Can Metabolic Disorders in Aging Men Contribute to Prostatic Hyperplasia Eligible for Transurethral Resection of the Prostate (TURP)?
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Group
- with benign prostatic hyperplasia and with no evidence of metabolic syndrome
- with benign prostatic hyperplasia and diagnosed with metabolic syndrome
- with no benign prostatic hyperplasia and with no evidence of metabolic syndrome
- with no benign prostate hyperplasia and diagnosed with metabolic syndrome
2.2. Clinical Trials
2.3. Diagnostic Investigations
3. Statistical Analysis
Permission to Conduct Research
4. Results
Disease | Patients with Prostatic Hyperplasia (n = 151) | Patients without Prostate Hyperplasia (n = 154) | Statistical Significance (p) | ||
---|---|---|---|---|---|
Number of Patients | % | Number of Patients | % | ||
Diabetes | 36 | 23.8 | 22 | 14.3 | 0.0477 * |
Hypertension | 86 | 57 | 81 | 52.6 | 0.52 |
Metabolic syndrome | 91 | 60.3 | 71 | 46.1 | 0.018 * |
Patients with Benign Prostatic Hyperplasia (n = 151) | ||||||
---|---|---|---|---|---|---|
Diagnostic Criteria for Metabolic Syndrome | ||||||
Parameters | Abdominal Circumference (cm) | Glucose (mg/dL) | Systolic Blood Pressure (mm·Hg) | Diastolic Blood Pressure (mm·Hg) | HDL (mg/dL) | TAG (mg/dL) |
min–max | 79–125 | 43–375 | 90–160 | 55–90 | 20.7–75 | 57.4–609.1 |
Q1–Q3 | 92–105 | 94–114 | 110–120 | 70–80 | 28–38.2 | 99.1–160.8 |
me (Q) | 98 (6.5) | 101 (10) | 120 (5) | 80 (5) | 33.2 (5.1) | 134.4 (30.8) |
X ± SD | 99.2 ± 9.4 | 110.4 ± 38 | 119.9 ± 13.8 | 77.4 ± 9.8 | 35.1 ± 10.3 | 146.2 ± 13.0 |
Other Criteria | ||||||
Parameters | Age (years) | Body Weight (kg) | BMI (kg/m2) | Total Cholesterol (mg/dL) | LDL (mg/dL) | HOMA (mg/dL) |
min-max | 52–91 | 51.5–120 | 18.7–39.2 | 83.8–454.9 | 18.1–405.3 | 0.11–27.87 |
Q1-Q3 | 61–73 | 75–91 | 24.7–30.1 | 149.6–217.2 | 89.6–156.1 | 1.38–7.09 |
me (Q) | 65 (6) | 81 (8.0) | 27 (2.7) | 180.5 (33.8) | 113.8 (66.5) | 2.69 (2.9) |
X ± SD | 67.3 ± 8.3 | 83.0 ± 13.2 | 27.7 ± 4.1 | 190.5 ± 59 | 126.7 ± 56.4 | 5.4 ± 6.14 |
Patients without Benign Prostatic Hyperplasia (n = 154) | ||||||
---|---|---|---|---|---|---|
Diagnostic Criteria for Metabolic Syndrome | ||||||
Parameters | Abdominal Circumference (cm) | Glucose (mg/dL) | Systolic Blood Pressure (mm Hg) | Diastolic Blood Pressure (mm·Hg) | HDL (mg/dL) | TAG (mg/dL) |
min–max | 75–140 | 52.8–346.6 | 80–220 | 50–120 | 19.3–94.8 | 37.3–58.4 |
Q1–Q3 | 94–106 | 98.8–127.8 | 120–150 | 80–90 | 40.7–60.2 | 84.2–118.2 |
me (Q) | 99 (6) | 109 (14.5) | 135 (5) | 80 (5) | 49.7 (9.8) | 121.2 (51.98) |
X± SD | 100.6 ± 10 | 118.1 ± 35.7 | 135.2 ± 21.1 | 84.6 ± 11.3 | 50.9 ± 13.7 | 144.9 ± 90.8 |
Other Criteria | ||||||
Parameters | Age (years) | Body Weight (kg) | BMI (kg/m2) | Total cholesterol (mg/dL) | LDL (mg/dL) | HOMA (mg/dL) |
min–max | 50–74 | 54–135 | 20–43.6 | 96.1–351.6 | 29.3–287.2 | 0.81–9.17 |
Q1–Q3 | 55–65 | 76–90 | 25.2–29.4 | 176.5–249.1 | 102.8–167.9 | 2.29–4.84 |
me (Q) | 60 (5) | 63 (7) | 27 (2.1) | 210.2 (36.3) | 131.7 (33) | 3.13 (1.27) |
X± SD | 60.3 ± 6.2 | 84.4 ± 3.6 | 27.4 ± 3.6 | 216.3 ± 55.5 | 136.8 ± 50.4 | 3.74 ± 1.97 |
