Leachability of Heavy Metals from Lightweight Aggregates Made with Sewage Sludge and Municipal Solid Waste Incineration Fly Ash
Abstract
:1. Introduction
2. Materials and Method
2.1. Raw Materials
Materials | SiO2 | Al2O3 | Fe2O3 | MgO | CaO | K2O | Na2O |
---|---|---|---|---|---|---|---|
Sewage sludge | 21.5 | 3.8 | 4.2 | 1.5 | 20.7 | 0.5 | 0.4 |
MSWI fly ash | 40.1 | 14.8 | 1.4 | 3.1 | 18.9 | 4.1 | 3.1 |
clay | 70.4 | 15.2 | 6.5 | 0.5 | 0.6 | 1.2 | 0.4 |
Contents of Trace Elements | Zn | Cu | Cr | Pb | Ni | As | Cd |
---|---|---|---|---|---|---|---|
Content of trace elements in sewage sludge/mg·kg−1 | 1052 | 391 | 482 | 151 | 34 | 22 | 8 |
Content of trace elements in MSWI fly ash/mg·kg−1 | 3157 | 581 | 142 | 1483 | 51 | 85 | 42 |
2.2. Methods
2.2.1. Preparation of LWA
2.2.2. Experiments Design
2.2.3. Heavy Metal Leaching Test
Leaching Concentrations and STANDARDS | Zn | Cu | Cr | Pb | Ni | As | Cd |
---|---|---|---|---|---|---|---|
Leaching concentration of sewage sludge/mg·L−1 | 85.3 | 82.4 | 34.8 | 9.9 | 3.1 | 0.7 | 0.1 |
Leaching concentration of MSWI fly ash/mg·L−1 | 134.7 | 94.8 | 28.4 | 38.5 | 8.7 | 1.2 | 0.2 |
Identification standard for hazardous wastes (GB5085.3-1996)/mg·L−1 | ≤50 | ≤50 | ≤10 | ≤3 | ≤10 | ≤1.5 | ≤0.3 |
Environmental quality standards for surface water III (GB3838-2002)/mg·L−1 | ≤1 | ≤1 | ≤0.05 | ≤0.05 | ≤0.02 | ≤0.05 | ≤0.05 |
2.2.4. Microstructural Analysis and X-Ray Diffraction (XRD) Analysis
2.2.5. Quality Tests for LWA Containing Sludge
3. Results and Discussion
3.1. Effect of MSWI Fly Ash/Sewage Sludge (MSWI FA/SS) Ratio on the Stabilization of Heavy Metals
3.2. Effect of Sintering Temperature on the Stabilization of Heavy Metals
3.3. Effect of Sintering Time on the Stabilization of Heavy Metals
3.4. Comparison of Laboratory Produced and Commercial LWA
Variety | Loose Bulk Density (g/cm3) | Water Absorption (%) | Compressive Strength (Mpa) | Applications |
---|---|---|---|---|
G3 | 0.325 ± 50 | 20 | 0.981 | Insulation, Geotechnical Applications, Gardening and Horticulture |
F3 | 0.35 ± 50 | 20–25 | 1.962 | Prefabricated lightweight strucutures and insulation lightweight concretes |
F5 | 0.55 ± 50 | 15–20 | 4.905 | Concrete slabs, Building structures |
A5 | 0.575 ± 50 | 30–35 | - | Refractory mortars, Super lightweight concretes |
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Li, L.; Wang, S.; Lin, Y.T.; Liu, W.T.; Chi, T. A covering model application on Chinese industrial hazardous waste management based on integer program method. Ecol. Indic. 2015, 51, 237–243. [Google Scholar] [CrossRef]
- Misra, V.; Pandey, S.D. Hazardous waste, impact on health and environment for development of better waste management strategies in future in India. Environ. Int. 2005, 31, 417–431. [Google Scholar] [CrossRef] [PubMed]
- Zhan, T.L.T.; Zhan, X.J.; Lin, W.A.; Luo, X.Y.; Chen, Y.M. Field and laboratory investigation on geotechnical properties of sewage sludge disposed in a pit at Changan landfill, Chendu, China. Eng. Geol. 2014, 170, 24–32. [Google Scholar] [CrossRef]
- Xu, C.Q.; Chen, W.; Hong, J.L. Life-cycle environmental and economic assessment of sewage sludge treatment in China. J. Clean. Prod. 2014, 67, 79–87. [Google Scholar] [CrossRef]
- Gao, X.B.; Wang, W.; Ye, T.M.; Wang, F.; Lan, Y.X. Utilization of washed MSWI fly ash as partial cement substitute with the addition of dithiocarbamic chelate. J. Environ. Manag. 2008, 88, 293–299. [Google Scholar] [CrossRef]
- Wang, L.; Jin, Y.Y.; Nie, Y.F. Investigation of accelerated and natural carbonation of MSWI fly ash with a high content of Ca. J. Hazard. Mater. 2010, 174, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Qian, G.R.; Yang, X.Y.; Dong, S.X.; Zhou, J.Z.; Sun, Y.; Xu, Y.F.; Liu, Q. Stabilization of chromium-bearing electroplating sludge with MSWI fly ash-based friedel matrices. J. Hazard. Mater. 2009, 165, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.J.; Chang, C.Y.; Mui, D.T.; Chang, F.C.; Lee, M.Y.; Wang, C.F. Sequential extraction for evaluating the leaching behavior of selected elements in municipal solid waste incineration fly ash. J. Hazard. Mater. 2007, 149, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Veeken, A.H.M.; Hamelers, H.V.M. Removal of heavy metals from sewage sludge by extraction with organic acids. Water Sci. Technol. 1999, 40, 129–136. [Google Scholar] [CrossRef]
