabolic syndrome—The Atherosclerosis Risk in Communities study. Circulation 2008, 117, 754–761. [Google Scholar]
- Haffner, S.M.; Valdez, R.A.; Hazuda, H.P.; Mitchell, B.D.; Morales, P.A.; Stern, M.P. Prospective analysis of the insulin-resistance syndrome (syndrome X). Diabetes 1992, 41, 715–722. [Google Scholar]
- Kesse-Guyot, E.; Vergnaud, A.C.; Fezeu, L.; Zureik, M.; Blacher, J.; Péneau, S.; Hercberg, S.; Galan, P.; Czernichow, S. Associations between dietary patterns and arterial stiffness, carotid artery intima-media thickness and atherosclerosis. Eur. J. Cardiovasc. Prev. Rehabil. 2010, 17, 718–724. [Google Scholar]
- Kang, C.S.; Chern, C.I.; Lin, M.S.; Lai, Z.Y.; Chang, N.C.; Chiou, C.S.; Lee, T.M. New advance in risk prognostication for coronary event. J. Intern. Med. Taiwan 2006, 17, 143–154. [Google Scholar]
- Sheridan, S.; Pignone, M.; Mulrow, C. Framingham-based tools to calculate the global risk of coronary heart disease: A systematic review of tools for clinicians. J. Gen. Intern. Med. 2003, 18, 1039–1052. [Google Scholar] [CrossRef]
- Mooney, S.J.; Baecker, A.; Rundle, A.G. Comparison of anthropometric and body composition measures as predictors of components of the metabolic syndrome in a clinical setting. Obes. Res. Clin. Pract. 2013, 7, e55–e66. [Google Scholar] [CrossRef]
- Wolongevicz, D.M.; Zhu, L.; Pencina, M.J.; Kimokoti, R.W.; Newby, P.K.; D’Agostino, R.B.; Millen, B.E. Diet quality and obesity in women: The Framingham Nutrition Studies. Br. J. Nutr. 2010, 103, 1223–1229. [Google Scholar]
- Liebman, M.; Pelican, S.; Moore, S.A.; Holmes, B.; Wardlaw, M.K.; Melcher, L.M.; Liddil, A.C.; Paul, L.C.; Dunnagan, T.; Haynes, G.W. Dietary intake, eating behavior, and physical activity-related determinants of high body mass index in rural communities in Wyoming, Montana, and Idaho. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 684–692. [Google Scholar] [CrossRef]
- Abate, N. Obesity and cardiovascular disease. Pathogenetic role of the metabolic syndrome and therapeutic implications. J. Diabetes Complicat. 2000, 14, 154–174. [Google Scholar] [CrossRef]
- Walker, S.N.; Sechrist, K.R.; Pender, N.J. Health Promoting Lifestyle Profile II. Available online: http://wwwunmcedu/nursing/Health_Promoting_Lifestyle_Profile_IIhtm (accessed on 12 October 2013).
- Ford, E.S.; Giles, W.H.; Mokdad, A.H. The distribution of 10-year risk for coronary heart disease among US adults—Findings from the National Health and Nutrition Examination Survey III. J. Am. Coll. Cardiol. 2004, 43, 1791–1796. [Google Scholar] [CrossRef]
- Sohn, C.; Kim, J.; Bae, W. The framingham risk score, diet, and inflammatory markers in Korean men with metabolic syndrome. Nutr. Res. Pract. 2012, 6, 246–253. [Google Scholar] [CrossRef]
- McGuire, S. U.S. Department of Agriculture and U.S. Department of Health and Human Services, Dietary Guidelines for Americans, 2010. 7th Edition, Washington, DC: U.S. Government Printing Office, January 2011. Adv. Nutr. 2011, 2, 293–294. [Google Scholar]
- Taiwan Department of Health. Dietary Guidelines for Taiwan. 2011. Available online: http://www.fda.gov.tw/news.aspx?newssn=7828&key_year=0&keyword=&classifysn=4&unitsn=1 (accessed on 10 June 2012).
