Future Premature Mortality Due to O3, Secondary Inorganic Aerosols and Primary PM in Europe — Sensitivity to Changes in Climate, Anthropogenic Emissions, Population and Building Stock
Abstract
:1. Introduction
2. Study Setup
2.1. The DEHM Model
2.2. The MATCH Model
2.3. The Anthropogenic Emissions
Year | SOx [Tg] | Change [%] | NOx [Tg] | Change [%] | NMVOC [Tg] | Change [%] | Primary PM2.5/[Tg] | Change [%] | NH3 [Tg] | Change [%] |
---|---|---|---|---|---|---|---|---|---|---|
2000 | 9.6 | 7.3 | 19.7 | 2.7 | 6.4 | |||||
2050 | 2.8 | −71 | 3.8 | −48 | 13.5 | −31 | 1.5 | −43 | 5.8 | −9 |
2080 | 1.4 | −85 | 2.6 | −64 | 9.6 | −51 | 0.8 | −69 | 5.0 | −23 |
2080b | 6.7 | +4 |
2.4. The EVA System
2.5. Population Data
2.6. The Building Stock
Decade | Building Tightness a ACH50 | PM2.5 Infiltration | References |
---|---|---|---|
2000 | 5 | 59% | Hänninen et al. 2004, 2011, 2013 [58,59,62],
Kearney et al. 2014 [65], Gens et al., 2014 [66], Zou, 2010 [67], |
2020 | 3 | 52% | EC 2012 [63], |
2050 | 1 | 30% | Erhorn-Kluttig et al., 2009 [64]. |
2080 | 1 | 24% | |
2100 | 1 | 21% |
2.7. Limitations and Uncertainties
3. Results and Discussion
3.1. Base Case
3.2. Changes in Climate Alone
3.3. Change in Both Climate and Anthropogenic Emissions
3.4. Change in Population
3.5. Change in the Nordic Building Stock and Infiltration
4. Conclusions
- Climate change alone leads to a small increase (ca. 15%) in the total number of O3-related acute premature deaths in Europe towards the 2080s. The two CTMs included in the study disagree on the sensitivity of PM2.5 related chronic premature mortality to changes in climate alone: one model projected an increase, and the other a decrease, however, both models agreed on relatively small changes (<5%).
- Expected declines in anthropogenic emissions (>50% for most components in both 2050 and 2080) leads to a large decrease in the surface concentration of O3, primary PM and SIA across Europe. The impact from decreased emissions exceeds the impact from climate change alone (in agreement with previous studies). The combined effect of climate change and emission reductions will decrease the premature mortality due to air pollution. The acute mortality is in the present study estimated to decrease by 36%–64% in the 2050s and 53%–84% in the 2080s. For PM-related chronic mortality the decrease is 62%–65% and almost 80% for the two future periods.
- A part from the well-known climate penalty on ozone, we also include a recently quantified climate penalty on agricultural ammonia emissions. The simulations for the 2080s show that increased ammonia emissions mainly affect PM2.5. concentrations in regions with high ammonia emissions (e.g., Germany, Poland, Netherlands and Belgium). Europe-wide this effect alone will increase the chronic mortality by 4%.
- The assessment also shows sensitivity to the used population distribution and age structure towards 2050. The expected change in population size and age during this 50 year period is so substantial that it has a notable impact (~13%) on the projected health outcome related to air pollution in some areas in Europe.
- For the Nordic region we have projected how the infiltration rate into buildings will change in the future due to improvement of energy efficiency of building. By assuming a relative change in the infiltration rate compared to current day and a building stock renewal rate of 2% per year, projections are made for the future infiltration. Our assessment shows that by including this parameter the estimated decrease in PM2.5-related premature deaths could be ca. 80% in the 2050s relative to current day instead of the ca. 62%–65% as caused by climate and emissions changes alone. For the 2080s the decrease is estimated to be ca. 90%, while climate and emissions changes alone gave ca. 80%.
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hänninen, O.; Knol, A.B.; Jantunen, M.; Lim, T.A.; Conrad, A.; Rappolder, M. Environmental burden of disease in Europe: Assessing nine risk factors in six countries. Environ. Health Persp. 2014, 122, 439–446. [Google Scholar]
- WHO. 7 Million Premature Deaths Annually Linked To Air Pollution. Available online: http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/ (accessed On 30 December 2014).
