Lead Isotope Characterization of Petroleum Fuels in Taipei, Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Chemistry
Reference | 208Pb/206Pb | 207Pb/206Pb | 206Pb/204Pb | Method |
---|---|---|---|---|
Baker [24] | 2.1678 ± 0.0001 | 0.9149 ± 0.0004 | 16.942 ± 0.001 | DS, MC-ICP-MS |
Galer and Abouchami [29] | 2.1677 ± 0.0001 | 0.91475 ± 0.00004 | 16.941 ± 0.001 | TS, TIMS |
Thirlwall [30] | 2.1677 ± 0.0002 | 0.91483 ± 0.00006 | 16.941 ± 0.001 | DS, TIMS |
Thirlwall [28] | 2.1677 ± 0.0002 | 0.91488 ± 0.00008 | 16.942 ± 0.003 | DS, MC-ICP-MS |
Weiss et al. [26] | 2.1677 ± 0.0006 | 0.91404 | 16.947 ± 0.008 | Tl, MC-ICP-MS |
White et al. [27] | 2.1646 ± 0.0008 | 0.9148 ± 0.0001 | 16.941 ± 0.004 | Tl, MC-ICP-MS |
This study | 2.1675 ± 0.0003 | 0.9148 ± 0.0001 | 16.941 ± 0.008 | Tl, MC-ICP-MS |
2.3. Environmental Impact
3. Results
3.1. Lead Level of Taiwan’s Fuel Products
Brand | Product | 208Pb/207Pb | 208Pb/206Pb | 206Pb/207Pb | 206Pb/204Pb | 207Pb/204Pb | 208Pb/204Pb | [Pb] (ng·g−1) |
---|---|---|---|---|---|---|---|---|
Chinese Petroleum Corporation, Taiwan (CPC) | #92 unleaded gasoline | 2.422 ± 0.002 | 2.111 ± 0.002 | 1.147 ± 0.002 | 17.86 ± 0.02 | 15.57 ± 0.01 | 37.71 ± 0.02 | 9.6 ± 3.2 |
#95 unleaded gasoline | 2.429 ± 0.003 | 2.110 ± 0.005 | 1.151 ± 0.002 | 17.94 ± 0.02 | 15.588 ± 0.006 | 37.86 ± 0.06 | 17.9 ± 16.9 | |
#98 unleaded gasoline | 2.417 ± 0.003 | 2.107 ± 0.004 | 1.147 ± 0.003 | 17.87 ± 0.05 | 15.578 ± 0.003 | 37.65 ± 0.04 | 16.4 ± 2.6 | |
diesel | 2.431 ± 0.004 | 2.115 ± 0.009 | 1.149 ± 0.007 | 17.89 ± 0.08 | 15.57 ± 0.02 | 37.84 ± 0.06 | 44.8 ± 75.2 | |
Formosa Plastics Corporation (FPC) | #92 unleaded gasoline | 2.4288 ± 0.0009 | 2.1204 ± 0.0004 | 1.1454 ± 0.0004 | 17.836 ± 0.004 | 15.571 ± 0.007 | 37.819 ± 0.004 | 17.1 ± 3.5 |
#95 unleaded gasoline | 2.425 ± 0.001 | 2.125 ± 0.004 | 1.141 ± 0.002 | 17.78 ± 0.05 | 15.58 ± 0.01 | 37.79 ± 0.04 | 14.6 ± 3.9 | |
#98 unleaded gasoline | 2.4278 ± 0.0009 | 2.1192 ± 0.0008 | 1.1456 ± 0.0002 | 17.847 ± 0.008 | 15.579 ± 0.006 | 37.822 ± 0.002 | 15.9 ± 2.4 | |
diesel | 2.433 ± 0.003 | 2.119 ± 0.005 | 1.148 ± 0.003 | 17.89 ± 0.05 | 15.582 ± 0.004 | 37.91 ± 0.04 | 29.4 ± 22.4 |
3.2. Lead Isotopic Ratios of Taiwan’s Fuel Products
4. Discussion
4.1. Comparison on Pb Isotopic Ratios of Worldwide Petroleum Fuels
Country | Item | Year | 208Pb/206Pb | 206Pb/207Pb | 206Pb/204Pb | Reference |
---|---|---|---|---|---|---|
Austria | leaded gasoline | 1990 | NA | 1.111 | NA | Hopper et al. [32] |
