Effect of Temperature on Fimbrial Gene Expression and Adherence of Enteroaggregative Escherichia coli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Media, and Growth Conditions
2.2. Virulence Gene Expression Analysis by SYBR Green Real-Time PCR
2.3. Adherence Assay
2.4. Biofilm Formation
3. Results
3.1. Effects of Temperature on Virulence Gene Expression
3.2. Adherence to Hep-2 Cells
3.3. Biofilm Formation
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hashizume, M.; Armstrong, B.; Hajat, S.; Wagatsuma, Y.; Farugue, A.S.; Hayashi, T.; Sack, D.A. Association between climate variability and hospital visits for non-cholera diarrhea in Bangladesh: Effects and vulnerable groups. Int. J. Epidemiol. 2007, 36, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Ou, C.Q.; Yang, J.; Ou, Q.Q.; Liu, H.Z.; Lin, G.Z.; Chen, P.Y.; Qian, J.; Guo, Y.M. The impact of relative humidity and atmospheric pressure on mortality in Guangzhou, China. Biomed. Environ. Sci. 2014, 27, 917–925. [Google Scholar] [PubMed]
- Hashizume, M.; Armstrong, B.; Hajat, S.; Wagatsuma, Y.; Farugue, A.S.; Hayashi, T.; Sack, D.A. The effect of rainfall on the incidence of cholera in Bangladesh. Epidemiology 2008, 19, 103–110. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Sea Surface Temperature. Available online: http://www.epa.gov/climatechange/science/indicators/oceans/sea-surface-temp.html (accessed on 6 April 2015).
- Konkel, M.E.; Tilly, K. Temperature-regulated expression of bacterial virulence genes. Microb. Infect. 2000, 2, 157–166. [Google Scholar] [CrossRef]
- Moors, E.; Singh, T.; Siderius, C.; Balakrishnan, S.; Mishra, A. Climate change and waterborne diarrhoea in northern India: Impacts and adaptation strategies. Sci. Total. Environ. 2013, 468, S139–S151. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.B.; Hales, S.; de Wet, N.; Raj, R.; Hearnden, M.; Weinstein, P. The influence of climate variation and change on diarrheal disease in the Pacific Islands. Environ. Health Perspect. 2001, 109, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Chakraborti, A.; Asea, A. Enteroaggregative Escherichia coli: An emerging enteric food borne pathogen. Interdiscip. Perspect. Infect. Dis. 2010. [Google Scholar] [CrossRef]
- Nataro, J.P.; Kaper, J.B.; Robins-Browne, R.; Prado, V.; Vial, P.; Levine, M.M. Patterns of adherence of diarrheagenic Escherichia coli to HEp-2 cells. Pediatr. Infect. Dis. J. 1987, 6, 829–831. [Google Scholar] [CrossRef] [PubMed]
- Czeczulin, J.R.; Balepur, S.; Hicks, S.; Phillips, A.; Hall, R.; Kothary, M.H.; Navarro-Garcia, F.; Nataro, J.P. Aggregative adherence fimbria II, a second fimbrial antigen mediating aggregative adherence in enteroaggregative Escherichia coli. Infect. Immun. 1997, 65, 4135–4145. [Google Scholar] [PubMed]
- Nataro, J.P.; Deng, Y.; Maneval, D.R.; German, A.L.; Martin, W.C.; Levine, M.M. Aggregative adherence fimbriae I of enteroaggregative Escherichia coli mediate adherence to HEp-2 cells and hemagglutination of human erythrocytes. Infect. Immun. 1992, 60, 2297–2304. [Google Scholar] [PubMed]
- Nataro, J.P.; Deng, Y.; Deng, Y.; Walker, K. AggR, a transcriptional activator of aggregative adherence fimbria I expression in enteroaggregative Escherichia coli. J. Bacteriol. 1994, 176, 4691–4699. [Google Scholar] [PubMed]
- Hicks, S.; Candy, D.C.; Phillips, A.D. Adhesion of enteroaggregative Escherichia coli to pediatric intestinal mucosa in vitro. Infect. Immun. 1996, 64, 4751–4760. [Google Scholar] [PubMed]
- Pereira, A.L.; Silva, T.N.; Gomes, A.C.; Araujo, A.C.; Giugliano, L.G. Diarrhea-associated biofilm formed by enteroaggregative Escherichia coli and aggregative Citrobacter freundii: A consortium mediated by putative F pili. BMC Microbiol. 2010, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2007: The Physical Science Basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Tignor, K.B.M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 996. [Google Scholar]
- Carey, C.M.; Kostrzynska, M.; Thompson, S. Escherichia coli O157:H7 stress and virulence gene expression on Romaine lettuce using comparative real-time PCR. J. Microbiol. Methods 2009, 77, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Leimeister-Wachter, M.; Domann, E.; Chakraborty, T. The expression of virulence genes in Listeria monocytogenes is thermoregulated. J. Bacteriol. 1992, 174, 947–952. [Google Scholar] [PubMed]