- Amann, M.; Bertok, I.; Borken-Kleefeld, J.; Cofala, J.; Heyes, C.; Hoglund-Isaksson, L.; Klimont, Z.; Nguyen, B.; Posch, M.; Rafaj, P.; et al. Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environ. Modell Softw. 2011, 26, 1489–1501. [Google Scholar] [CrossRef]
- Oxley, T.; Dore, A.J.; Apsimon, H.; Hall, J.; Kryza, M. Modelling future impacts of air pollution using the multi-scale UK Integrated Assessment Model (UKIAM). Environ. Int. 2013, 61, 17–35. [Google Scholar] [CrossRef] [PubMed]
- Brandt, J.; Silver, J.D.; Christensen, J.H.; Andersen, M.S.; Bonlokke, J.H.; Sigsgaard, T.; Geels, C.; Gross, A.; Hansen, A.B.; Hansen, K.M.; et al. Contribution from the ten major emission sectors in Europe and Denmark to the health-cost externalities of air pollution using the eva model system—An integrated modelling approach. Atmos. Chem. Phys. 2013, 13, 7725–7746. [Google Scholar] [CrossRef]
- Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef]
- Hedegaard, G.B.; Christensen, J.H.; Brandt, J. The relative importance of impacts from climate change vs. emissions change on air pollution levels in the 21st century. Atmos. Chem. Phys. 2013, 13, 3569–3585. [Google Scholar] [CrossRef]
- Colette, A.; Bessagnet, B.; Vautard, R.; Szopa, S.; Rao, S.; Schucht, S.; Klimont, Z.; Menut, L.; Clain, G.; Meleux, F.; et al. European atmosphere in 2050, a regional air quality and climate perspective under CMIP5 scenarios. Atmos. Chem. Phys. 2013, 13, 7451–7471. [Google Scholar] [CrossRef] [Green Version]
- Andersson, C.; Engardt, M. European ozone in a future climate—The importance of changes in dry deposition and isoprene emissions. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Langner, J.; Engardt, M.; Baklanov, A.; Christensen, J.H.; Gauss, M.; Geels, C.; Hedegaard, G.B.; Nuterman, R.; Simpson, D.; Soares, J.; et al. A multi-model study of impacts of climate change on surface ozone in Europe. Atmos. Chem. Phys. 2012, 12, 10423–10440. [Google Scholar] [CrossRef]
- Pope, C.A., 3rd; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health Glob. Access Sci. Source 2013, 12. [Google Scholar] [CrossRef]
- Review of Evidence on Health Aspects of Air Pollution—Revihaap Project; World Health Organization: Copenhagen, Denmark, 2013; p. 302.
- Health Risks of Air Pollution in Europe—Hrapie Project. Recommendations for Concentration—Response Functions for Cost-Benefit Analysis of Particulate Matter, Ozone and Nitrogen Dioxide; WHO Regional Office for Europe: Copenhagen, Denmark, 2013; p. 60.
- Total Population—Outlook from Unstat (Outlook 042). Available online: http://www.eea.europa.eu/data-and-maps/indicators/total-population-outlook-from-unstat/total-population-outlook-from-unstat-1 (accessed on 14 August 2014).