- Wang, W.C.; Xiang, L.; Chan, L.C. Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria. Chemosphere 2000, 41, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.S.; Liu, C.G.; Ding, D.H.; Lei, Z.F.; Yang, Y.N.; Feng, C.P.; Zhang, Z.Y. Immobilization of heavy metals in sewage sludge by using subcritical water technology. Bioresour. Technol. 2013, 137, 18–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samaras, P.; Papadimitriou, C.A.; Haritou, I.; Zouboulis, A.I. Investigation of sewage sludge stabilization potential by the addition of fly ash and lime. J. Hazard. Meter. 2008, 154, 1052–1059. [Google Scholar] [CrossRef]
- Aloisi, M.; Karamanov, A.; Pelino, M. Sintered glass-ceramic from municipal solid waste incinerator ashes. J. Non-Cryst. Solids 2004, 345–346, 192–196. [Google Scholar]
- Wey, M.Y.; Liu, K.Y.; Tsai, T.H.; Chou, J.T. The thermal treatment of the fly ash from municipal solid waste incinerator with rotary kiln. J. Hazard. Mater. 2006, 137, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Sakai, S.; Hiraoka, M. Municipal solid waste incinerator residue recycling by thermal process. Waste Manag. 2000, 20, 249–258. [Google Scholar] [CrossRef]
- Wang, X.R.; Jin, Y.Y.; Wang, Z.Y.; Nie, Y.F. Development of lightweight aggregate from dry sewage sludge and coal ash. Waste Manag. 2009, 29, 1330–1335. [Google Scholar] [CrossRef] [PubMed]
- Volland, S.; Kazmina, O.; Vereshchagin, V.; Dushkina, M. Recycling of sand sludge as a resource for lightweight aggregates. Constr. Build. Mater. 2014, 52, 361–365. [Google Scholar] [CrossRef]
- Laursen, K.; White, T.J.; Cresswell, D.J.F.; Wainwright, P.J.; Barton, J.R. Recycling of an industrial sludge and marine clay as light-weight aggregates. J. Environ. Manag. 2006, 80, 208–213. [Google Scholar] [CrossRef]
- Anja, T.; Lato, P.; Vojislav, M.; Zagorka, R. Artificial fly ash based aggregates properties influence on lightweight concrete performances. Ceram. Int. 2015, 41, 2714–2726. [Google Scholar] [CrossRef]
- Erhan, G.; Mehmet, G.; Emad, B.; Kasim, M. Strength and permeability properties of self-compacting concrete with cold bonded fly ash lightweight aggregate. Constr. Build. Mater. 2015, 74, 17–24. [Google Scholar] [CrossRef]
- Kwang, S.Y.; Yeon, J.J.; Erie, S.H.H.; Tae, S.Y. Experimental investigation on annual changes in mechanical properties of structural concretes with various types of light weight aggregates. Constr. Build. Mater. 2014, 73, 442–451. [Google Scholar] [CrossRef]
- Fragoulis, D.; Stamatakis, M.G.; Chaniotakis, E.; Columbus, G. Characterization of lightweight aggregates produced with clayey diatomite rocks originating from Greece. Mater. Charact. 2004, 53, 307–316. [Google Scholar] [CrossRef]
- Sloot, H.A.V.; Kosson, D.S.; Hjelmar, O. Characteristics, treatment and utilization of residues from municipal waste incineration. Waste Manag. 2001, 21, 753–765. [Google Scholar] [CrossRef] [PubMed]
- Chandler, A.J.; Eighmy, T.T.; Hjelmar, O.; Kosson, D.S.; Sawell, S.E.; Vehlow, J.; Sloot, H.A.V. Municipal solid waste incinerator residues. In Studies in Environmental Science; Elsevier Science: Amsterdam, The Netherlands, 1997; Volume 67, pp. 67–72. [Google Scholar]
- Hwang, C.L.; Bui, L.A.T.; Lin, K.L.; Lo, C.T. Manufacture and performance of lightweight aggregate from municipal solid waste incinerator fly ash and reservoir sediment for self-consolidating lightweight concrete. Cem. Concr. Compos. 2012, 34, 1159–1166. [Google Scholar] [CrossRef]
- Chen, H.J.; Wang, S.Y.; Tang, C.W. Reuse of incineration fly ashes and reaction ashes for manufacturing lightweight aggregate. Constr. Build. Mater. 2010, 24, 46–55. [Google Scholar] [CrossRef]
- Huang, S.C.; Chang, F.C.; Lo, S.L.; Lee, M.Y.; Wang, C.F.; Lin, J.D. Production of lightweight aggregates from mining residues, heavy metal sludge and incinerator fly ash. J. Hazard. Mater. 2007, 144, 52–58. [Google Scholar] [CrossRef] [PubMed]
- US EPA. SW-846, Method 3052, Acid Digestion of Sediments, Sludge, and Soils; US EPA: Washington, DC, USA, 1996.