Finland | gasoline | 1987 | NA | 1.122–1.159 | 17.42–18.00 | Keinonen [6] |
France | gasoline | 1995 | 2.172–2.198 | 1.069–1.094 | 16.56–17.07 | Monna et al. [7] |
Germany | leaded gasoline | NA | NA | 1.10 | NA | Krause et al. [33] |
Hungary | leaded gasoline | 1990 | NA | 1.072 | NA | Hopper et al. [32] |
Israel | 91 gasoline | 1995 | 2.148–2.158 | 1.094–1.110 | NA | Erel et al. [5] |
96 gasoline | 1995 | 2.142–2.147 | 1.108–1.119 | NA | ||
unleaded gasoline | 1995 | 2.112–2.142 | 1.108–1.146 | NA | ||
Mexico | leaded gasoline | 1988–1989 | 2.049–2.055 | 1.202–1.204 | 18.69–18.73 | Sañudo-Wilhelmy and Flegal [34] |
Netherlands | leaded gasoline | 1990 | NA | 1.062 | NA | Hopper et al. [32] |
Poland | leaded gasoline | 1988 | NA | 1.174 | NA | Hopper et al. [32] |
Russia | leaded gasoline | NA | 2.117–2.129 | 1.135–1.149 | NA | Mukai et al. [8] |
Switzerland | leaded petrol | 1996–1997 | 2.116–2.179 | 1.075–1.358 | 16.59–17.63 | Chiaradia and Cupelin [11] |
diesel | 1997 | 2.146 | 1.110 | 17.29 | ||
UK | leaded gasoline | 1989–1998 | NA | 1.056–1.098 | NA | Farmer et al. [35] |
NA | NA | 1.07 | NA | Krause et al. [33] | ||
1994 | 1.189–2.197 | 1.059–1.079 | 16.50–16.72 | Monna et al. [7] | ||
USA | leaded gasoline | 1964 | NA | 1.115–1.160 | 17.38–18.14 | Chow and Johnstone [36] |
unleaded gasoline | 1997–1999 | NA | 1.190–1.240 | 18.40–19.50 | Hurst [21] | |
Taiwan | unleaded gasoline | 2012 | 2.102–2.129 | 1.139–1.152 | 17.73–17.96 | This study |
diesel | 2012 | 2.105–2.122 | 1.144–1.157 | 17.81–17.98 |
4.2. Estimation on Taiwanese Local Vehicle Emissions
4.3. Environmental forensic Application in Taipei City’s Atmosphere
4.4. Environmental Forensic Application in Pengjia Islet’s Atmosphere
4.5. Implication and Limitation
5. Conclusions
- (1)
- Urban aerosol Pb content has decreased by almost one order of magnitude compared to levels in 1991 when leaded fuels were still in use.
- (2)
- Precise Pb isotopic ratios of unleaded petroleum fuels in Taipei, Taiwan were determined and thoroughly analyzed, which is the first such attempt in East Asia. Our results show that lead isotopic characterization is applicable as a “fingerprinting” tool for tracing Pb pollution sources. The distinction between the products of the two oil companies is statistically significant (p-value < 0.001, t test) in their individual 208Pb/206Pb ratios. Lead isotopic ratios of vehicle exhaust (208Pb/207Pb: 2.427, 206Pb/207Pb: 1.148, as estimated from petroleum fuels) overlap with the reported urban aerosol data.