- Gerba, C.P.; Rose, J.B.; Haas, C.N. Sensitive populations: Who is at the greatest risk? Int. J. Food Microbiol. 1996, 30, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Delfino, R.J.; Staimer, N.; Tjoa, T.; Gillen, D.L.; Polidori, A.; Arhami, M.; Kleinman, M.T.; Vaziri, N.D.; Longhurst, J.; Sioutas, C. Air pollution exposures and circulating biomarkers of effect in a susceptible population: Clues to potential causal component mixtures and mechanisms. Environ. Health Perspect. 2009, 117, 1232–1238. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.A.; West, J.J.; Zhang, Y.Q.; Anenberg, S.C.; Lamarque, J.F.; Shindell, D.T.; Collins, W.J.; Dalsoren, S.; Faluvegi, G.; Folberth, G.; et al. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environ. Res. Lett. 2013, 8. [Google Scholar] [CrossRef]
- Simpson, D.; Andersson, C.; Christensen, J.H.; Engardt, M.; Geels, C.; Nyiri, A.; Posch, M.; Soares, J.; Sofiev, M.; Wind, P.; et al. Impacts of climate and emission changes on nitrogen deposition in Europe: A multi-model study. Atmos. Chem. Phys. 2014, 14. [Google Scholar] [CrossRef] [Green Version]
- Orru, H.; Andersson, C.; Ebi, K.L.; Langner, J.; Astrom, C.; Forsberg, B. Impact of climate change on ozone-related mortality and morbidity in Europe. Eur. Respir. J. 2013, 41, 285–294. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Manders, A.M.M.; van Meijgaard, E.; Mues, A.C.; Kranenburg, R.; van Ulft, L.H.; Schaap, M. The impact of differences in large-scale circulation output from climate models on the regional modeling of ozone and PM. Atmos. Chem. Phys. 2012, 12, 9441–9458. [Google Scholar] [CrossRef]
- Post, E.S.; Grambsch, A.; Weaver, C.; Morefield, P.; Huang, J.; Leung, L.Y.; Nolte, C.G.; Adams, P.; Liang, X.Z.; Zhu, J.H.; et al. Variation in estimated ozone-related health impacts of climate change due to modeling choices and assumptions. Environ. Health Persp. 2012, 120, 1559–1564. [Google Scholar] [CrossRef]
- Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Hurley, F.; Hunt, A.; Cowie, H.; Holland, M.; Miller, B.; Pye, S.; Watkiss, P. Health impact assessment, report for European Commission DG environment. In Development of Methodology for the CBA of the Clean Air for Europe (CAFE) Programme; AEA Technology Environment: Oxon, UK, 2005; Volume 2. [Google Scholar]
- Christensen, J.H. The Danish eulerian hemispheric model—A three-dimensional air pollution model used for the Arctic. Atmos. Environ. 1997, 31, 4169–4191. [Google Scholar] [CrossRef]
- Frohn, L.M.; Christensen, J.H.; Brandt, J. Development of a high-resolution nested air pollution model—The numerical approach. J. Comput. Phys. 2002, 179, 68–94. [Google Scholar] [CrossRef]
- Brandt, J.; Silver, J.; Frohn, L.M.; Geels, C.; Gross, A.; Hansen, A.B.; Hansen, K.M.; Hedegaard, G.B.; Skjøth, C.A.; Villadsen, H.; et al. An integrated model study for Europe and North America using the Danish eulerian hemispheric model with focus on intercontinental transport of air pollution. Atmos. Environ. 2012, 53, 156–176. [Google Scholar] [CrossRef]
- Geels, C.; Andersen, H.V.; Ambelas Skjøth, C.; Christensen, J.H.; Ellermann, T.; Løfstrøm, P.; Gyldenkærne, S.; Brandt, J.; Hansen, K.M.; Frohn, L.M.; et al. Improved modelling of atmospheric ammonia over Denmark using the coupled modelling system DAMOS. Biogeosciences 2012, 9, 2625–2647. [Google Scholar] [CrossRef]
- Hedegaard, G.B.; Brandt, J.; Christensen, J.H.; Frohn, L.M.; Geels, C.; Hansen, K.M.; Stendel, M. Impacts of climate change on air pollution levels in the northern hemisphere with special focus on Europe and the Arctic. Atmos. Chem. Phys. 2008, 8, 3337–3367. [Google Scholar] [CrossRef]
- Hedegaard, G.B.; Christensen, J.H.; Geels, C.; Gross, A.; Hansen, K.M.; May, W.; Zare, A.; Brandt, J. Effects of changed climate conditions on tropospheric ozone over three centuries. Atmos. Clim. Sci. 2012, 2, 546–561. [Google Scholar]