- Kimes, N.E.; Grim, C.J.; Johnson, W.R.; Hasan, N.A.; Tall, B.D.; Kothary, M.H.; Kiss, H.; Munk, A.C.; Tapia, R.; Green, L.; et al. Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J. 2012, 6, 835–846. [Google Scholar] [CrossRef] [PubMed]
- De Oliviera, D.C.; Fernandes Juniour, A.; Kaneno, R.; Silva, M.G.; Araujo Junior, J.P.; Silva, N.C.; Rall, V.L. Ability of Salmonella spp. to produce biofilm is dependent of temperature and surface material. Foodborne Pathog. Dis. 2014, 6, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liao, X.; Jiang, H.; Zhu, H.; Yue, L.; Li, S.; Fang, B.; Liu, Y. Characteristics of Escherichia coli biofilm production, genetic typing, drug resistance pattern and gene expression under aminoglycoside pressures. Environ. Toxicol. Pharmacol. 2010, 30, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Sharmir, E.R.; Warthan, M.; Brown, S.P.; Natara, J.P.; Guerrant, R.L.; Hoffman, P.S. Nitazoxanide inhibits biofilm production and hemagglutination by enteroaggregative Escherichia coli strains by blocking assembly of aafA fimbriae. Antimicrob. Agents Chemother. 2010, 54, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, J.; Hicks, S.; Dall’agnol, M.; Phillips, A.D.; Nataro, J.P. Roles for Fis and YafK in biofilm formation by enteroaggregative Escherichia coli. Mol. Microbiol. 2001, 41, 983–997. [Google Scholar] [CrossRef] [PubMed]
- Swenson, D.L.; Clegg, S. Identification of ancillary fim genes affecting fimA expression in Salmonella typhimurium. J. Bacteriol. 1992, 174, 7697–7704. [Google Scholar] [PubMed]
- Hansen, H.; Bjelland, A.M.; Ronessen, M.; Robertson, E.; Willassen, N.P. LitR is a repressor of syp genes and has a temperature-sensitive regulatory effect on biofilm formation and colony morphology in Vibrio (Aliivibrio) salmonicida. Appl. Environ. Microb. 2014, 80, 5530–5541. [Google Scholar] [CrossRef] [PubMed]
- Wurpel, D.J.; Totsika, M.; Allsopp, L.P.; Hartley-Tessell, L.E.; Day, C.J.; Peters, K.M.; Sarkar, S.; Ulett, G.C.; Yang, J.; Tiralongo, J.; et al. F9 fimbriae of urophathogenic Escherichia coli are expressed at low temperature and recognise Galβ1-3GlcNAc—Containing glycans. PLoS ONE 2014, 3. [Google Scholar] [CrossRef]
- Morin, N.; Tirling, C.; Ivison, S.M.; Kaur, A.P.; Nataro, J.P.; Steiner, T.S. Autoactivation of the AggR regulator of enteroaggregative Escherichia coli in vitro and in vivo. FEMS Immunol. Med. Microbiol. 2010, 58, 344–355. [Google Scholar] [PubMed]
- Bertin, P.; Terao, E.; Lee, E.H.; Lejeune, P.; Colson, C.; Danchin, A.; Collatz, E. The H-NS protein is involved in the biogenesis of flagella in Escherichia coli. J. Bacteriol. 1994, 176, 5537–5540. [Google Scholar] [PubMed]
- Ono, S.; Goldberg, M.D.; Olsson, T.; Esposito, D.; Hinton, J.C.; Ladbury, J.E. H-NS is a part of a thermally controlled mechanism for bacterial gene regulation. Biochem. J. 2005, 391, 203–213. [Google Scholar] [PubMed]
- Gally, D.L.; Bogan, J.A.; Eisenstein, B.I.; Blomfield, I.C. Environmental regulation of the fim switch controlling type 1 fimbrial phase variation in Escherichia coli K-12: Effects of temperature and media. J. Bacteriol. 1993, 175, 6186–6193. [Google Scholar] [PubMed]
- Kuwahara, H.; Myers, C.J.; Samoilov, M.S. Temperature control of fimbriation circuit switch in uropathogenic Escherichia coli: Quantitative analysis via automated model abstraction. PLoS Comput. Biol. 2010, 6. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Zhu, J.; Feng, Y.; Chambers, J.R.; Gong, J.; Gyles, C.L. Differential gene expression and adherence of Escherichia coli O157:H7 in vitro and in ligated pig intestines. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Feng, Y.; Lu, Y.; Chambers, J.R.; Gong, J.; Gyles, C.L. Adherence and associated virulence gene expression in acid-treated Escherichia coli O157:H7 in vitro and in ligated pig intestine. Microbiology 2012, 158, 1084–1093. [Google Scholar] [CrossRef] [PubMed]