- (3)
- Fuel products and Taipei’s aerosols show similar isotopic signatures in the winter when poor atmospheric dispersion conditions persist. This suggests that local unleaded fuel combustion was a Pb contributor to the metropolitan air. Greater seasonal variation of Pb isotopic ratios in spring and summer time implies that other sources exist in addition to fuel combustion. Considering the climate conditions, Asian dust storms (in spring), resuspended solid or soil particles, and the southwest airflow of anthropogenic activities (in summertime) might be the key Pb contributors in air during the recent past.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soils to Human; Spriner: New York, NY, USA, 2007; pp. 368–369. [Google Scholar]
- Patterson, C.C. An alternative perspective: Lead pollution in the human environment: origin, extent, and significance. In Lead in the Human Environment; Committee on Lead in the Human Environment, Environmental Studies Board Commission on Natural Resources, National Research Council, National Academy of Sciences: Washington, DC, USA, 1980; pp. 265–274. [Google Scholar]
- Mielke, H.W.; Zahran, S. The urban rise and fall of air lead (Pb) and the latent surge and retreat of societal violence. Environ. Int. 2012, 43, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Nriagu, J.O. The rise and fall of leaded gasoline. Sci. Total Environ. 1990, 92, 13–28. [Google Scholar] [CrossRef]
- Erel, Y.; Veron, A.; Halicz, L. Tracing the transport of anthropogenic lead in the atmosphere and in soils using isotopic ratios. Geochim. Cosmochim. Acta 1997, 61, 4495–4505. [Google Scholar] [CrossRef]
- Keinonen, M. The isotopic composition of lead in man and the environment in Finland 1966–1987: Isotope ratios of lead as indicators of pollutant source. Sci. Total Environ. 1990, 113, 251–268. [Google Scholar] [CrossRef]
- Monna, F.; Lancelot, J.; Croudace, I.W.; Cundy, A.B.; Lewis, J.T. Lead isotopic composition of airborne material from France and the Southern U.K. implications for Pb pollution sources in urban areas. Environ. Sci. Technol. 1997, 31, 2277–2286. [Google Scholar] [CrossRef]
- Mukai, H.; Tanaka, A.; Fujii, T.; Nakao, M. Lead isotope ratios of airborne particulate matter as tracers of long-range transport of air pollutants around Japan. J. Geophys. Res. 1994, 99, 3717–3726. [Google Scholar] [CrossRef]
- Widory, D.; Liu, X.; Dong, S. Isotopes as tracers of sources of lead and strontium in aerosols (TSP & PM2.5) in Beijing. Atmos. Environ. 2010, 44, 3679–3687. [Google Scholar] [CrossRef]
- Zheng, J.; Tan, M.G.; Shibata, Y.; Tanaka, A.; Li, Y.; Zhang, G.L.; Zhang, Y.M.; Shan, Z. Characteristics of lead isotope ratios and elemental concentrations in PM10 fraction of airborne particulate matter in Shanghai after the phase-out of leaded gasoline. Atmos. Environ. 2004, 38, 1191–1200. [Google Scholar] [CrossRef]
- Chiaradia, M.; Cupelin, F. Behaviour of airborne lead and temporal variations of its source effects in Geneva (Switzerland): Comparison of anthropogenic versus natural processes. Atmos. Environ. 2000, 34, 959–971. [Google Scholar]
- Taiwan EPA. Mobile Source Control. Available online: https://mobile.epa.gov.tw/oilimprovement_1.aspx (accessed on 7 April 2015).
- Taiwan Bureau of Energy (BOE). Petroleum Price Information Management and Analysis System. Available online: http://www.moeaboe.gov.tw/oil102/ (accessed on 7 April 2015).
- Taiwan BOE. Energy Statistics Handbook; Bureau of Energy, Ministry of Economic Affairs: Taipei, Taiwan, 2013. [Google Scholar]
- Mao, I.F.; Chen, M.L. Airborne lead pollution in metropolitan Taipei (Republic of China). Water Air Soil Pollut. 1996, 91, 375–382. [Google Scholar] [CrossRef]
- Hsu, S.-C.; Liu, S.-C.; Jeng, W.-L.; Lin, F.-J.; Huang, Y.-T.; Lung, S.-C.C.; Liu, T.-H.; Tu, J.-Y. Variations of Cd/Pb and Zn/Pb ratios in Taipei aerosols reflecting long-range transport or local pollution emissions. Sci. Total Environ. 2005, 347, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.-C.; Liu, S.-C.; Jeng, W.-L.; Chou, C.C.-K.; Hsu, R.-T.; Huang, Y.-T.; Chen, Y.-W. Lead isotope ratios in ambient aerosols from Taipei, Taiwan: Identifying long-range transport of airborne Pb from the Yangtze Delta. Atmos. Environ. 2006, 40, 5393–5404. [Google Scholar] [CrossRef]
