Enhancement of Arsenic Trioxide-Mediated Changes in Human Induced Pluripotent Stem Cells (IPS)
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals, Reagents and Supplies
2.2. Cell Line
2.3. Cell Culture and Exposure
2.4. Cell Morphology
2.5. Cell Viability/Cytotoxicity
2.6. Determination of DNA Damage (Genotoxicity)
2.7. Statistical Analysis
3. Results
3.1. Effect of Arsenic Trioxide on Morphological Changes
3.2. Effect of Arsenic Trioxide on Cell Viability
3.3. Arsenic Trioxide Promotes DNA Damage
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- WHO. Arsenic. Available online: www.who.int/entity/mediacentre/factsheets/fs372/en/-35k (accessed on 13 June 2013).
- Asiedu-Steiner, M.; Anderson, K.A.; Vuvor, F.; Asiedu, K. Exposure to arsenic in drinking water—Public health debates and concerns. Res. J. Environ. Earth Sci. 2009, 2, 1–5. [Google Scholar]
- ACS. Arsenic. Available online: http://www.cancer.org/cancer/cancercauses/othercarcinogens/ intheworkplace/arsenic (accessed on 13 June 2013).
- IARC. Monographs on the Evaluation of the Carcinogenic Risk to Humans: Arsenic and Arsenic Compounds (Group I). Available online: http://monographs.iarc.fr/ENG/Monographs/PDFs/ (accessed on 1 May 2013).
- ATSDR. Toxicological Profile for Arsenic (Update). U.S. Public Health Service, U.S. Department of Health and Human Services: Atlanta, GA, USA. Available online: http://www.atsdr.cdc.gov/toxprofiles/tp2.pdf (accessed on 2 April 2013).
- Basu, A.; Mahata, J.; Gupta, S.; Giri, A.K. Genetic toxicology of a paradoxical human carcinogen, arsenic: A review. Mutat. Res. 2001, 488, 171–194. [Google Scholar]
- Mandal, K.B.; Suzuki, T.K. Arsenic round the world. Talanta 2002, 58, 201–235. [Google Scholar]
- US Department of Health and Human Services. Center for Disease Control. Occupational Safety and Health. Guideline for Inorganic Arsenic and Its Compounds (as As) Potential Human Carcinogen. Available online: www.cdc.gov/niosh/docs/81-123/pdfs/0038.pdf (accessed on 20 June 2013).
- Smith, A.H.; Smith, M.M.H. Arsenic drinking water regulations in developing countries with extensive exposure. Toxicology 2004, 198, 39–44. [Google Scholar]
- NRC. Arsenic in Drinking Water. Available online: www.nap.edu/books/0309063337/html (accessed on 20 May 2013).
- NRC. Arsenic in Drinking Water. (2001 Update). Available online: www.nap.edu/books/0309063337/html (accessed on 20 May 2013).
- Smith, A.H.; Hopenhayn-Rich, C.; Bates, M.N.; Goeden, H.M.; Hertz-Picciotto, I.; Duggan, H.M.; Wood, R.; Kosnett, M.J.; Smith, M.T. Cancer risks from arsenic in drinking water. Environ. Health Perspect. 1992, 97, 259–267. [Google Scholar]
- Abernathy, C.O.; Liu, Y.P.; Longfellow, D.; Aposhian, H.V.; Beck, B.; Fowler, B.; Goyer, R.; Menzer, R.; Rossman, T.; Thompson, C.; Waalkes, M. Arsenic: Health effects, mechanisms of actions and research issues. Environ. Health Perspect. 1999, 107, 593–597. [Google Scholar] [CrossRef]
- IARC. Arsenic and Arsenic Compounds. IARC Monogr Eval Carcinog Hum 100C:41–93. Available online: http://monographs.iarc.fr/ENG/Monographs/vol100C/mono100C-6.pdf (accessed on 5 June 2013).