Parameters | Statistical Significance (p) | |
---|---|---|
Diagnostic criteria for metabolic syndrome | Abdominal circumference (cm) | 0.18 |
Glucose (mg/dL) | 0.0001 * | |
Systolic blood pressure (mm·Hg) | ≤0.0001 * | |
Diastolic blood pressure (mm·Hg) | ≤0.0001 * | |
HDL (mg/dL) | ≤0.0001 * | |
TAG (mg/dL) | 0.1 | |
Other criteria | Age (years) | 0.0001 * |
Body weight (kg) | 0.26 | |
BMI (kg/m2) | 0.86 | |
Total cholesterol (mg/dL) | 0.00014 * | |
LDL (mg/dL) | 0.021 * | |
HOMA (mg/dL) | 0.300 |
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Reaven, G.M. Role of insulin resistance in human disease. Diabetes 1988, 37, 1595–1607. [Google Scholar] [CrossRef] [PubMed]
- Kirby, M.G.; Wagg, A.; Cardozo, L.; Chapple, C.; Castro-Diaz, D.; de Ridder, D.; Espuna-Pons, M.; Haab, F.; Kelleher, C.; Kölbl, H.; et al. Overactive bladder: Is there a link to the metabolic syndrome in men? Neurourol. Urodyn. 2010, 29, 1360–1364. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Shin, H.; Song, J.H.; Kwak, S.H.; Kang, S.M.; Won Yoon, J.; Choi, S.H.; Cho, S.I.; Park, K.S.; Lee, H.K.; et al. Increasing prevalence of metabolic syndrome in Korea: The Korean national health and nutrition examination survey for 1998–2007. Diabetes Care 2011, 34, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Zimmet, P.; Shaw, J. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366. [Google Scholar] [CrossRef]
- NCEP Expert Panel. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA 2001, 285, 2486–2497. [Google Scholar]
- Grundy, S.M.; Brewer, H.B.; Cleeman, J.I.; Smith, S.C.; Lenfant, C. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on scientific issues related to definition. ATVB 2004, 2. [Google Scholar] [CrossRef]
- Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic syndrome: Definitions and controversies. BMC Med. 2011, 9. [Google Scholar] [CrossRef]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Gami, A.; Witt, B.J.; Howard, D.E.; Erwin, P.J.; Gami, L.A.; Somers, V.K.; Montori, V.M. Metabolic syndrome and risk of incident cardiovascular events and death: A systematic review and meta-analysis of longitudinal studies. J. Am. Coll. Cardiol. 2007, 49, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z. The metabolic syndrome. Lancet 2005, 365, 1415–1428. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. The IDF Consensus Worldwide Definition of the Metabolic Syndrome. Available online: http://www.idf.org/webdata/docs/Metabolic_syndrome_definition.pdf (accessed on 10 December 2014).
- Alberti, K.G.; Zimmet, P.; Shaw, J. The IDF consensus worldwide definition of the metabolic syndrome. Med. Prakt. 2005, 5, 1–6. [Google Scholar]
- Kahn, R.; Buse, J.; Ferrannini, E.; Stern, M. The metabolic syndrome: Time for a critical appraisal: Joint statement from the American Diabetes Association and the European Association for the study of diabetes. Diabetes Care 2005. [Google Scholar] [CrossRef]
- Metabolic Syndrome-Driving the CVD Epidemic. Available online: http://www.idf.org/webdata/docs/Diabetes_meta_syndrome.pdf (accessed on 5 December 2014).
