Prolonged Sitting is Associated with Attenuated Heart Rate Variability during Sleep in Blue-Collar Workers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Procedure
2.3. Assessment of Heart Rate Variability (HRV)
2.4. Objective Assessment of Sitting Time
2.5. Objective Assessment of Physical Activity
2.6. Measurement of Individual and Occupational Factors
2.7. Statistical Analyses
3. Results
3.1. Descriptive Data
Variable | n | Mean | SD |
---|---|---|---|
Age (years) | 45.9 | 9.4 | |
Females, n | 56 | ||
Smokers, n | 49 | ||
Body mass index (kg·m−2) | 26.4 | 4.8 | |
Life-time occurrence of medical diagnoses, n | |||
Diabetes | 5 | ||
Cardiovascular disease | 3 | ||
Hypertension | 25 | ||
Depression/other mental disorder | 18 | ||
One or several diagnoses | 44 | ||
Prescribed heart/lung medicine, n | 16 | ||
Working night-shift, n | 17 | ||
Lifting and carrying at work (0 never to 6 almost all of the time) | 3.8 | 1.3 | |
Seniority in the current occupation (months) | 173.7 | 137.2 | |
Influence at work (scale 0–100) | 44.6 | 21.9 | |
Moderate-to-vigorous physical activity (h/day) | 2.0 | 0.8 | |
Number of valid days for accelerometry | 1.9 | 0.8 | |
Number of valid nights for HRV | 2.6 | 1.0 | |
Occupational sitting (h/day) | 3.1 | 1.5 | |
Leisure time sitting (h/day) | 5.9 | 1.9 |
HRV Index | Mean | SD |
---|---|---|
IBI (ms) | 1069 | 157 |
RMSSD (ms) | 50 | 28 |
SDNN (ms) | 56 | 24 |
VLF (ms2/Hz) | 970 | 877 |
ln VLF | 6.5 | 0.9 |
LF (ms2/Hz) | 915 | 953 |
ln LF | 6.4 | 1.0 |
HF (ms2/Hz) | 1022 | 1446 |
ln HF | 6.3 | 1.2 |
LF/HF | 1.9 | 2.3 |
ln LF/HF | 0.2 | 0.9 |
3.2. Association between Sitting Time and Nocturnal HRV
HRV Index | Sitting Variable | Crude Model (N = 126) | Primary Adjusted Model (N = 126) | ||||||
---|---|---|---|---|---|---|---|---|---|
B | 95%CI Low | High | p | B | 95%CI Low | High | p | ||
IBI (ms) | Occupational sitting | −17.00 | −35.80 | 1.81 | 0.08 | −24.24 | −46.98 | −1.50 | 0.04 |
Leisure-time sitting | 6.80 | −7.97 | 21.57 | 0.36 | 0.41 | −14.43 | −15.25 | 0.96 | |
RMSSD (ms) | Occupational sitting | −3.26 | 0.06 | −6.66 | 0.14 | −4.96 | −8.88 | −1.05 | 0.01 |
Leisure-time sitting | 0.16 | 0.91 | −2.51 | 2.83 | 1.83 | −0.73 | 4.38 | 0.16 | |
SDNN (ms) | Occupational sitting | −3.03 | −5.87 | −0.20 | 0.04 | −5.07 | −8.48 | −1.67 | 0.00 |
Leisure-time sitting | 0.46 | −1.77 | 2.69 | 0.68 | 1.10 | −1.12 | 3.33 | 0.33 | |
ln VLF | Occupational sitting | −0.10 | −0.20 | 0.01 | 0.06 | −0.19 | −0.32 | −0.05 | 0.01 |
Leisure-time sitting | 0.03 | −0.05 | 0.11 | 0.50 | 0.00 | −0.09 | 0.09 | 0.98 | |
ln LF | Occupational sitting | −0.13 | −0.25 | −0.01 | 0.03 | −0.18 | −0.32 | −0.04 | 0.01 |
Leisure-time sitting | 0.05 | −0.04 | 0.14 | 0.30 | 0.07 | −0.02 | 0.17 | 0.11 | |
ln HF | Occupational sitting | −0.12 | −0.26 | 0.03 | 0.12 | −0.12 | −0.27 | 0.04 | 0.14 |
Leisure-time sitting | 0.00 | −0.12 | 0.11 | 0.95 | 0.08 | −0.02 | 0.19 | 0.13 | |
ln LF/HF | Occupational sitting | −0.01 | −0.12 | 0.10 | 0.91 | −0.03 | −0.17 | 0.10 | 0.62 |
Leisure-time sitting | 0.06 | −0.03 | 0.14 | 0.19 | −0.01 | −0.09 | 0.08 | 0.92 |
HRV Index | Step 1 a | Step 2 b | Step 3 c | Total (Steps 1–3) |
---|---|---|---|---|
r2 | r2 | r2 | r2 | |
IBI | 0.18 | −0.01 | 0.02 | 0.19 |
RMSSD | 0.21 | 0.00 | 0.05 | 0.26 |
SDNN | 0.14 | 0.00 | 0.06 | 0.20 |
ln VLF | 0.08 | −0.02 | 0.04 | 0.10 |
ln LF | 0.19 | −0.01 | 0.06 | 0.23 |
ln HF | 0.29 | 0.00 | 0.02 | 0.31 |
ln LF/HF | 0.19 | −0.02 | −0.01 | 0.16 |
3.3. Secondary Model Analyses
4. Discussion
4.1. The Association between Sitting and Heart Rate Variability