- Kurttio, P.; Pukkala, E.; Kahelin, H.; Auvinen, A.; Pekkanen, J. Arsenic concentrations in well water and risk of bladder and kidney cancer in Finland. Environ. Health Perspect. 1999, 107, 705–710. [Google Scholar] [CrossRef]
- Treas, J.; Tyagi, T.; Singh, K.P. Chronic exposure to arsenic, estrogen, and their combination causes increased growth and transformation in human prostate epithelial cells potentially by hypermethylation-mediated silencing of MLH1. Prostate 2013, 73, 1660–1672. [Google Scholar]
- Li, X.; Li, B.; Xi, S.; Zheng, Q.; Lv, X.; Sun, G. Prolonged environmental exposure of arsenic trioxide through drinking water on the risk of hypertension and type 2 diabetes. Environ. Sci. Pollut. Res. Int. 2013, 20, 8151–8161. [Google Scholar]
- Tseng, C.H. Blackfoot disease and arsenic: A never-ending story. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2005, 23, 55–74. [Google Scholar] [CrossRef]
- Douer, D.; Tallman, M.S. Arsenic trioxide: New clinical experience with an old medication in hematologic malignancies. J. Clin. Oncol. 2005, 23, 2396–2410. [Google Scholar] [CrossRef]
- Lily, L.; Mohassel, L. Arsenic trioxide as first-line treatment for acute promyelocytic leukemia. Am. J. Health Syst. Pharm. 2009, 66, 1913–1918. [Google Scholar]
- Zhang, T.D.; Chen, G.Q.; Chen, S.J.; Chen, Z. Arsenic trioxide, a therapeutic agent for APL. Oncogene 2001, 20, 7146–7153. [Google Scholar]
- Antman, K. Introduction: The history of arsenic trioxide in cancer therapy. Oncologist 2001, 6, 1–2. [Google Scholar] [CrossRef]
- Abernathy, O.C.; Thomas, J.D.; Calderon, L.R. Health effects and risk assessment of arsenic. J. Nutr. 2003, 133 (Suppl 1), S156–S158. [Google Scholar]
- Nachman, K.E.; Baron, P.A.; Raber, G.; Francesconi, K.A.; Navas-Acien, A.; Love, D.C. Roxarsone, inorganic arsenic, and other arsenic species in chicken: A U.S.-based market basket sample. Environ. Health Perspect. 2013. Available online: www.sciencedaily.com/releases/2013 /05/130513095030.htm (accessed on 29 July 2013). [Google Scholar]
- Silbergeld, E.K.; Nachman, K. The environmental and public health risks associated with arsenical use in animal feeds. Ann. NY Acad. Sci. 2008, 1140, 346–357. [Google Scholar] [CrossRef]
- Makris, K.C.; Quazi, S.; Punamiya, P.; Sarkar, D.; Datta, R. Fate of arsenic in swine waste from concentrated animal feeding operations. J. Environ. Qual. 2008, 37, 1626–1633. [Google Scholar]
- Lu, M.; Levin, J.; Sulpice, E.; Sequeira-Le Grand, A.; Alemany, M.; Caen, J.P.; Han, Z.C. Effect of arsenic trioxide on viability, proliferation, and apoptosis in human megakaryocytic leukemia cell lines. Exp. Hematol. 1999, 27, 845–852. [Google Scholar]
- Chow, S.K.; Chan, J.Y.; Fung, K.P. Suppression of cell proliferation and regulation of estrogen receptor alpha signaling pathway by arsenic trioxide on human breast cancer MCF-7 cells. J. Endocrinol. 2004, 182, 325–337. [Google Scholar]
- Kitchin, K.T. Recent advances in arsenic carcinogenesis: Modes of action, animal model systems, and methylated arsenic metabolites. Toxicol. Appl. Pharmacol. 2001, 172, 249–261. [Google Scholar] [CrossRef]
- Guillamet, E.; Creus, A.; Ponti, J.; Sabbioni, E.; Fortaner, S.; Marcos, R. In vitro DNA damage by arsenic compounds in a human lymphoblastoid cell line (TK6) assessed by the alkaline Comet assay. Mutagenesis 2004, 19, 129–135. [Google Scholar]
- Ratnaike, N.R. Acute and chronic arsenic toxicity. Postgrad. Med. J. 2003, 79, 391–396. [Google Scholar]
- Lui, S.; Davidson, M.; Tang, X.; Walker, W.; Athar, M.; Ivanov, V.; Hei, T. Mitochondial damage mediates genotoxicity of arsenic in mammalian cells. Cancer Res. 2005, 65, 3236–3242. [Google Scholar]