- Stern, M.P.; Williams, K.; Gonzales-Villalpando, C.; Hunt, K.J.; Haffner, S.M. Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease? Daibetes Care 2004. [Google Scholar] [CrossRef]
- Zdrojewski, T.; Bandosz, P.; Szpakowski, P.; Konarski, R.; Manikowski, A.; Wołkiewicz, E.; Jakubowski, Z.; Łysiak-Szydłowska, W.; Bautembach, S.; Wyrzykowski, B. The prevalence of major risk factors of diseases of the cardiovascular system in Poland. Results of the study NATPOL PLUS. Kardiol. Pol. 2004, 61, IV1–IV26. [Google Scholar]
- Wyrzykowski, B.; Zdrojewski, T.; Sygnowska, E.; Biela, U.; Drygas, W.; Tykarski, A.; Kozakiewicz, K.; Broda, G. Epidemiology of metabolic syndrome in Poland. The results of the WOBASZ. Kardiol. Pol. 2005, 63, S641–S644. [Google Scholar] [PubMed]
- Editorial Board of the Central Statistical Office. Concise Statistical Yearbook of Poland; Central Statistical Office: Warsaw, Poland, 2011; p. 131.
- Palaniappan, L.; Carnethon, M.R.; Wang, Y.; Hanley, A.J.; Fortmann, S.P. Predictors of the incident metabolic syndrome in adults: The insulin resistance atherosclerosis study. Diabetes Care 2004. [Google Scholar] [CrossRef]
- Anderson, P.J.; Critchley, J.A.; Chan, J.C.; Cockram, C.S.; Lee, Z.S.; Thomas, G.N.; Tomlinson, B. Factor analysis of the metabolic syndrome: Obesity vs. insulin resistance as the central abnormality. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 1782–1788. [Google Scholar] [CrossRef] [PubMed]
- Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Investig. 2006, 116, 1793–1801. [Google Scholar] [CrossRef] [PubMed]
- Qatanani, M.; Lazar, M.A. Mechanisms of obesity-associated insulin resistance: Many choices on the menu. Genes Dev. 2007. [Google Scholar] [CrossRef]
- Dandona, P.; Aljada, A.; Bandyopadhyay, A. Inflammation: The link between insulin resistance, obesity and diabetes. Trends Immunol. 2004, 25, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Lillioja, S.; Mott, D.M.; Spraul, M.; Ferraro, R.; Foley, J.E.; Ravussin, E.; Knowler, W.C.; Bennett, P.H.; Bogardus, C. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N. Engl. J. Med. 1993. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and B-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Suchecka-Rachoń, K. Pharmacological treatment of hypertension in patients with metabolic syndrome. Kardiol. Dzień 2007, 3, 125–129. [Google Scholar]
- Kąkol, M.; Zdrojewski, T.; Kozicka-Kąkol, K. Prevalence and efficacy of treatment of hypertension in older people in Poland—Evaluation by a representative survey. Gerontol. Pol. 1999, 7, 23–29. [Google Scholar]
- Perk, J.; de Backer, G.; Gohlke, H.; Graham, I.; Reiner, Z.; Verschuren, W.M.; Albus, C.; Benlian, P.; Boysen, G.; Cifkova, R.; et al. European guidelines on cardiovascular disease prevention in clinical practice. Fifth joint task force of the European society of cardiology and other societies on cardiovascular disease prevention in clinical practice. Int J Behav Med. 2012, 19. [Google Scholar] [CrossRef]
- Stępińska, J.; Solnica, B.; Kulpa, J.; Jankowski, P.; Kalarus, Z. The need to standardize the target values of lipid research results in medical diagnostic laboratories in Poland. J. Lab. Diagn. 2012, 48, 473–474. [Google Scholar]
- Parsons, J.K.; Carter, H.B.; Partin, A.W.; Windham, B.G.; Metter, E.J.; Ferrucci, L.; Landis, P.; Platz, E.A. Metabolic factors associated with benign prostatic hyperplasia. J. Clin. Endocrinol. Metab. 2006. [Google Scholar] [CrossRef]
- Parsons, J.K. Modifiable risk factors for benign prostatic hyperplasia and lower urinary tract symptoms: New approaches to old problems. J. Urol. 2007. [Google Scholar] [CrossRef]