- Hedegaard, G.B.; Gross, A.; Christensen, J.H.; May, W.; Skov, H.; Geels, C.; Hansen, K.M.; Brandt, J. Modelling the impacts of climate change on tropospheric ozone over three centuries. Atmos. Chem. Phys. Discuss. 2011, 11, 6805–6843. [Google Scholar] [CrossRef]
- Hole, L.R.; Christensen, J.H.; Ruoho-Airola, T.; Torseth, K.; Ginzburg, V.; Glowacki, P. Past and future trends in concentrations of sulphur and nitrogen compounds in the Arctic. Atmos. Environ. 2009, 43, 928–939. [Google Scholar] [CrossRef]
- Mårtensson, E.M.; Nilsson, E.D.; de Leeuw, G.; Cohen, L.H.; Hansson, H.C. Laboratory simulations and parameterization of the primary marine aerosol production. J. Geophys. Res. 2003. [Google Scholar] [CrossRef]
- Monahan, E.C.; Spiel, D.E.; Davidson, K.L. A model of marine aerosol generation via whitecaps and wave disruption. In Oceanic Whitecaps; Monahan, E.C., Macniochaill, G., Eds.; Springer: Netherlands, 1986; pp. 167–193. [Google Scholar]
- Guenther, A.; Hewitt, C.N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; Mckay, W.A.; et al. A global-model of natural volatile organic-compound emissions. J. Geophys. Res. Atmos. 1995, 100, 8873–8892. [Google Scholar] [CrossRef]
- Nakicenovic, N.; Alcamo, J.; Davis, G.; de Vries, B.; Fenhann, J.; Gaffin, S.; Gregory, K.; Grbler, A.; Jung, T.; Kram, T.; et al. Special Report on Emission Scenarios: A Special Report of Working Group III of The Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2000. [Google Scholar]
- Roeckner, E.; Lautenschlager, M.; Esch, M. IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 20C3M Run No.3: Atmosphere 6 HOUR Values MPImet/MaD Germany; World Data Center for Climate. Available online: http://b2find.eudat.eu/dataset/fd1423a1-719d-5fcf-8d69-8254dab603e5 (accessed on 4 March 2015). [CrossRef]
- Grell, G.A.; Dudhia, J.; Stauffer, D.R. A Description of the Fifth-Generation Penn State Ncar Mesoscale Model (MM5); National Center for Atmospheric Research: Boulder, CO, USA, 1994; pp. 1–22. [Google Scholar]
- Robertson, L.; Langner, J.; Engardt, M. An Eulerian limited-area atmospheric transport model. J. App. Met. 1999, 38, 190–210. [Google Scholar] [CrossRef]
- Langner, J.; Engardt, M.; Andersson, C. European surface ozone 1990–2100. Atmos. Chem. Phys. 2012, 12, 10097–10105. [Google Scholar] [CrossRef]
- Engardt, M.; Bergstrom, R.; Andersson, C. Climate and emission changes contributing to changes in near-surface ozone in Europe over the coming decades: Results from model studies. Ambio 2009, 38, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Langner, J.; Bergstrom, R.; Foltescu, V. Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe. Atmos. Environ. 2005, 39, 1129–1141. [Google Scholar] [CrossRef]
- Langner, J.; Andersson, C.; Engardt, M. Atmospheric input of nitrogen to the baltic sea basin: Present situation, variability due to meteorology and impact of climate change. Boreal Environ. Res. 2009, 14, 226–237. [Google Scholar]
- Engardt, M.; Langner, J. Simulations of future sulphur and nitrogen deposition over Europe using meteorological data from three regional climate projections. Tellus B 2013, 65. [Google Scholar] [CrossRef]
- Hole, L.; Engardt, M. Climate change impact on atmospheric nitrogen deposition in northwestern Europe: A model study. Ambio 2008, 37, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Andersson, C.; Langner, J.; Bergstrom, R. Interannual variation and trends in air pollution over Europe due to climate variability during 1958–2001 simulated with a regional CTM coupled to the ERA40 reanalysis. Tellus B 2007, 59, 77–98. [Google Scholar] [CrossRef]
- Carter, W.P.L. Condensed atmospheric photooxidation mechanisms for isoprene. Atmos. Environ. 1996, 30, 4275–4290. [Google Scholar] [CrossRef]