- Alarifi, S.; Ali, D.; Alkahtani, S.; Siddiqui, M.A.; Ali, B.A. Arsenic trioxide-mediated oxidative stress and genotoxicity in human hepatocellular carcinoma cells. Onco. Targets Ther. 2013, 6, 75–84. [Google Scholar]
- Yedjou, C.G.; Tchouwou, P.B. In-vitro cytotoxic and genotoxic effects of arsenic trioxide on human leukemia (HL-60) cells using the MTT and alkaline single cell electrophoresis (comet) assays. Mol. Cell Biochem. 2007, 301, 123–130. [Google Scholar] [CrossRef]
- Graham-Evans, B.; Cohly, H.H.P.; Yu, H.; Tchounwou, P.B. Arsenic trioxide-induced genotoxic and cytotoxic effects in human keratinocytes, melanocytes and dendritic cells. Int. J. Environ. Res. Public Health 2004, 1, 83–89. [Google Scholar] [CrossRef]
- Hughes, M.F. Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 2002, 133, 1–16. [Google Scholar] [CrossRef]
- Udensi, U.K.; Graham-Evans, B.E.; Rogers, C.S.; Isokpehi, R.D. Cytotoxicity patterns of arsenic trioxide exposure on HaCaT keratinocytes. Clin. Cosmet. Investig. Dermatol. 2011, 4, 183–190. [Google Scholar]
- Wang, Z.G.; Rivi, R.; Delva, L.; König, A.; Scheinberg, D.A.; Gambacorti-Passerini, C.; Gabrilove, J.L.; Warrell, R.P.; Pandolfi, P.P. Arsenic trioxide and melarsoprol induce programmed cell death in myeloid leukemia cell lines and function in a PML and PML-RARalpha independent manner. Blood 1998, 92, 1497–1504. [Google Scholar]
- Jing, Y.; Dai, J.; Chalmers-Redman, R.M.; Tatton, W.G.; Waxman, S. Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 1999, 94, 2102–2111. [Google Scholar]
- Park, W.H.; Seol, J.G.; Kim, E.S.; Hyun, J.M.; Jung, C.W.; Lee, C.C.; Kim, B.K.; Lee, Y.Y. Arsenic trioxide-mediated growth inhibition in MC/CAR myeloma cells via cell cycle arrest in association with induction of cyclin-dependent kinase inhibitor, p21, and apoptosis. Cancer Res. 2000, 60, 3065–3071. [Google Scholar]
- Mahieux, R.; Pise-Masison, C.; Gessain, A.; Brady, J.N.; Olivier, R.; Perret, E.; Misteli, T.; Nicot, C. Arsenic trioxide induces apoptosis in human T-cell leukemia virus type 1- and type 2-infected cells by a caspase-3-dependent mechanism involving Bcl-2 cleavage. Blood 2001, 98, 3762–3769. [Google Scholar] [CrossRef]
- Colognato, R.; Coppedè, F.; Ponti, J.; Sabbioni, E.; Migliore, L. Genotoxicity induced by arsenic compounds in peripheral human lymphocytes analysed by cytokinesis-block micronucleus assay. Mutagenesis 2007, 22, 255–261. [Google Scholar]
- Dopp, E.; Hartmann, L.M.; Florea, A.M.; von Recklinghausen, U.; Pieper, R.; Shokouhi, B.; Rettenmeier, A.W.; Hirner, A.V.; Obe, G. Uptake of inorganic and organic derivatives of arsenic trioxide associated with induced cytotoxic and genotoxic effects in Chinese hamster ovary (CHO) cells. Toxicol. Appl. Pharmacol. 2004, 201, 156–165. [Google Scholar]
- Okita, K.; Ichisaka, T.; Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 2007, 448, 313–317. [Google Scholar]
- What are Induced Pluripotent Stem Cells? Stem Cell Information; National Institutes of Health, U.S. Department of Health and Human Services: Bethesda, MD, USA. Available online: stemcells.nih.gov/ (accessed on 23 July 2013).
- Yee, J. Turning somatic cells into pluripotent stem cells. Nature Educ. 2010, 3, 25. [Google Scholar]
- Yu1, J.; Vodyanik, A.M.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Franel, L.J.; Tian, S.; Nie, J.; Jonsdottir, A.G.; Ruotti, V.; Stewart, R.; Slukvin, I.I.; Thomson, A.J. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318, 1917–1920. [Google Scholar]
- The Promise of Induced Pluripotent Stem Cells (IPS). In Stem Cell Information; National Institutes of Health, U.S. Department of Health and Human Services: Bethesda, MD, USA. Available online: stemcells.nih.gov/ (accessed on 23 July 2013).