- Isomaa, B.; Almgren, P.; Tuomi, T.; Forsen, B.; Lahti, K.; Nissen, M.; Taskinen, M.R.; Groop, L. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 2001, 4, 683–689. [Google Scholar]
- U.S. Department of Health and Human Services: 2008 Physical Activity Guidelines for Americans. Available online: http://www.health.gov/paguidelines/guidelines/default.aspx (accessed on 25 December 2010).
- Colberg, S.R.; Albright, A.L.; Blissmer, B.J.; Braun, B.; Chasan-Taber, L.; Fernhall, B.; Regensteiner, J.G.; Rubin, R.R.; Sigal, R.J. Exercise and type 2 diabetes: American college of sports medicine and the american diabetes association: Joint position statement. Exercise and type 2 diabetes. Med. Sci. Sports Exerc. 2010, 42, 2282–2303. [Google Scholar] [CrossRef]
- Wang, Z.; Nakayama, T. Inflammation, a link between obesity and cardiovascular disease. Mediat. Inflamm. 2010. [Google Scholar] [CrossRef]
- Millen, B.E.; Quatromoni, P.A.; Copenhafer, D.L.; Demissie, S.; O’Horo, C.E.; D’Agostino, R.B. Validation of a dietary pattern approach for evaluating nutritional risk: The framingham nutrition studies. J. Am. Diet. Assoc. 2001, 101, 187–194. [Google Scholar] [CrossRef]
- Pender, N.J.; Walker, S.N.; Sechrist, K.R.; Frank-Stromborg, M. Predicting health-promoting lifestyles in the workplace. Nurs. Res. 1990, 39, 326–332. [Google Scholar]
- Lusk, S.L.; Kerr, M.J.; Ronis, D.L. Health-promoting lifestyles of blue-collar, skilled trade, and white-collar workers. Nurs. Res. 1995, 44, 20–24. [Google Scholar]
- Lin, W.; Hang, C.M.; Yang, H.C.; Hung, M.H. 2005–2008 Nutrition and health survey in Taiwan: The nutrition knowledge, attitude and behavior of 19–64 year old adults. Asia. Pac. J. Clin. Nutr. 2011, 20, 309–318. [Google Scholar]
- Ammouri, A.A. Demographic differences in health promoting lifestyle of adult Jordanians. J. Med. J. 2008, 42, 1–9. [Google Scholar]
- Bureau of Health Promotion, Department of Health, R.O.C. (Taiwan): Bureau of Health Promotion. Taiwan Tobacco Control Annual Report 2010. 2010. Available online: http://health99.doh.gov.tw/media/public/pdf/21661.pdf (accessed on 11 February 2014).
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Huang, J.-H.; Huang, S.-L.; Li, R.-H.; Wang, L.-H.; Chen, Y.-L.; Tang, F.-C. Effects of Nutrition and Exercise Health Behaviors on Predicted Risk of Cardiovascular Disease among Workers with Different Body Mass Index Levels. Int. J. Environ. Res. Public Health 2014, 11, 4664-4675. https://doi.org/10.3390/ijerph110504664
Huang J-H, Huang S-L, Li R-H, Wang L-H, Chen Y-L, Tang F-C. Effects of Nutrition and Exercise Health Behaviors on Predicted Risk of Cardiovascular Disease among Workers with Different Body Mass Index Levels. International Journal of Environmental Research and Public Health. 2014; 11(5):4664-4675. https://doi.org/10.3390/ijerph110504664
Chicago/Turabian StyleHuang, Jui-Hua, Shu-Ling Huang, Ren-Hau Li, Ling-Hui Wang, Yu-Ling Chen, and Feng-Cheng Tang. 2014. "Effects of Nutrition and Exercise Health Behaviors on Predicted Risk of Cardiovascular Disease among Workers with Different Body Mass Index Levels" International Journal of Environmental Research and Public Health 11, no. 5: 4664-4675. https://doi.org/10.3390/ijerph110504664
APA StyleHuang, J. -H., Huang, S. -L., Li, R. -H., Wang, L. -H., Chen, Y. -L., & Tang, F. -C. (2014). Effects of Nutrition and Exercise Health Behaviors on Predicted Risk of Cardiovascular Disease among Workers with Different Body Mass Index Levels. International Journal of Environmental Research and Public Health, 11(5), 4664-4675. https://doi.org/10.3390/ijerph110504664