- Langner, J.; Bergström, R.; Pleijel, K. European Scale Modeling of Sulphur, Oxidized Nitrogen and Photochemical Oxidants. Model Dependent Development Av. Evaluation for The 1994 Growing Season; Swedish Meteorological and Hydrological Institute: Norrköping, Sweden, 1998. [Google Scholar]
- Foltescu, V.L.; Pryor, S.C.; Bennet, C. Sea salt generation, dispersion and removal on the regional scale. Atmos. Environ. 2005, 39, 2123–2133. [Google Scholar] [CrossRef]
- Samuelsson, P.; Jones, C.G.; Willen, U.; Ullerstig, A.; Gollvik, S.; Hansson, U.; Jansson, C.; Kjellstrom, E.; Nikulin, G.; Wyser, K. The rossby centre regional climate model RCA3: Model description and performance. Tellus A 2011, 63, 4–23. [Google Scholar] [CrossRef]
- Kjellstrom, E.; Nikulin, G.; Hansson, U.; Strandberg, G.; Ullerstig, A. 21st century changes in the European climate: Uncertainties derived from an ensemble of regional climate model simulations. Tellus A 2011, 63, 24–40. [Google Scholar] [CrossRef]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Change 2011, 109, 77–94. [Google Scholar] [CrossRef]
- Skjøth, C.A.; Geels, C. The effect of climate and climate change on ammonia emissions in Europe. Atmos. Chem. Phys. 2013, 13, 117–128. [Google Scholar] [CrossRef]
- Sutton, M.A.; Reis, S.; Riddick, S.N.; Dragosits, U.; Nemitz, E.; Theobald, M.R.; Tang, Y.S.; Braban, C.F.; Vieno, M.; Dore, A.J.; et al. Towards a climate-dependent paradigm of ammonia emission and deposition. Philos. T. R. Soc. B 2013. [Google Scholar] [CrossRef] [Green Version]
- Brandt, J.; Silver, J.D.; Christensen, J.H.; Andersen, M.S.; Bonlokke, J.H.; Sigsgaard, T.; Geels, C.; Gross, A.; Hansen, A.B.; Hansen, K.M.; et al. Assessment of past, present and future health-cost externalities of air pollution in Europe and the contribution from international ship traffic using the EVA model system. Atmos. Chem. Phys. 2013, 13, 7747–7764. [Google Scholar] [CrossRef]
- Iehias. Iehias: Integrated Environmental Health Impact Assessment System. Available online: http://www.integrated-assessment.eu/ (accessed on 25 Januray 2013).
- Hänninen, O.; Lebret, E.; Ilacqua, V.; Katsouyanni, K.; Kunzli, F.; Sram, R.J.; Jantunen, M. Infiltration of ambient PM2.5 and levels of indoor generated non-ETS PM2.5 in residences of four European cities. Atmos. Environ. 2004, 38, 6411–6423. [Google Scholar] [CrossRef]
- Hänninen, O.; Hoek, G.; Mallone, S.; Chellini, E.; Katsouyanni, K.; Gariazzo, C.; Cattani, G.; Marconi, A.; Molnar, P.; Bellander, T.; et al. Seasonal patterns of outdoor PM infiltration into indoor environments: Review and meta-analysis of available studies from different climatological zones in Europe. Air Qual. Atmos. Health 2011, 4, 221–233. [Google Scholar] [CrossRef]
- Energy-Efficient Buildings ppp: Multi-Annual Roadmap and Longer Term Strategy. Available online: http://www.ectp.org/cws/params/ectp/download_files/36d1191v1_eeb_roadmap.pdf (accessed on 26 February 2015).
- Hänninen, O.; Palonen, J.; Tuomisto, J.T.; Yli-Tuomi, T.; Seppanen, O.; Jantunen, M.J. Reduction potential of urban PM2.5 mortality risk using modern ventilation systems in buildings. Indoor Air 2005, 15, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Hänninen, O.; Sorjamaa, R.; Lipponen, P.; Cyrys, J.; Lanki, T.; Pekkanen, J. Aerosol-based modelling of infiltration of ambient PM2.5 and evaluation against population-based measurements in homes in Helsinki, Finland. J. Aerosol. Sci. 2013, 66, 111–122. [Google Scholar] [CrossRef]
- Energy Roadmap 2050; Publications Office of the European: Luxembourg, 2012.
- Erhorn-Kluttig, H.; Erhorn, H.; Lahmidid, H.; Anderson, R. Airtightness Requirements for High Performance Building Envelopes. Available online: http://www.asiepi.eu/fileadmin/files/wp5/erhorn-kluttig_airtightness_requirements_for_hp_buildings_10_09_09.pdf (accessed on 26 February 2015).