4.2. Methodological Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Bassett, D.R.J.; Freedson, P.; Kozey, S. Medical hazards of prolonged sitting. Exerc. Sport Sci. Rev. 2010, 38, 101–102. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M.; Healy, G.; Dunstan, D.; Zderic, T.; Owen, N. Too little exercise and too much sitting: Inactivity physiology and the need for new recommendations on sedentary behavior. Curr. Cardiovasc. Risk Rep. 2008, 2, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Van der Ploeg, H.; Chey, T.; Korda, R.; Banks, E.; Bauman, A. Sitting time and all-cause mortality risk in 222 497 Australian adults. Arch. Intern. Med. 2012, 172, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef]
- Katzmarzyk, P.T.; Church, T.S.; Craig, C.L.; Bouchard, C. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med. Sci. Sports Exerc. 2009, 41, 998–1005. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Oh, P.I.; Faulkner, G.E.; Bajaj, R.R.; Silver, M.A.; Mitchell, M.S.; Alter, D.A. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adultsa systematic review and meta-analysissedentary time and disease incidence, mortality, and hospitalization. Ann. Intern. Med. 2015, 162, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Chrysant, S.G.; Chrysant, G.S. The cardiovascular consequences of excess sitting time. J. Clin. Hypertens. 2015. [Google Scholar] [CrossRef] [PubMed]
- Mueller, P.J. Physical (in)activity-dependent alterations at the rostral ventrolateral medulla: Influence on sympathetic nervous system regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, R1468–R1474. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, D.; Maiorana, A.; O’Driscoll, G.; Cable, N.; Hopman, M.; Green, D. Impact of inactivity and exercise on the vasculature in humans. Eur. J. Appl. Physiol. 2010, 108, 845–875. [Google Scholar] [CrossRef] [PubMed]
- Joyner, M.J.; Green, D.J. Exercise protects the cardiovascular system: Effects beyond traditional risk factors. J. Physiol. 2009, 587, 5551–5558. [Google Scholar] [CrossRef] [PubMed]
- Thosar, S.S.; Bielko, S.L.; Mather, K.J.; Johnston, J.D.; Wallace, J.P. Effect of prolonged sitting and breaks in sitting time on endothelial function. Med. Sci. Sports Exerc. 2015, 47, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Larsen, R.N.; Kingwell, B.A.; Sethi, P.; Cerin, E.; Owen, N.; Dunstan, D.W. Breaking up prolonged sitting reduces resting blood pressure in overweight/obese adults. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 976–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Healy, G.N.; Dunstan, D.W.; Salmon, J.; Cerin, E.; Shaw, J.E.; Zimmet, P.Z.; Owen, N. Breaks in sedentary time: Beneficial associations with metabolic risk. Diabetes Care 2008, 31, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Hughson, R.L.; Shoemaker, J.K. Autonomic responses to exercise: Deconditioning/inactivity. Auton. Neurosci. 2015, 188, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.; Bigger, J.T.; Camm, A.J.; Kleiger, R.E.; Malliani, A.; Moss, A.J.; Schwartz, P.J. Task force of the european society of cardiology and the north american society of pacing and electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 1996, 93, 1043–1065. [Google Scholar]
- Thayer, J.F.; Yamamoto, S.S.; Brosschot, J.F. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 2010, 141, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Dekker, J.M.; Crow, R.S.; Folsom, A.R.; Hannan, P.J.; Liao, D.; Swenne, C.A.; Schouten, E.G. Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: The aric study. Circulation 2000, 102, 1239–1244. [Google Scholar] [CrossRef] [PubMed]