- Vignozzi, L.; Gacci, M.; Cellai, I.; Santi, R.; Corona, G.; Morelli, A.; Rastrelli, G.; Comeglio, P.; Sebastanelli, A.; Maneschi, E.; et al. Fat boosts, while androgen receptor activation counteracts, BPH-associated prostate inflammation. Prostate 2013. [Google Scholar] [CrossRef]
- Gacci, M.; Vignozzi, L.; Sebastianelli, A.; Salvi, M.; Giannessi, C.; de Nunzio, C.; Tubaro, A.; Corona, G.; Rastrelli, G.; Santi, R.; et al. Metabolic syndrome and lower urinary tract symptoms: The role of inflammation. Prostate Cancer Prostatic Dis. 2013. [Google Scholar] [CrossRef]
- Vignozzi, L.; Rastrelli, G.; Corona, G.; Gacci, M.; Forti, G.; Maggi, M. Benign prostatic hyperplasia: A new metabolic disease? J. Endocrinol. Investig. 2014. [Google Scholar] [CrossRef]
- Vignozzi, L.; Morelli, A.; Sarchielli, E.; Comeglio, P.; Filippi, S.; Cellai, I.; Maneschi, E.; Serni, S.; Gacci, M.; Carini, M.; et al. Testosterone protects from metabolic syndrome-associated prostate inflammation: An experimental study in rabbit. J. Endocrinol. 2012, 212, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Abdollah, F.; Briganti, A.; Suardi, N.; Castiglione, F.; Gallina, A.; Capitanio, U.; Montorsi, F. Metabolic syndrome and benign prostatic hyperplasia: Evidence of a potential relationship, hypothesized etiology, and prevention. Korean J. Urol. 2011. [Google Scholar] [CrossRef]
- Guess, H.A.; Arrighi, H.M.; Metter, E.J. The cumulative prevalence of prostatism matches the autopsy prevalence of benign prostatic hyperplasia (Baltimore longitudinal study of aging). Prostate 1990, 17, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Rudawska, I. Marketing in Modern Healthcare. Selected Aspects; Publisher University of Szczecin: Szczecin, Poland, 2005; p. 50. [Google Scholar]
- Ejike, C.; Ezebuiro, C. Cardiometabolic risk factors’ prevalence in a population of geriatrics with elevated serum prostate specific antigen levels. Cont. J. Med. Res. 2011, 5, 6–13. [Google Scholar]
- Hammarsten, J.; Högstedt, B.; Holthuis, N.; Mellström, D. Components of the metabolic syndrome-risk factors for the development of benign prostatic hyperplasia. Prostate Cancer Prostatic Dis. 1998, 1, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, C.S.; Chalise, P.R.; Bhandari, B.B. Correlation of prostate volume with international prostate symptom score and quality of life in men with benign prostatic hyperplasia. Nepal Med. Coll. J. 2008, 10, 104–107. [Google Scholar] [PubMed]
- Kim, J.M.; Song, P.H.; Kim, H.T.; Moon, K.H. Effect of obesity on prostate-specific antigen, prostate volume, and international prostate symptom score in patients with benign prostatic hyperplasia. Korean J. Urol. 2011. [Google Scholar] [CrossRef]
- Gacci, M.; Corona, G.; Vignozzi, L.; Salvi, M.; Serni, S.; de Nunzio, C.; Tubaro, A.; Oelke, M.; Carini, M.; Maggi, M. Metabolic syndrome and benign prostatic enlargement: A systematic review and meta-analysis. BJU Int. 2014. [Google Scholar] [CrossRef]
- Denis, L.; Morton, M.S.; Griffiths, K. Diet and its preventive role in prostatic disease. Eur. Urol. 1999, 35, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.D.; Parsons, J.K. Epidemiology and etiology of benign prostatic hyperplasia and bladder outlet obstruction. Indian J. Urol. 2014. [Google Scholar] [CrossRef]
- Motoya, T.; Matsumoto, S.; Yamaguchi, S.; Wada, N.; Numata, A.; Osanai, H.; Kakizaki, H. The impact of abdominal aortic calcification and visceral fat obesity on lower urinary tract symptoms in patients with benign prostatic hyperplasia. Int. Urol. Nephrol. 2014, 46, 1877–1881. [Google Scholar] [CrossRef] [PubMed]
