Identifying Environmental Risk Factors of Cholera in a Coastal Area with Geospatial Technologies
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Data Collection
2.3. Environmental Factors Analysis and Modeling
3. Results and Discussion
Environmental Factors | Number of Samples | Lowest Value | Highest Value | Average Value | S.D. |
---|---|---|---|---|---|
SST(°C) | 96 | −2.31 | 31.87 | 17.09 | 9.47 |
SSH(cm) | 96 | −25.16 | 34.79 | 2.51 | 11.59 |
OCC(mg/m3) | 96 | 0.56 | 9.99 | 3.21 | 1.62 |
Environmental Factors | Correlation Coefficient | Significance (2-tailed) |
---|---|---|
SST | 0.65 | 0.00 |
SST_LAG1 | 0.63 | 0.00 |
SST_LAG2 | 0.42 | 0.00 |
SSH | 0.51 | 0.00 |
SSH_LAG1 | 0.30 | 0.00 |
SSH_LAG2 | −0.02 | 0.79 |
OCC | 0.19 | 0.04 |
OCC_LAG1 | 0.35 | 0.00 |
OCC_LAG2 | 0.33 | 0.00 |
Model Predictors | Coefficients | Std. Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
(Constant) | −1.30 | 0.21 | 0.00 | −1.71 | −0.90 |
Log (chot-1) | 1.43 | 0.06 | 0.00 | 1.30 | 1.55 |
SSHt | 0.04 | 0.01 | 0.00 | 0.38 | 0.50 |
SSHt-1 | 0.02 | 0.01 | 0.00 | 0.01 | 0.02 |
SSTt | 0.07 | 0.01 | 0.00 | 0.05 | 0.09 |
SSTt-1 | 0.01 | 0.01 | 0.42 | −0.12 | 0.03 |
OCCt | −0.09 | 0.02 | 0.00 | −0.13 | −0.05 |
OCCt-1 | 0.05 | 0.02 | 0.01 | 0.01 | 0.88 |
Environmental Factors | Correlation Coefficient(CC) | Significance (2-tailed) |
---|---|---|
Proximity to the coastlines | −0.55 | 0.00 |
Proximity to the double-line rivers | −0.29 | 0.02 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Antarpreet, J.; Ali, S.A.; Anwar, H.; Abu, S.G.F.; Rita, C.; Shafiqul, I. A water marker monitored by satellites to predict seasonal endemic cholera. Remote Sens. Letters 2013, 4, 822–831. [Google Scholar] [CrossRef]
- Ali, M.; Emch, M.; Donnay, J.; Yunus, M.; Sack, R. Identifying environmental risk factors for endemic cholera: A raster GIS approach. Health Place 2002, 8, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Bouma, M.; Pascua, M. Seasonal and interannual cycles of endemic cholera in Bengal 1891–1940 in relation to climate and geography. Hydrobiologia 2001, 460, 147–156. [Google Scholar] [CrossRef]
- Emch, M.; Feldacker, C.; Yunus, M.; Streatfield, P.; DinhThiem, V.; Canh, D.; Ali, M. Local population and regional environmental drivers of cholera in Bangladesh. Environ. Health 2010, 78. [Google Scholar] [CrossRef]
- Koelle, K.; Rodó, X.; Pascual, M.; Yunus, M.; Mostafa, G. Refractory periods and climate forcing in cholera dynamics. Nature 2005, 436, 696–700. [Google Scholar] [CrossRef] [PubMed]
- Pascual, M.; Rodó, X.; Ellner, S.; Colwell, R.; Bouma, M. Cholera dynamics and El nino-southern oscillation. Science 2000, 289, 1766–1769. [Google Scholar] [CrossRef] [PubMed]
- Kanungo, S.; Sah, B.K.; Lopez, A.L.; Sung, J.S.; Paisley, A.M.; Sur, D.; Clemens, J.D.; Nair, G.B. Cholera in India: An analysis of reports, 1997–2006. Bull. World Health Organ. 2010, 88, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Borroto, R.; Martinez-Piedra, R. Geographical patterns of cholera in Mexico, 1991–1996. Int. J. Epidemiol. 2000, 29, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Gil, A.I.; Louis, V.R.; Rivera, I.N.G.; Lipp, E.; Huq, A.; Lanata, C.F.; Taylor, D.N.; Russek-Cohen, E.; Choopun, N.; Sack, R.B.; et al. Occurrence and distribution of Vibrio cholerae in the coastal environment of Peru. Environ. Microbiol. 2004, 6, 699–706. [Google Scholar]
- Bompangue, D.; Giraudoux, P.; Piarroux, M.; Mutombo, G.; Shamavu, R.; Sudre, B.; Mutombo, A.; Mondonge, V.; Piarroux, R. Cholera epidemics, war and disasters around Goma and Lake Kivu: An eight-year survey. PLOS Negl. Trop. Dis. 2009, 3. [Google Scholar] [CrossRef]