- Nolan, J.; Batin, P.D.; Andrews, R.; Lindsay, S.J.; Brooksby, P.; Mullen, M.; Baig, W.; Flapan, A.D.; Cowley, A.; Prescott, R.J.; et al. Prospective study of heart rate variability and mortality in chronic heart failure: Results of the united kingdom heart failure evaluation and assessment of risk trial (uk-heart). Circulation 1998, 98, 1510–1516. [Google Scholar] [PubMed]
- Kleiger, R.E.; Miller, J.P.; Bigger, J.T., Jr.; Moss, A.J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 1987, 59, 256–262. [Google Scholar] [CrossRef]
- Rennie, K.L.; Hemingway, H.; Kumari, M.; Brunner, E.; Malik, M.; Marmot, M. Effects of moderate and vigorous physical activity on heart rate variability in a british study of civil servants. Am. J. Epidemiol. 2003, 158, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Melanson, E.L. Resting heart rate variability in men varying in habitual physical activity. Med. Sci. Sports Exerc. 2000, 32, 1894–1901. [Google Scholar] [CrossRef] [PubMed]
- Soares-Miranda, L.; Sattelmair, J.; Chaves, P.; Duncan, G.; Siscovick, D.S.; Stein, P.K.; Mozaffarian, D. Physical activity and heart rate variability in older adults: The cardiovascular health study. Circulation 2014. [Google Scholar] [CrossRef] [PubMed]
- Saidj, M.; Jørgensen, T.; Jacobsen, R.K.; Linneberg, A.; Aadahl, M. Differential cross-sectional associations of work-and leisure-time sitting, with cardiorespiratory and muscular fitness among working adults. Scand. J. Work. Environ. Health 2014, 40, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Arias, O.E.; Caban-Martinez, A.J.; Umukoro, P.E.; Okechukwu, C.A.; Dennerlein, J.T. Physical activity levels at work and outside of work among commercial construction workers. J. Occup. Environ. Med. 2015, 57, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Thorp, A.; Healy, G.; Winkler, E.; Clark, B.; Gardiner, P.; Owen, N.; Dunstan, D. Prolonged sedentary time and physical activity in workplace and non-work contexts: A cross-sectional study of office, customer service and call centre employees. Int. J. Behav. Nutr. Phys. Act. 2012, 9. [Google Scholar] [CrossRef] [PubMed]
- Hallman, D.M.; Mathiassen, S.E.; Gupta, N.; Korshøj, M.; Holtermann, A. Differences between work and leisure in temporal patterns of objectively measured physical activity among blue-collar workers. BMC Public Health 2015. [Google Scholar] [CrossRef] [PubMed]
- Holtermann, A.; Mortensen, O.; Burr, H.; Søgaard, K.; Gyntelberg, F.; Suadicani, P. The interplay between physical activity at work and during leisure time—Risk of ischemic heart disease and all-cause mortality in middle-aged caucasian men. Scand. J. Work Environ. Health 2009, 35, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Hallman, D.M.; Gupta, N.; Mathiassen, S.E.; Holtermann, A. Association between objectively measured sitting time and neck-shoulder pain among blue-collar workers. Int. Arch. Occup. Environ. Health 2015, 88, 1031–1042. [Google Scholar] [CrossRef] [PubMed]
- Lagersted-Olsen, J.; Korshöj, M.; Skotte, J.; Carneiro, I.G.; Søgaard, K.; Holtermann, A. Comparison of objectively measured and self-reported time spent sitting. Int. J. Sports Med. 2014, 35, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Chastin, S.F.; Culhane, B.; Dall, P.M. Comparison of self-reported measure of sitting time (Ipaq) with objective measurement (activpal). Physiol. Meas. 2014, 35, 2319–2328. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Stordal Christiansen, C.; Hallman, D.M.; Korshøj, M.; Gomes Carneiro, I.; Holtermann, A. Is objectively measured sitting time associated with low back pain? A cross-sectional investigation in the nomad study. PLoS ONE 2015. [Google Scholar] [CrossRef]