- Meigsa, J.B.; Mohrb, B.; Barrya, M.J.; McNaughton, M.; McKinlayb, J.B. Risk factors for clinical benign prostatic hyperplasia in a community-based population of healthy aging men. J. Clin. Epidemiol. 2001. [Google Scholar] [CrossRef]
- Zucchetto, A.; Tavani, A.; Dal Maso, L.; Gallus, S.; Negri, E.; Talamini, R.; Franceschi, S.; Montella, M.; La Vecchia, C. History of weight and obesity through life and risk of benign prostatic hyperplasia. Int. J. Obes. 2005. [Google Scholar] [CrossRef]
- Burke, J.P.; Rhodes, T.; Jacobson, D.J.; McGree, M.E.; Roberts, R.O.; Girman, C.J.; Lieber, M.M.; Jacobsen, S.J. Association of anthropometric measures with the presence and progression of benign prostatic hyperplasia. Am. J. Epidemiol. 2006. [Google Scholar] [CrossRef]
- Werny, D.M.; Thompson, T.; Saraiya, M.; Freedman, D.; Kottiri, B.J.; German, R.R.; Wener, M. Obesity is negatively associated with prostate-specific antigen in U.S. men, 2001–2004. Cancer Epidemiol. Biomark. Prev. 2007. [Google Scholar] [CrossRef]
- Fowke, J.H.; Matthews, C.E. PSA and body composition by dual X-ray absorptiometry (DXA) in NHANES. Prostate 2010. [Google Scholar] [CrossRef]
- WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar]
- Hammarsten, J.; Hogstedt, B. Hyperinsulinaemia as a risk factor for developing benign prostatic hyperplasia. Eur. Urol. 2001, 39, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Vikram, A.; Jena, G.B.; Ramarao, P. Increased cell proliferation and contractility of prostate in insulin resistant rats: Linking hyperinsulinemia with benign prostate hyperplasia. Prostate 2010. [Google Scholar] [CrossRef]
- Nandeesha, H.; Koner, B.C.; Dorairajan, L.N.; Sen, S.K. Hyperinsulinemia and dyslipidemia in non-diabetic benign prostatic hyperplasia. Clin. Chim. Acta 2006, 370. [Google Scholar] [CrossRef]
- Hannah, J.S.; Howard, B.V. Dietary fats, insulin resistance, and diabetes. J. Cardiovasc. Risk 1997. [Google Scholar] [CrossRef]
- McCarty, M.F. Diet/Lifestyle strategies for preventing benign prostatic hyperplasia. J. Metab. Synd. 2012. [Google Scholar] [CrossRef]
- Barnard, R.J.; Aronson, W.J.; Tymchuk, C.N.; Ngo, T.H. Prostate cancer: Another aspect of the insulin-resistance syndrome? Obes. Rev. 2002. [Google Scholar] [CrossRef]
- Kleinberg, D.L.; Ruan, W.; Yee, D.; Kovacs, K.T.; Vidal, S. Insulin-like growth factor (IGF)-I controls prostate fibromuscular development: IGF-I inhibition prevents both fibromuscular and glandular development in eugonadal mice. Endocrinology 2007. [Google Scholar] [CrossRef]
- Ploumidou, K.; Kyroudi-Voulgari, A.; Perea, D.; Anastasiou, I.; Mitropoulos, D. Effect of a hypercholesterolemic diet on serum lipid profile, plasma sex steroid levels, and prostate structure in rats. Urology 2010, 76. [Google Scholar] [CrossRef]
- Rahman, N.U.; Phonsombat, S.; Bochinski, D.; Carrion, R.E.; Nunes, L.; Lue, T.F. An animal model to study lower urinary tract symptoms and erectile dysfunction: The hyperlipidaemic rat. BJU Int. 2007. [Google Scholar] [CrossRef]
- Freeman, M.R.; Solomon, K.R. Cholesterol and benign prostate disease. Differentiation 2011, 82. [Google Scholar] [CrossRef]
- Kłosiewicz-Latoszek, L.; Cybulska, B. Contemporary guidelines for treatment of lipid disorders. Terapia 2005, 7, 55–60. [Google Scholar]
- Ingraham, H.A. Metabolism: A lipid for fat disorders. Nature 2011. [Google Scholar] [CrossRef]
- Wang, Z.; Olumi, A.F. Diabetes, growth hormone-insulin-like growth factor pathways and association to benign prostatic hyperplasia. Differentiation 2011. [Google Scholar] [CrossRef]