- US EPA. SW-846, Method 6010C, Inductively Coupled Plasma-Atomic Emission Spectrometry; US EPA: Washington, DC, USA, 2007.
- China EPA. The Method Standard for Leaching Toxicity of Solid Wastes—Horizontal Vibration Extraction Procedure (GB5086.2-1997); China Environmental Science Press: Beijing, China, 1997.
- China EPA. Identification Standard for Hazardous Wastes—Identification for Extraction Procedure Toxicity (GB5085.3-1996); China Environmental Science Press: Beijing, China, 1996.
- China EPA. Environmental Quality Standards for Surface Water (GB3838-2002); China Environmental Science Press: Beijing, China, 2002.
- Qing, W.; Yanrui, C.; Qilu, L.; Jianhui, S. Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA. J. Hazard. Mater. 2015, 283, 748–754. [Google Scholar] [CrossRef] [PubMed]
- China EPA. Lightweight Aggregates and Its Test Methods. Part 2. Test Methods for Lightweight Aggregates (GB/T 17431.2-1998); China Environmental Science Press: Beijing, China, 1998.
- Gennaro, R.; Cappelletti, P.; Cerri, G.; Gennaro, M.; Dondi, M.; Langella, A. Zeolitic tuffs as raw materials for lightweight aggregates. Appl. Clay Sci. 2004, 25, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.M.; Cui, C.; Qin, J. Recycling of low-silicon iron tailings in the production of lightweight aggregates. Ceram. Int. 2015, 41, 1213–1221. [Google Scholar] [CrossRef]
- Cheng, T.W.; Chen, Y.S. On formation of CaO-Al2O3-SiO2 glass-ceramics by vitrification of incinerator fly ash. Chemos 2003, 51, 817–824. [Google Scholar] [CrossRef]
- Chang, F.C.; Lo, S.L.; Lee, M.Y.; Ko, C.H.; Lin, J.D.; Huang, S.C.; Wang, C.F. Leachability of metals from sludge-based artificial lightweight aggregate. J. Hazard. Mater. 2007, 146, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.R.; Zou, J.L.; Li, G.B. Stabilization of heavy metals in sludge ceramsite. Water Res. 2010, 44, 2930–2938. [Google Scholar] [CrossRef] [PubMed]
- China EPA. Lightweight Aggregates and Its Test Methods. Part 1. Lightweight Aggregates (GB/T 17431.1-1998); China Environmental Science Press: Beijing, China, 1998. [Google Scholar]
- Optiroc Áridos Ligeros SA. La Arcilla Expandida. In Arlita Arcilla Expandida; Manual General: Mardrid, Spain, 2000; Volume 1, pp. 5–29. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, N. Leachability of Heavy Metals from Lightweight Aggregates Made with Sewage Sludge and Municipal Solid Waste Incineration Fly Ash. Int. J. Environ. Res. Public Health 2015, 12, 4992-5005. https://doi.org/10.3390/ijerph120504992
Wei N. Leachability of Heavy Metals from Lightweight Aggregates Made with Sewage Sludge and Municipal Solid Waste Incineration Fly Ash. International Journal of Environmental Research and Public Health. 2015; 12(5):4992-5005. https://doi.org/10.3390/ijerph120504992
Chicago/Turabian StyleWei, Na. 2015. "Leachability of Heavy Metals from Lightweight Aggregates Made with Sewage Sludge and Municipal Solid Waste Incineration Fly Ash" International Journal of Environmental Research and Public Health 12, no. 5: 4992-5005. https://doi.org/10.3390/ijerph120504992
APA StyleWei, N. (2015). Leachability of Heavy Metals from Lightweight Aggregates Made with Sewage Sludge and Municipal Solid Waste Incineration Fly Ash. International Journal of Environmental Research and Public Health, 12(5), 4992-5005. https://doi.org/10.3390/ijerph120504992