- Fernández, L.; Angel, M.; Bauernfeind, A.; Jiménez, J.; Gil, C.; Omeiri, N.; Guibert, D. Influence of temperature and rainfall on the evolution of cholera epidemics in Lusaka, Zambia, 2003–2006: Analysis of a time series. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 137–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, G.; van der Merwe, M.; McFerren, G. Fuzzy expert systems and GIS for cholera health risk prediction in southern Africa. Environ. Modeling Softw. 2007, 22, 442–448. [Google Scholar] [CrossRef]
- Mendelsohn, J.; Dawson, T. Climate and cholera in KwaZulu-Natal, South Africa: The role of environmental factors and implications for epidemic preparedness. Int. J. Hyg. Environ. Health 2008, 211, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Mintz, E.D.; Guerrant, R.L. Global health: A lion in our village—Theunconscionable tragedy of cholera in Africa. New Engl. J.Med. 2009, 36, 1060–1063. [Google Scholar] [CrossRef]
- Paz, S. Impact of temperature variability on cholera incidence in southeastern Africa, 1971–2006. EcoHealth 2009, 6, 340–345. [Google Scholar] [CrossRef] [PubMed]
- De Magny, G.C.; Murtugudde, R.; Sapiano, M.; Nizam, A.; Brown, C.; Busalacchi, A.; Yunus, M.; Nair, G.; Gil, A.; Lanata, C. De MagnyEnvironmental signatures associated with cholera epidemics. GProc. Natl. Acad. Sci. USA 2008, 105, 17676–17681. [Google Scholar]
- Cash, B.A.; Rodó, X.; Kinter, J.L.; Yunus, M. Disentangling the impact of ENSO and Indian oceanvariability on the regional climate of Bangladesh: Implications for cholera risk. J. Clim. 2010, 23, 2817–2831. [Google Scholar] [CrossRef]
- Emch, M.; Feldacker, C.; Yunus, M.; Streatfield, P.; DinhThiem, V.; Canh, D.; Ali, M. Local environmental predictors of cholera in Bangladesh and Vietnam. Am. J. Trop. Med. Hyg. 2008, 78, 823–854. [Google Scholar] [PubMed]
- Lobitz, B.; Beck, L.; Huq, A.; Wood, B.; Fuchs, G.; Faruque, A.S.G.; Colwell, R. Climate and infectious disease: Use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc. Natl. Acad. Sci. 2000, 97, 1438–1443. [Google Scholar] [CrossRef] [PubMed]
- Louis, V.L.; Russek-Cohen, E.; Choopun, N.; Rivera, I.N.G.; Gangle, B.; Jiang, S.C.; Rubin, A.; Patz, J.A.; Huq, A.; Colwell, R.R. Predictability of Vibrio cholera in Chesapeake Bay. Appl. Environ. Microbiol. 2003, 69, 2773–2785. [Google Scholar] [CrossRef] [PubMed]
- Zo, Y.G.; Revera, I.N.G.; Russek-Cohen, E.; Islam, M.S.; Siddique, A.K.; Yunus, M.; Sack, R.B.; Huq, A.; Colwell, R.R. Genomic profiles of clinical and environmental isolates of vibrio cholera O1 in cholera-endemic areas of Bangladesh. Pro. Natl. Acad. Sci. 2002, 99, 12409–12414. [Google Scholar] [CrossRef]
- Antarpreet, S.J.; Ali, S.A.; Shafiqul, I. A framework for predicting endemic cholera using satellite derived environmental determinants. Environ. Modelling Softw. 2013, 47, 148–158. [Google Scholar] [CrossRef]
- Chang, C.Y.; Cao, C.X.; Wang, Q.; Chen, Y.; Cao, Z.D.; Zhang, H.; Lei, D.; Zhao, J.; Xu, M.; Gao, M.X.; et al. The novel H1N1 Influenza A global airline transmission and early warning without travel containments. Chin. Sci. Bull. 2010, 55, 3030–3036. [Google Scholar]
- Eastin, M.D.; Delmelle, E.; Casas, I.; Wexler, J.; Self, C. Intra- and interseasonalautoregressive prediction of dengue outbreaks using local weather and regional climate for a tropical environment in Colombia. Am. J. Trop. Med. Hyg. 2014, 91, 598–610. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.X.; Xu, M.; Chang, C.Y.; Xue, Y.; Zhong, S.B.; Fang, L.Q.; Cao, W.C.; Zhang, H.; Gao, M.X.; He, Q.S.; et al. Risk analysis for the highly pathogenic avian influenza in mainland china using meta-modeling. Chin. Sci. Bull. 2010, 55, 4168–4178. [Google Scholar]