- Escobar, E.L.; Gomes-Marcondes, M.C.; Carvalho, H.F. Dietary fatty acid quality affects AR and PPARgamma levels and prostate growth. Prostate 2009. [Google Scholar] [CrossRef]
- Jin, D.; Sun, J.; Huang, J.; He, Y.; Yu, A.; Yu, X.; Yang, Z. TNF-α reduces g0s2 expression and stimulates lipolysis through PPAR-γ inhibition in 3T3-L1 adipocytes. Cytokine 2014, 69, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Vignozzi, L.; Cellai, I.; Santi, R.; Lombardelli, L.; Morelli, A.; Comeglio, P.; Filippi, S.; Logiodice, F.; Carini, M.; Nesi, G.; et al. Antiinflammatory effect of androgen receptor activation in human benign prostatic hyperplasia cells. J. Endocrinol. 2012. [Google Scholar] [CrossRef]
- Ozden, C.; Ozdal, O.L.; Urgancioglu, G.; Koyuncu, H.; Gokkaya, S.; Memis, A. The correlation between metabolic syndrome and prostatic growth in patients with benign prostatic hyperplasia. Eur. Urol. 2006, 51, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zeng, X.; Liu, Y.; Dong, L.; Zhao, X.; Qu, X. Impact of metabolic syndrome on benign prostatic hyperplasia in elderly Chinese men. Urol. Int. 2014, 93, 214–219. [Google Scholar] [CrossRef] [PubMed]
- White, W.B.; Moon, T. Treatment of benign prostatic hyperplasia in hypertensive men. J. Clin. Hypertens 2005. [Google Scholar] [CrossRef]
- Michel, M.C.; Heemann, U.; Schumacher, H.; Mehlburger, L.; Goepel, M. Association of hypertension with symptoms of benign prostatic hyperplasia. J. Urol. 2014, 172, 1390–1393. [Google Scholar] [CrossRef]
- Gillenwater, J.Y.; Conn, R.L.; Chrysant, S.G.; Roy, J.; Gaffney, M.; Ice, K.; Dias, N. Doxazosin for the treatment of benign prostatic hyperplasia in patients with mild to moderate essential hypertension: A double-blind, placebo-controlled, dose-response multicenter study. J. Urol. 1995. [Google Scholar] [CrossRef]
- ALLHAT Collaborative Research Group. Major cardiovascular events in hypertensive patients randomized to doxazosin vs. chlorthalidone: The Antihypertensive and Lipid-Lowering treatment to prevent Heart Attack Trial (ALLHAT). JAMA 2000, 283, 1967–1975. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rył, A.; Rotter, I.; Słojewski, M.; Jędrzychowska, A.; Marcinowska, Z.; Grabowska, M.; Laszczyńska, M. Can Metabolic Disorders in Aging Men Contribute to Prostatic Hyperplasia Eligible for Transurethral Resection of the Prostate (TURP)? Int. J. Environ. Res. Public Health 2015, 12, 3327-3342. https://doi.org/10.3390/ijerph120303327
Rył A, Rotter I, Słojewski M, Jędrzychowska A, Marcinowska Z, Grabowska M, Laszczyńska M. Can Metabolic Disorders in Aging Men Contribute to Prostatic Hyperplasia Eligible for Transurethral Resection of the Prostate (TURP)? International Journal of Environmental Research and Public Health. 2015; 12(3):3327-3342. https://doi.org/10.3390/ijerph120303327
Chicago/Turabian StyleRył, Aleksandra, Iwona Rotter, Marcin Słojewski, Adriana Jędrzychowska, Zuzanna Marcinowska, Marta Grabowska, and Maria Laszczyńska. 2015. "Can Metabolic Disorders in Aging Men Contribute to Prostatic Hyperplasia Eligible for Transurethral Resection of the Prostate (TURP)?" International Journal of Environmental Research and Public Health 12, no. 3: 3327-3342. https://doi.org/10.3390/ijerph120303327
APA StyleRył, A., Rotter, I., Słojewski, M., Jędrzychowska, A., Marcinowska, Z., Grabowska, M., & Laszczyńska, M. (2015). Can Metabolic Disorders in Aging Men Contribute to Prostatic Hyperplasia Eligible for Transurethral Resection of the Prostate (TURP)? International Journal of Environmental Research and Public Health, 12(3), 3327-3342. https://doi.org/10.3390/ijerph120303327