Airborne Particulate Matter in Two Multi-Family Green Buildings: Concentrations and Effect of Ventilation and Occupant Behavior
Abstract
:1. Introduction
2. Experimental Section
2.1. Buildings
Building | L | E |
---|---|---|
Designation | LEED platinum a | ENERGY STAR |
Housing Type | Luxury | Affordable housing development (Economy) |
Number of Floors | 22 | 6 and 7 (two wings) |
Design Exhaust Ventilation Rate | 120 ft3/min (0.057 m3/s) in kitchens and 50 ft3/min (0.024 m3/s) in bathrooms | 30 ft3/min (0.014 m3/s) each in kitchens and bathrooms |
Supply Air Ventilation Rate | 117–186 ft3/min (0.0552–0.0878 m3/s) [39] | None—naturally ventilated |
Active Ventilation Systems | Conditioned 100% outside supply air; local bathroom and kitchen exhausts | Local kitchen and bathroom exhausts |
Filtration | MERV 7 and 14 on air intakes; MERV 11 in units | No central filtration |
Heating | Fan coil units | Baseboard heating |
Stove Type | Gas | Gas |
Air Conditioning | Central | Window units in ~73% of apartments |
2.2. Measurements
2.2.1. Measurement Campaigns
2.2.2. Measurement Procedures
2.2.3. Determination of Occupant Behaviors
2.2.4. Statistical Analysis
2.3. Meta-Analysis Comparison with Literature
2.4. IRB Statement
3. Results and Discussion
3.1. Summary Statistics and Comparison
3.2. Effects Related to Occupant Behaviors
3.2.1. Combustion Sources in Building E
Site | Pollutant | Mass Concentration, µg/m3 | Indoor/Outdoor Ratio | ||||
---|---|---|---|---|---|---|---|
Yes a | No a | p | Yes a | No a | p | ||
Smoker in apartment b | |||||||
C1-E | PM1 | 25 (18, 41) | 26 (20, 40) | 0.972 | 1.4 (0.9, 2.0) | 1.5 (1.1, 1.8) | 0.554 |
PM2.5 | 25 (18, 41) | 27 (20, 41) | 0.917 | 1.4 (0.9, 2.0) | 1.5 (1.1, 1.9) | 0.508 | |
PM4 | 26 (19, 42) | 28 (21, 42) | 0.931 | 1.4 (0.9, 1.9) | 1.5 (1.2, 1.9) | 0.465 | |
PM10 | 31 (21, 48) | 34 (26, 47) | 0.889 | 1.4 (0.9, 2.1) | 1.7 (1.2, 2.1) | 0.394 | |
PMTOTAL | 51 (35, 63) | 50 (38, 60) | 0.821 | 2.0 (1.1, 2.7) | 2.2 (1.4, 3.6) | 0.330 | |
Operating window AC (outdoor temperature > 70 °F (21.1 °C)) c | |||||||
C1-E | PM1 | 24 (17, 49) | 27 (22, 38) | 0.930 | 1.1 (1.0, 1.6) | 1.6 (1.5, 2.9) | 0.268 |
PM2.5 | 25 (17, 49) | 28 (22, 39) | 0.930 | 1.1 (1.0, 1.6) | 1.6 (1.5, 2.9) | 0.246 | |
PM4 | 26 (18, 50) | 29 (23, 42) | 0.881 | 1.1 (1.0, 1.6) | 1.6 (1.6, 3.0) | 0.246 | |
PM10 | 28 (20, 52) | 37 (29, 49) | 0.720 | 1.1 (1.0, 1.8) | 1.9 (1.7, 3.5) | 0.171 | |
PMTOTAL | 42 (29, 58) | 62 (57, 67) | 0.192 | 1.5 (1.1, 2.2) | 3.0 (2.1, 6.4) | 0.052 | |
C2-E | PM1 | 47 (39, 61) | 42 (33, 60) | 0.713 | 1.0 (0.9, 1.3) | 1.2 (0.8, 1.8) | 0.670 |
PM2.5 | 47 (39, 61) | 43 (34, 61) | 0.729 | 1.1 (0.9, 1.3) | 1.2 (0.8, 1.8) | 0.673 | |
PM4 | 48 (39, 62) | 43 (34, 62) | 0.763 | 1.1 (0.9, 1.3) | 1.2 (0.8, 1.7) | 0.724 | |
PM10 | 48 (40, 62) | 47 (37, 63) | 0.853 | 1.1 (0.9, 1.2) | 1.2 (0.8, 1.7) | 0.717 | |
PMTOTAL | 55 (46, 69) | 65 (50, 82) | 0.736 | 1.1 (0.9, 1.4) | 1.6 (1.0, 2.3) | 0.621 | |
E | PM1 | 41 (21, 53) | 40 (32, 56) | 0.555 | 1.1 (0.9, 1.5) | 1.2 (0.9, 1.9) | 0.547 |
PM2.5 | 42 (22, 53) | 41 (33, 56) | 0.529 | 1.1 (0.9, 1.5) | 1.2 (0.8, 1.8) | 0.547 | |
PM4 | 42 (22, 54) | 42 (33, 58) | 0.513 | 1.1 (1.0, 1.6) | 1.2 (0.8, 1.9) | 0.611 | |