- Kristiansen, J.; Korshoj, M.; Skotte, J.; Jespersen, T.; Sogaard, K.; Mortensen, O.; Holtermann, A. Comparison of two systems for long-term heart rate variability monitoring in free-living conditions—A pilot study. Biomed. Eng. Online 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skotte, J.; Kristiansen, J. Heart rate variability analysis using robust period detection. Biomed. Eng. Online 2014. [Google Scholar] [CrossRef] [PubMed]
- Ahdesmaki, M.; Lahdesmaki, H.; Gracey, A.; Shmulevich, l.; Yli-Harja, O. Robust regression for periodicity detection in non-uniformly sampled time-course gene expression data. BMC Bioinformatics 2007. [Google Scholar] [CrossRef] [PubMed]
- Skotte, J.; Korshøj, M.; Kristiansen, J.; Hanisch, C.; Holtermann, A. Detection of physical activity types using triaxial accelerometers. J. Phys. Act. Health 2014, 11, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Stemland, I.; Ingebrigtsen, J.; Christiansen, C.S.; Jensen, B.R.; Hanisch, C.; Skotte, J.; Holtermann, A. Validity of the acti4 method for detection of physical activity types in free-living settings: Comparison with video analysis. Ergonomics 2015, 58, 953–965. [Google Scholar] [CrossRef] [PubMed]
- Keadle, S.K.; Lyden, K.; Hickey, A.; Ray, E.L.; Fowke, J.H.; Freedson, P.S.; Matthews, C.E. Validation of a previous day recall for measuring the location and purpose of active and sedentary behaviors compared to direct observation. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ingebrigtsen, J.; Stemland, I.; Christiansen, C.S.; Skotte, J.; Christiana, H.; Krustrup, P.; Holtermann, A. Validation of a commercial and custom made accelerometer-based software for step count and frequency during walking and running. J. Ergon. 2013. [Google Scholar] [CrossRef]
- Pejtersen, J.H.; Kristensen, T.S.; Borg, V.; Bjorner, J.B. The second version of the copenhagen psychosocial questionnaire. Scand. J. Public Health 2010, 38, 8–24. [Google Scholar] [CrossRef] [PubMed]
- Tüchsen, F.; Hannerz, H.; Burr, H. A 12 year prospective study of circulatory disease among danish shift workers. Occup. Environ. Med. 2006, 63, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Togo, F.; Takahashi, M. Heart rate variability in occupational health—A systematic review. Ind. Health 2009, 47, 589–602. [Google Scholar] [CrossRef] [PubMed]
- Sinnreich, R.; Kark, J.D.; Friedlander, Y.; Sapoznikov, D.; Luria, M.H. Five minute recordings of heart rate variability for population studies: Repeatability and age-sex characteristics. Heart 1998, 80, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, D.; Rosthøj, S.; Burr, H.; Holtermann, A. Sedentary work—Associations between five-year changes in occupational sitting time and body mass index. Prev. Med. 2015, 73, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Chandola, T.; Heraclides, A.; Kumari, M. Psychophysiological biomarkers of workplace stressors. Neurosci. Biobehav. Rev. 2010, 35, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Uusitalo, A.L.T.; Vanninen, E.; Levälahti, E.; Battié, M.C.; Videman, T.; Kaprio, J. Role of genetic and environmental influences on heart rate variability in middle-aged men. Am. J. Physiol. Heart Circulat. Physiol. 2007, 293, H1013–H1022. [Google Scholar] [CrossRef] [PubMed]
- Carson, V.; Wong, S.L.; Winkler, E.; Healy, G.N.; Colley, R.C.; Tremblay, M.S. Patterns of sedentary time and cardiometabolic risk among canadian adults. Prev. Med. 2014, 65, 23–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferretti, G.; Iellamo, F.; Pizzinelli, P.; Kenfack, M.A.; Lador, F.; Lucini, D.; Porta, A.; Narkiewicz, K.; Pagani, M. Prolonged head down bed rest-induced inactivity impairs tonic autonomic regulation while sparing oscillatory cardiovascular rhythms in healthy humans. J. Hypertens. 2009, 27, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Eckberg, D.L. Sympathovagal balance : A critical appraisal. Circulation 1997, 96, 3224–3232. [Google Scholar] [CrossRef] [PubMed]