- Kearney, J.; Wallace, L.; MacNeill, M.; Héroux, M.-E.; Kindzierski, W.; Wheeler, A. Residential infiltration of fine and ultrafine particles in Edmonton. Atmos. Environ. 2014. [Google Scholar] [CrossRef]
- Gens, A.; Hurley, J.F.; Tuomisto, J.T.; Friedrich, R. Health impacts due to personal exposure to fine particles caused by insulation of residential buildings in Europe. Atmos. Environ. 2014, 84, 213–221. [Google Scholar] [CrossRef]
- Zou, Y. Classification of Buildings with Regard to Airtightness. Master of Science Thesis in Structural Engineering and Building Performance Design, Department of Civil and Environmental Engineering Division of Building Technology, Building Physics Chalmers University of Technology Göteborg, Sweden, 2010. Available online: http://publications.lib.chalmers.se/records/fulltext/139940.pdf (accessed on 2 March 2015). [Google Scholar]
- Jimenez, J.L.; Canagaratna, M.R.; Donahue, N.M.; Prevot, A.S.H.; Zhang, Q.; Kroll, J.H.; Decarlo, P.F.; Allan, J.D.; Coe, H.; Ng, N.L.; et al. Evolution of organic aerosols in the atmosphere. Science 2009, 326, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- Simpson, D.; Benedictow, A.; Berge, H.; Bergström, R.; Emberson, L.D.; Fagerli, H.; Hayman, G.D.; Gauss, M.; Jonson, J.E.; Jenkin, M.E.; et al. The EMEP MSC-W chemical transport model— technical description. Atmos. Chem. Phys. 2012, 12, 7825–7865. [Google Scholar] [CrossRef] [Green Version]
- Amann, M.; Borken-Kleefeld, J.; Cofala, J.; Heyes, C.; Kiesewetter, G.; Klimont, Z.; Rafaj, P.; Sander, R.; Schöpp, W.; Wagner, F.; et al. TSAP-2012 Baseline: Health and Environmental Impacts; International Institute For Applied Systems Analysis IIASA: Laxenburg, Austria, 2012; p. 49. [Google Scholar]
- Fiore, A.M.; Naik, V.; Spracklen, D.V.; Steiner, A.; Unger, N.; Prather, M.; Bergmann, D.; Cameron-Smith, P.J.; Cionni, I.; Collins, W.J.; et al. Global air quality and climate. Chem. Soc. Rev. 2012, 41, 6663–6683. [Google Scholar] [CrossRef] [PubMed]
- Tai, A.P.K.; Mickley, L.J.; Heald, C.L.; Wu, S.L. Effect of CO2 inhibition on biogenic isoprene emission: Implications for air quality under 2000 to 2050 changes in climate, vegetation, and land use. Geophys. Res. Lett. 2013, 40, 3479–3483. [Google Scholar] [CrossRef]
- Cuvelier, C.; Thunis, P.; Karam, D.; Schaap, M.; Hendriks, C.; Kranenburg, R.; Fagerli, H.; NyÍRi, A.; Simpson, D.; Wind, P.; et al. Scaledep: Performance of European Chemistry-Transport Models as Function of Horizontal Spatial Resolution. EMEP Report 1/2013. Available online: http://emep.int/publ/reports/2013/mscw_technical_1_2013.pdf (accessed on 5 January 2015).
- Punger, A.M.; West, J.J. The effect of grid resolution on estimates of the burden of ozone and fine particulate matter on premature mortality in the USA. Air Qual. Atmos. Health 2013, 6. [Google Scholar] [CrossRef]
- Janssen, N.A.H.; Hoek, G.; Simic-Lawson, M.; Fischer, P.; Van Bree, L.; Ten Brink, H.; Keuken, M.; Atkinson, R.W.; Anderson, H.R.; Brunekreef, B.; et al. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5. Environ. Health Perspect. 2011, 119, 1691–1699. [Google Scholar] [CrossRef] [PubMed]
- Hänninen, O.; Asikainen, A. Efficient Reduction of Indoor Exposures: Health Benefits from Optimizing Ventilation, Filtration and Indoor Source Controls. 2013. Available online: http://www.julkari.fi/handle/10024/110211 (accessed on 26 February 2015).