- Livny, J.; Zhou, X.; Mandilk, A.; Hubbard, T.; Davis, B.M.; Waldor, M.K. Comparative RNA-seq based dissection of the regulatory networks and environmental stimuli underlying Vibrio parahaemolyticus gene expression during infection. Nucleic Acids Res. 2014, 42, 12212–12223. [Google Scholar] [CrossRef] [PubMed]
- Cases, I.; Lorenzo, V.; Ouzounis, C.A. Transcription regulation and environmental adaptation in bacteria. Trends Microbiol. 2003, 11, 248–253. [Google Scholar] [CrossRef]
- Riehle, M.M.; Bennett, A.F.; Lenski, R.E.; Long, A.D. Evolutionary changes in heat-inducible gene expression in lines of Escherichia coli adapted to high temperature. Physiol. Genomics 2003, 14, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Riehle, M.M.; Bennett, A.F.; Long, A.D. Differential patterns of gene expression and gene complement in laboratory-evolved lines of E. coli. Integr. Comp. Biol. 2005, 45, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Fong, S.S.; Joyce, A.R.; Palsson, B. Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression state. Genome Res. 2005, 15, 1365–1372. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, C.; Ijperon, C.V.; Dudley, E.G.; Chart, H.; Willshaw, G.A.; Cheasty, T.; Smith, H.R.; Nataro, J.P. Use of a microarray to assess the distribution of plasmid and chromosomal virulence genes in strains of enteroaggregative Escherichia coli. FEMS Microbiol. Lett. 2005, 253, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Savarino, S.J.; Fox, F.; Deng, Y.; Nataro, J.P. Identification and characterization of a gene cluster mediating enteroaggregative Escherichia coli aggregative adherence fimbria I biogenesis. J. Bacteriol. 1994, 176, 4949–4957. [Google Scholar] [PubMed]
- Boisen, N.; Struve, C.; Scheutz, F.; Krogfelt, K.A.; Nataro, J.P. New adhesin of enteroaggregative Escherichia coli related to the Afa/Dr/AAF family. Infect. Immun. 2008, 76, 3281–3292. [Google Scholar] [CrossRef] [PubMed]
- Hostacka, A.; Ciznar, I.; Stefkovicova, M. Temperature and pH affect the production of bacterial biofilm. Folia Microbiol. 2010, 55, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Sakyi, P.A.; Asare, R. Impact of temperature on bacterial growth and survival in drinking-water pipes. Res. J. Environ. Earth Sci. 2012, 4, 807–817. [Google Scholar]
- Reisner, A.; Krogfelt, K.A.; Klein, B.M.; Zechner, E.L.; Molin, S. In vitro biofilm formation of commensal and pathogenic Escherichia coli strains: Impact of environmental and genetic factors. J. Bacteriol. 2006, 188, 3572–3581. [Google Scholar] [CrossRef] [PubMed]
- Uhlich, G.A.; Chen, C.Y.; Cottrell, B.J.; Nguyen, L. Growth media and temperature effects on biofilm formation by serotype O157:H7 and non-O157 shiga toxin-producing Escherichia coli. FEMS Microbiol. 2014, 354, 133–141. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hinthong, W.; Indrawattana, N.; Pitaksajjakul, P.; Pipattanaboon, C.; Kongngoen, T.; Tharnpoophasiam, P.; Worakhunpiset, S. Effect of Temperature on Fimbrial Gene Expression and Adherence of Enteroaggregative Escherichia coli. Int. J. Environ. Res. Public Health 2015, 12, 8631-8643. https://doi.org/10.3390/ijerph120808631
Hinthong W, Indrawattana N, Pitaksajjakul P, Pipattanaboon C, Kongngoen T, Tharnpoophasiam P, Worakhunpiset S. Effect of Temperature on Fimbrial Gene Expression and Adherence of Enteroaggregative Escherichia coli. International Journal of Environmental Research and Public Health. 2015; 12(8):8631-8643. https://doi.org/10.3390/ijerph120808631
Chicago/Turabian StyleHinthong, Woranich, Nitaya Indrawattana, Pannamthip Pitaksajjakul, Chonlatip Pipattanaboon, Thida Kongngoen, Prapin Tharnpoophasiam, and Suwalee Worakhunpiset. 2015. "Effect of Temperature on Fimbrial Gene Expression and Adherence of Enteroaggregative Escherichia coli" International Journal of Environmental Research and Public Health 12, no. 8: 8631-8643. https://doi.org/10.3390/ijerph120808631
APA StyleHinthong, W., Indrawattana, N., Pitaksajjakul, P., Pipattanaboon, C., Kongngoen, T., Tharnpoophasiam, P., & Worakhunpiset, S. (2015). Effect of Temperature on Fimbrial Gene Expression and Adherence of Enteroaggregative Escherichia coli. International Journal of Environmental Research and Public Health, 12(8), 8631-8643. https://doi.org/10.3390/ijerph120808631