- Hwang, Y.-H.; Ko, Y.; Chiang, C.-D.; Hsu, S.-P.; Lee, Y.-H.; Yu, C.-H.; Chiou, C.-H.; Wang, J.-D.; Chuang, H.-Y. Transition of cord blood lead level, 1985–2002, in the Taipei area and its determinants after the cease of leaded gasoline use. Environ. Res. 2004, 96, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-Y.; Guo, Y.-L.L.; Chen, P.-C.; Liu, J.-H.; Wu, H.-G.; Hwang, Y.-H. Associations between petrol-station density and manganese and lead in the cord blood of newborns living in Taiwan. Environ. Res. 2011, 111, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Lien, M.Y. Tracing Sources Variation of Lead in Aerosols Collected from the Peng Chia Yu: Chemical Compositions and Pb Isotopess. Master’s Thesis, National Cheng-Kung University, Tainan, Taiwan, 2008. [Google Scholar]
- Hurst, R.W. Lead isotopes as age-sensitive, genetic markers in hydrocarbons: 2. Kerogens, crude oils, and unleaded gasoline. Environ. Geosci. 2002, 9, 1–7. [Google Scholar] [CrossRef]
- Shen, C.-C.; Wu, C.-C.; Cheng, H.; Edwards, R.L.; Hsieh, Y.-T.; Gallet, S.; Chang, C.-C.; Li, T.-Y.; Lam, D.D.; Kano, A.; et al. High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols. Geochim. Cosmochim. Acta 2012, 99, 71–86. [Google Scholar]
- Gale, N.H. A new method for extracting and purifying lead from difficult matrices for isotopic analysis. Anal. Chim. Acta 1996, 332, 15–21. [Google Scholar] [CrossRef]
- Baker, J.; Peate, D.; Waight, T.; Meyzen, C. Pb isotopic analysis of standards and samples using a 207Pb-204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS. Chem. Geol. 2004, 211, 275–303. [Google Scholar] [CrossRef]
- Kamenov, G.D.; Mueller, P.A.; Perfit, M.R. Optimization of mixed Pb-Tl solutions for high precision isotopic analyses by MC-ICP-MS. J. Anal. Atom. Spectrom. 2004, 19, 1262–1267. [Google Scholar] [CrossRef]
- Weiss, D.J.; Kober, B.; Dolgopolova, A.; Gallagher, K.; Spiro, B.; Le Roux, G.; Mason, T.F.D.; Kylander, M.; Coles, B.J. Accurate and precise Pb isotope ratio measurements in environmental samples by MC-ICP-MS. Int. J. Mass Spectrom. 2004, 232, 205–215. [Google Scholar] [CrossRef]
- White, W.M.; Albarède, F.; Télouk, P. High-precision analysis of Pb isotope ratios by multi-collector ICP-MS. Chem. Geol. 2000, 167, 257–270. [Google Scholar] [CrossRef]
- Thirlwall, M.F. Multicollector ICP-MS analysis of Pb isotopes using a 207Pb-204Pb double spike demonstrates up to 400 ppm/amu systematic errors in Tl-normalization. Chem. Geol. 2002, 184, 255–279. [Google Scholar] [CrossRef]
- Galer, S.J.G.; Abouchami, W. Practical application of lead triple spiking for correction of instrumental mass discrimination. Min. Mag. 1998, 62A, 491–492. [Google Scholar] [CrossRef]
- Thirlwall, M.F. Inter-laboratory and other errors in Pb isotope analyses investigated using a 207Pb-204Pb double spike. Chem. Geol. 2000, 163, 299–322. [Google Scholar] [CrossRef]
- Ellam, R.M. The graphical presentation of lead isotope data for environmental source apportionment. Sci. Total Environ. 2010, 408, 3490–3492. [Google Scholar] [CrossRef] [PubMed]
- Hopper, J.F.; Ross, H.B.; Sturges, W.T.; Barrie, L.A. Regional source discrimination of atmospheric aerosols in Europe using the isotopic composition of lead. Tellus 1991, 43B, 45–60. [Google Scholar] [CrossRef]
- Krause, P.; Kriews, M.; Dannecker, W.; Garbe-Schönberg, C.-D.; Kersten, M. Determination of 206/207Pb isotope ratios by ICP-MS in particulate matter from the North Sea environment. Fresen. J. Anal. Chem. 1993, 347, 324–329. [Google Scholar] [CrossRef]
- Sañudo-Wilhelmy, S.A.; Flegal, A.R. Temporal variations in lead concentrations and isotopic composition in the Southern California Bight. Geochim. Cosmochim. Acta 1994, 58, 3315–3320. [Google Scholar] [CrossRef]
- Farmer, J.G.; Eades, L.J.; Graham, M.C.; Bacon, J.R. The changing nature of the 206Pb/207Pb isotopic ratio of lead in rainwater, atmospheric particulates, pine needles and leaded petrol in Scotland, 1982–1998. J. Environ. Monit. 2000, 2, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Chow, T.J.; Johnstone, M.S. Lead isotopes in gasoline and aerosols of Los Angeles basin, California. Science 1965, 147, 502–503. [Google Scholar] [CrossRef] [PubMed]
- Laidlaw, M.A.S.; Zahran, S.; Mielke, H.W.; Taylor, M.P.; Filippelli, G.M. Re-suspension of lead contaminated urban soil as a dominant source of atmospheric lead in Birmingham, Chicago, Detroit and Pittsburgh, USA. Atmos. Environ. 2012, 49, 302–310. [Google Scholar] [CrossRef]
- Mukai, H.; Tanaka, A.; Fujii, T.; Zeng, Y.Q.; Hong, Y.T.; Tang, J.; Guo, S.; Xue, H.S.; Sun, Z.L.; Zhou, J.T.; et al. Regional characteristics of sulfur and lead isotope ratios in the atmosphere at several Chinese urban sites. Environ. Sci. Technol. 2001, 35, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Taiwan EPA. The Dust Storm. Available online: http://dust.epa.gov.tw/dust/tw/default.aspx (accessed on 7 April 2015).