- Newton, J.L.; Pairman, J.; Hallsworth, K.; Moore, S.; Plotz, T.; Trenell, M.I. Physical activity intensity but not sedentary activity is reduced in chronic fatigue syndrome and is associated with autonomic regulation. QJM 2011, 104, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, M.; Sanderson, K.; Blizzard, L.; Teale, B.; Venn, A. Cross-sectional associations between sitting at work and psychological distress: Reducing sitting time may benefit mental health. Mental Health Phys. Act. 2013, 6, 103–109. [Google Scholar] [CrossRef]
- Lin, Y.-P.; McCullagh, M.C.; Kao, T.-S.; Larson, J.L. An integrative review: Work environment factors associated with physical activity among white-collar workers. West. J. Nurs. Res. 2014, 6, 262–283. [Google Scholar] [CrossRef] [PubMed]
- Bernardes Souza, B.; Mussi Monteze, N.; Pereira de Oliveira, F.L.; de Oliveira, J.M.; Nascimento de Freitas, S.; Marques do Nascimento Neto, R.; Sales, M.L.; Guerra Leal Souza, G. Lifetime shift work exposure: Association with anthropometry, body composition, blood pressure, glucose and heart rate variability. Occup. Environ. Med. 2015, 72, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Boudreau, P.; Dumont, G.A.; Boivin, D.B. Circadian adaptation to night shift work influences sleep, performance, mood and the autonomic modulation of the heart. PLoS ONE 2013. [Google Scholar] [CrossRef] [PubMed]
- Celis-Morales, C.A.; Perez-Bravo, F.; Ibañez, L.; Salas, C.; Bailey, M.E.S.; Gill, J.M.R. Objective vs. year-reported physical activity and sedentary time: Effects of measurement method on relationships with risk biomarkers. PLoS ONE 2012. [Google Scholar] [CrossRef]
- Pinna, G.D.; Maestri, R.; Torunski, A.; Danilowicz-szymanowicz, L.; Szwoch, M.; La rovere, M.T.; Raczak, G. Heart rate variability measures: A fresh look at reliability. Clin. Sci. 2007, 113, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Hallman, D.M.; Srinivasan, D.; Mathiassen, S. Short- and long-term reliability of heart rate variability indices during repetitive low-force work. Eur. J. Appl. Physiol. 2015, 115, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Sadeh, A. The role and validity of actigraphy in sleep medicine: An update. Sleep Med. Rev. 2011, 15, 259–267. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hallman, D.M.; Sato, T.; Kristiansen, J.; Gupta, N.; Skotte, J.; Holtermann, A. Prolonged Sitting is Associated with Attenuated Heart Rate Variability during Sleep in Blue-Collar Workers. Int. J. Environ. Res. Public Health 2015, 12, 14811-14827. https://doi.org/10.3390/ijerph121114811
Hallman DM, Sato T, Kristiansen J, Gupta N, Skotte J, Holtermann A. Prolonged Sitting is Associated with Attenuated Heart Rate Variability during Sleep in Blue-Collar Workers. International Journal of Environmental Research and Public Health. 2015; 12(11):14811-14827. https://doi.org/10.3390/ijerph121114811
Chicago/Turabian StyleHallman, David M, Tatiana Sato, Jesper Kristiansen, Nidhi Gupta, Jørgen Skotte, and Andreas Holtermann. 2015. "Prolonged Sitting is Associated with Attenuated Heart Rate Variability during Sleep in Blue-Collar Workers" International Journal of Environmental Research and Public Health 12, no. 11: 14811-14827. https://doi.org/10.3390/ijerph121114811
APA StyleHallman, D. M., Sato, T., Kristiansen, J., Gupta, N., Skotte, J., & Holtermann, A. (2015). Prolonged Sitting is Associated with Attenuated Heart Rate Variability during Sleep in Blue-Collar Workers. International Journal of Environmental Research and Public Health, 12(11), 14811-14827. https://doi.org/10.3390/ijerph121114811