- Zhou, H.; Ding, S. Evolution of induced pluripotent stem cell technology. Curr. Opin. Hematol. 2010, 17, 276–280. [Google Scholar]
- Egashira, T.; Yuasa, S.; Fukuda, K. Novel insights into disease modeling using induced pluripotent stem cells. Biol. Pharm. Bull. 2013, 36, 182–188. [Google Scholar]
- Sommer, C.A.; Mostoslavsky, G. The evolving field of induced pluripotency: Recent progress and future challenges. J. Cell Physiol. 2013, 228, 267–275. [Google Scholar]
- Inoue, H.; Yamanaka, S. The use of induced pluripotent stem cells in drug development. Clin. Pharmacol. Ther. 2011, 89, 655–661. [Google Scholar]
- Kiskinis, E.M.; Eggan, K. Progress toward the clinical application of patient-specific pluripotent stem cells. J. Clin. Invest. 2010, 120, 51–59. [Google Scholar]
- Shen, Z.Y.; Shen, J.; Li, Q.S.; Chen, C.Y.; Chen, J.Y.; Yi, Z. Morphological and functional changes of mitochondria in apoptotic esophageal carcinoma cells induced by arsenic trioxide. World J. Gastroenterol. 2002, 8, 31–35. [Google Scholar]
- Shen, Z.; Shen, J.; Chen, M.; Li, Q.; Hong, C. Morphological changes of mitochondria in apoptosis of esophageal carcinoma cells induced by As2O3. Zhonghua Bing Li Xue Za Zhi 2000, 29, 200–203. [Google Scholar]
- Subbarayan, P.R.; Lee, K.; Ardalan, B. Arsenic trioxide suppresses thymidylate synthase in 5-FU-resistant colorectal cancer cell line HT29. In Vitro re-sensitizing cells to 5-FU. Anticancer Res. 2010, 30, 1157–1162. [Google Scholar]
- Yeh, J.Y.; Cheng, L.C.; Liang, Y.C.; Ou, B.R. Modulation of the arsenic effects on cytotoxicity, viability, and cell cycle in porcine endothelial cells by selenium. Endothelium 2003, 10, 127–139. [Google Scholar]
- Yedjou, C.G.; Tchounwou, P.B. Oxidative stress in human leukemia (HL-60), human liver carcinoma (HepG2), and human Jurkat-T cells exposed to arsenic trioxide. Metal Ions Biol. Med. 2006, 9, 293–297. [Google Scholar]
- Walker, A.M.; Stevens, J.J.; Ndebele, K.; Tchounwou, P.B. Arsenic trioxide modulates DNA synthesis and apoptosis in lung carcinoma cells. Int. J. Environ. Res. Public Health 2010, 7, 1996–2007. [Google Scholar]
- Shen, Z.Y.; Shen, J.; Cai, W.J.; Hong, C.; Zheng, M.H. The alteration of mitochondria is an early event of arsenic trioxide induced apoptosis in esophageal carcinoma cells. Int. J. Mol. Med. 2000, 5, 155–158. [Google Scholar]
- Nakamura, S.; Nagano, S.; Nagao, H.; Ishidou, Y.; Yokouchi, M.; Abematsu, M.; Yamamoto, T.; Komiya, S.; Setoguchi, T. Arsenic trioxide prevents osteosarcoma growth by inhibition of GLI transcription via DNA damage accumulation. PLoS One 2013, 8. [Google Scholar] [CrossRef]
- Soignet, S.L; Maslak, P.; Wang, Z.G.; Jhanwar, S.; Calleja, E.; Dardashti, L.J.; Corso, D.; DeBlasio, A.; Gabrilove, J.; Scheinberg, D.A.; Pandolfi, P.P.; Warrell, R.P., Jr. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N. Engl. J. Med. 1998, 339, 1341–1348. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Graham, B.; Stevens, J.; Wells, P.; Sims, J.; Rogers, C.; Leggett, S.S.; Ekunwe, S.; Ndebele, K. Enhancement of Arsenic Trioxide-Mediated Changes in Human Induced Pluripotent Stem Cells (IPS). Int. J. Environ. Res. Public Health 2014, 11, 7524-7536. https://doi.org/10.3390/ijerph110707524
Graham B, Stevens J, Wells P, Sims J, Rogers C, Leggett SS, Ekunwe S, Ndebele K. Enhancement of Arsenic Trioxide-Mediated Changes in Human Induced Pluripotent Stem Cells (IPS). International Journal of Environmental Research and Public Health. 2014; 11(7):7524-7536. https://doi.org/10.3390/ijerph110707524
Chicago/Turabian StyleGraham, Barbara, Jacqueline Stevens, Phatia Wells, Jennifer Sims, Christian Rogers, Sophia S. Leggett, Stephen Ekunwe, and Kenneth Ndebele. 2014. "Enhancement of Arsenic Trioxide-Mediated Changes in Human Induced Pluripotent Stem Cells (IPS)" International Journal of Environmental Research and Public Health 11, no. 7: 7524-7536. https://doi.org/10.3390/ijerph110707524
APA StyleGraham, B., Stevens, J., Wells, P., Sims, J., Rogers, C., Leggett, S. S., Ekunwe, S., & Ndebele, K. (2014). Enhancement of Arsenic Trioxide-Mediated Changes in Human Induced Pluripotent Stem Cells (IPS). International Journal of Environmental Research and Public Health, 11(7), 7524-7536. https://doi.org/10.3390/ijerph110707524