- Harris, A.R.; Davidson, C.I. The role of resuspended soil in lead flows in the California South Coast Air Basin. Environ. Sci. Technol. 2005, 39, 7410–7415. [Google Scholar] [CrossRef] [PubMed]
- Zahran, S.; Laidlaw, M.A.S.; McElmurry, S.P.; Filippelli, G.M.; Taylor, M. Linking source and effect: Resuspended soil lead, air lead, and children’s blood lead levels in Detroit, Michigan. Environ. Sci. Technol. 2013, 47, 2839–2845. [Google Scholar] [CrossRef] [PubMed]
- Flegal, A.R.; Gallon, C.; Ganguli, P.M.; Conaway, C.H. All the lead in China. Critical Reviews in Environ. Sci. Technol. 2013, 43, 1869–1944. [Google Scholar] [CrossRef]
- Díaz-Somoano, M.; Kylander, M.E.; López-Antón, M.A.; Suárez-Ruiz, I.; Martínez-Tarazona, M.R.; Ferrat, M.; Kober, B.; Weiss, D.J. Stable lead isotope compositions in selected coals from around the world and implications for present day aerosol source tracing. Environ. Sci. Technol. 2009, 43, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Bollhöfer, A.; Rosman, K.J.R. Isotopic source signatures for atmospheric lead: The northern hemisphere. Geochim. Cosmochim. Acta 2001, 65, 1727–1740. [Google Scholar] [CrossRef]
- Wong, C.S.C.; Li, X.D.; Zhang, G.; Qi, S.H.; Peng, X.Z. Atmospheric deposition of heavy metals in the Pearl River Delta, China. Atmos. Environ. 2003, 37, 767–776. [Google Scholar] [CrossRef]
- Kamenov, G.D.; Gulson, B.L. The Pb isotopic record of historical to modern human lead exposure. Sci. Total Environ. 2014, 490, 861–870. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, P.-H.; Shyu, G.-S.; Chang, Y.-F.; Chou, Y.-C.; Shen, C.-C.; Chou, C.-S.; Chang, T.-K. Lead Isotope Characterization of Petroleum Fuels in Taipei, Taiwan. Int. J. Environ. Res. Public Health 2015, 12, 4602-4616. https://doi.org/10.3390/ijerph120504602
Yao P-H, Shyu G-S, Chang Y-F, Chou Y-C, Shen C-C, Chou C-S, Chang T-K. Lead Isotope Characterization of Petroleum Fuels in Taipei, Taiwan. International Journal of Environmental Research and Public Health. 2015; 12(5):4602-4616. https://doi.org/10.3390/ijerph120504602
Chicago/Turabian StyleYao, Pei-Hsuan, Guey-Shin Shyu, Ying-Fang Chang, Yu-Chen Chou, Chuan-Chou Shen, Chi-Su Chou, and Tsun-Kuo Chang. 2015. "Lead Isotope Characterization of Petroleum Fuels in Taipei, Taiwan" International Journal of Environmental Research and Public Health 12, no. 5: 4602-4616. https://doi.org/10.3390/ijerph120504602
APA StyleYao, P. -H., Shyu, G. -S., Chang, Y. -F., Chou, Y. -C., Shen, C. -C., Chou, C. -S., & Chang, T. -K. (2015). Lead Isotope Characterization of Petroleum Fuels in Taipei, Taiwan. International Journal of Environmental Research and Public Health, 12(5), 4602-4616. https://doi.org/10.3390/ijerph120504602