- Gbolahan, A.O.; Abass, W.A.; Adewuyi, P.; Olawoyin, O.B. Spatial analysis of cholera outbreak in Egbeda local government area of Oyo State. Nigeria, June, 2013. Int. J. Infect. Dis. 2014, 21. [Google Scholar] [CrossRef]
- Carrel, M.; Emch, M.; Streatfield, P.K.; Yunus, M. Spatio-temporal clustering of cholera: The impact of flood control in Matlab, Bangladesh, 1983–2003. Health Place 2009, 15, 771–782. [Google Scholar] [CrossRef]
- Kistemann, T.; Dangendorf, F.; Schweikart, J. New perspectives on the use of Geographical Information Systems (GIS) in environmental health sciences. Int. J. Hyg. Environ. Health 2002, 205, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, S.; Suzuki, H.; Igarashi, K. Spatial analysis of risk factor of cholera outbreak for 2003–2004 in a peri-urban area of Lusaka, Zambia. Am. J. Trop. Med. Hyg. 2008, 79, 414–435. [Google Scholar] [PubMed]
- Ministry of Commerce of the Perple’s Republic of China. Available online: http://english.mofcom.gov.cn/aroundchina/zhejiang.shtml (accessed on 26 September 2014).
- Lv, H.K.; Chen, E.F. The analysis on the epidemiologic characteristics of cholera in Zhejiang between 2000 and 2006. Chin. Rural Health Serv. Adm. 2008, 28, 853–855. (In Chinese) [Google Scholar]
- NASA’S Jet Propulsion Laboratory. Available online: http://podaac.jpl.nasa.gov/ (accessed on 12 July 2011).
- Archiving, Validation and Interpretation of Satellite Oceanographic Data. Available online: http://oceancolor.gsfc.nasa.gov/ (accessed on 23 June 2011).
- OceanColor Website. Available online: http://oceancolor.gsfc.nasa.gov/ (accessed on 15 October 2010).
- Singleton, F.; Attwell, R.; Jangi, S.; Colwell, R.R. Effects of temperature and salinity on Vibrio cholerae growth. Appl. Environ. Microbiol. 1982, 44, 1047–1058. [Google Scholar] [PubMed]
- Akanda, A.; Jutla, A.; Islam, S. Dual peak cholera transmission in Bengal Delta: A hydroclimatological explanation. Geophys. Res. Letters 2009, 36, L19401–L19407. [Google Scholar] [CrossRef]
- Njagarah, J.B.H.; Nyabadza, F. A metapopulation model for cholera transmission dynamics between communities linked by migration. Appl. Math. Comput. 2014, 241, 317–331. [Google Scholar] [CrossRef]
- Marisa, C.E.; Gregory, K.; Ashleigh, R.T.; David, N.F.; Joseph, H.T. Examining rainfall and cholera dynamics in Haiti using statistical and dynamic modeling approaches. Epidemics 2013, 5, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Marisa, C.E.; Suzanne, L.R.; Joseph, H.T. Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease. J. Theor. Biol. 2013, 324, 84–102. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Cao, C.; Wang, D.; Kan, B. Identifying Environmental Risk Factors of Cholera in a Coastal Area with Geospatial Technologies. Int. J. Environ. Res. Public Health 2015, 12, 354-370. https://doi.org/10.3390/ijerph120100354
Xu M, Cao C, Wang D, Kan B. Identifying Environmental Risk Factors of Cholera in a Coastal Area with Geospatial Technologies. International Journal of Environmental Research and Public Health. 2015; 12(1):354-370. https://doi.org/10.3390/ijerph120100354
Chicago/Turabian StyleXu, Min, Chunxiang Cao, Duochun Wang, and Biao Kan. 2015. "Identifying Environmental Risk Factors of Cholera in a Coastal Area with Geospatial Technologies" International Journal of Environmental Research and Public Health 12, no. 1: 354-370. https://doi.org/10.3390/ijerph120100354
APA StyleXu, M., Cao, C., Wang, D., & Kan, B. (2015). Identifying Environmental Risk Factors of Cholera in a Coastal Area with Geospatial Technologies. International Journal of Environmental Research and Public Health, 12(1), 354-370. https://doi.org/10.3390/ijerph120100354