- Rogelj, J.; Rao, S.; Mccollum, D.L.; Pachauri, S.; Klimont, Z.; Krey, V.; Riahi, K. Air-pollution emission ranges consistent with the representative concentration pathways. Nat. Clim. Chang. 2014, 4, 446–450. [Google Scholar] [CrossRef]
- Watkiss, P.; Pye, S.; Holland, M. Cafe CBA: Baseline Analysis 2000 to 2020. Service Contract for Carrying out Cost-Benefit Analysis of Air Quality Related Issues, in Particular in the Clean Air for Europe (Cafe) Programme. 2005. Available online: http://ec.europa.eu/environment/archives/cafe/activities/pdf/cba_baseline_results2000_2020.pdf (accessed on 12 May 2014).
- Andersson, C.; Bergstrom, R.; Johansson, C. Population exposure and mortality due to regional background PM in Europe—Long-term simulations of source region and shipping contributions. Atmos. Environ. 2009, 43, 3614–3620. [Google Scholar] [CrossRef]
- Pacifico, F.; Harrison, S.P.; Jones, C.D.; Sitch, S. Isoprene emissions and climate. Atmos. Environ. 2009, 43, 6121–6135. [Google Scholar] [CrossRef]
- Zare, A.; Christensen, J.H.; Irannejad, P.; Brandt, J. Evaluation of two isoprene emission models for use in a long-range air pollution model. Atmos. Chem. Phys. 2012, 12, 7399–7412. [Google Scholar] [CrossRef]
- Zare, A.; Christensen, J.H.; Gross, A.; Irannejad, P.; Glasius, M.; Brandt, J. Quantifying the contributions of natural emissions to ozone and total fine PM concentrations in the northern hemisphere. Atmos. Chem. Phys. 2014, 14, 2735–2756. [Google Scholar] [CrossRef]
- West, J.J.; Szopa, S.; Hauglustaine, D.A. Human mortality effects of future concentrations of tropospheric ozone. Comptes Rendus Geosci. 2007, 339, 775–783. [Google Scholar] [CrossRef]
- OECD Environmental Outlook to 2050: The Consequences of Inaction. 2012. Available online: http://www.oecd.org./environment/outlookto2050 (accessed on 6 January 2015).
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geels, C.; Andersson, C.; Hänninen, O.; Lansø, A.S.; Schwarze, P.E.; Skjøth, C.A.; Brandt, J. Future Premature Mortality Due to O3, Secondary Inorganic Aerosols and Primary PM in Europe — Sensitivity to Changes in Climate, Anthropogenic Emissions, Population and Building Stock. Int. J. Environ. Res. Public Health 2015, 12, 2837-2869. https://doi.org/10.3390/ijerph120302837
Geels C, Andersson C, Hänninen O, Lansø AS, Schwarze PE, Skjøth CA, Brandt J. Future Premature Mortality Due to O3, Secondary Inorganic Aerosols and Primary PM in Europe — Sensitivity to Changes in Climate, Anthropogenic Emissions, Population and Building Stock. International Journal of Environmental Research and Public Health. 2015; 12(3):2837-2869. https://doi.org/10.3390/ijerph120302837
Chicago/Turabian StyleGeels, Camilla, Camilla Andersson, Otto Hänninen, Anne Sofie Lansø, Per E. Schwarze, Carsten Ambelas Skjøth, and Jørgen Brandt. 2015. "Future Premature Mortality Due to O3, Secondary Inorganic Aerosols and Primary PM in Europe — Sensitivity to Changes in Climate, Anthropogenic Emissions, Population and Building Stock" International Journal of Environmental Research and Public Health 12, no. 3: 2837-2869. https://doi.org/10.3390/ijerph120302837
APA StyleGeels, C., Andersson, C., Hänninen, O., Lansø, A. S., Schwarze, P. E., Skjøth, C. A., & Brandt, J. (2015). Future Premature Mortality Due to O3, Secondary Inorganic Aerosols and Primary PM in Europe — Sensitivity to Changes in Climate, Anthropogenic Emissions, Population and Building Stock. International Journal of Environmental Research and Public Health, 12(3), 2837-2869. https://doi.org/10.3390/ijerph120302837