PM10 | 44 (23, 55) | 46 (35, 62) | 0.393 | 1.1 (1.0, 1.8) | 1.3 (0.8, 2.0) | 0.606 | |
PMTOTAL | 53 (32, 62) | 64 (51, 81) | 0.053 | 1.4 (1.1, 2.1) | 1.6 (1.1, 2.6) | 0.551 | |
Combustion d | |||||||
C1-E | PM1 | 31 (24, 40) | 26 (17, 40) | 0.419 | 2.2 (1.5, 4.8) | 1.3 (1, 1.7) | 0.025 |
PM2.5 | 32 (25, 42) | 26 (18, 40) | 0.363 | 2.1 (1.5, 5.1) | 1.3 (1, 1.7) | 0.020 | |
PM4 | 34 (26, 47) | 27 (19, 41) | 0.325 | 2 (1.6, 5.5) | 1.3 (1, 1.7) | 0.016 | |
PM10 | 43 (29, 58) | 33 (24, 45) | 0.350 | 2 (1.8, 6.3) | 1.4 (1, 2.1) | 0.026 | |
PMTOTAL | 62 (39, 81) | 50 (36, 61) | 0.495 | 2.6 (2, 6.9) | 1.9 (1.1, 2.9) | 0.046 | |
C2-E | PM1 | 398 (198, 457) | 36 (23, 68) | 0.005 | 15.9 (9.4, 35.2) | 1.2 (0.9, 2.8) | 0.016 |
PM2.5 | 422 (199, 458) | 37 (24, 70) | 0.004 | 16.2 (9.5, 35.2) | 1.3 (0.9, 2.8) | 0.016 | |
PM4 | 442 (200, 462) | 37 (24, 70) | 0.004 | 17 (9.5, 35.5) | 1.3 (0.9, 2.8) | 0.014 | |
PM10 | 476 (208, 507) | 42 (26, 73) | 0.004 | 18.8 (9.9, 34) | 1.4 (1, 2.8) | 0.013 | |
PMTOTAL | 493 (223, 680) | 58 (36, 88) | 0.001 | 21.2 (10.1, 32.9) | 1.9 (1.2, 3.6) | 0.007 | |
E | PM1 | 40 (29, 248) | 33 (22, 61) | 0.025 | 4.8 (1.5, 11.1) | 1.3 (0.9, 2.5) | 0.003 |
PM2.5 | 42 (30, 255) | 33 (22, 62) | 0.020 | 5.1 (1.6, 11.2) | 1.3 (0.9, 2.5) | 0.002 | |
PM4 | 47 (31, 260) | 34 (23, 63) | 0.016 | 5.5 (1.6, 11.4) | 1.3 (0.9, 2.6) | 0.002 | |
PM10 | 58 (36, 275) | 39 (26, 66) | 0.013 | 6.3 (1.9, 12.1) | 1.4 (1, 2.6) | 0.002 | |
PMTOTAL | 94 (59, 290) | 54 (36, 81) | 0.009 | 6.9 (2.5, 13.9) | 1.9 (1.2, 3.3) | 0.003 |
3.2.2. Air Conditioning and Window Opening in Building E
3.3. Effects Related to Building Design
3.3.1. Exhaust Ventilation in Building E
3.3.2. Environmental Conditions
3.3.3. Building Floor
3.4. Comparison to Other Green and Conventional Residential Buildings
4. Discussion of Results
4.1. Comparison of Two Green Buildings
Factor | Effect on PM Mass Concentration | Effect on PM I/O Ratios |
---|---|---|
Building factors | ||
Building | All size fractions lower in Building L (e.g., 19 μg/m3 difference in median PMTOTAL) | Building E: >1; Building L: <1 |
Change per increasing floor number | Building E: 4%–8% decrease; Building L: 1%–2% decrease | Building E: 6% decrease; Building L: 1%–2% decrease |
Occupant behaviors in building E | ||
Combustion behaviors during measurements | C1-E: Increased peaks with median unchanged; C2-E: ~10 times higher than without combustion | C1-E: Increased peaks with median unchanged; C2-E: ~13 times higher than without combustion |
Smoker lives in apartment | C1-E: None | C1-E: None |
Operating window AC | C1-E and C2-E: Same as with closed windows | C1-E and C2-E: Same as with closed windows |
Open windows | Building E pooled: Non-statistically significant increase of <20 μg/m3 | Building E pooled: ~1 unit (~40%) increase with borderline statistical significance |
Environmental conditions (indoor, outdoor, and I/O) | ||
Temperature | None | C1-E: None; C2-E and C2-L: Increased by 0.7–3.4 times per unit increase in I/O ratio of temperature; decreased by 3%–6% per 1 °C increase in outdoor temperature |
Humidity | C1-E, C2-E, and C2-L: Direction and statistical significance mixed within buildings, true effect unlikely | C1-E, C2-E, and C2-L: Direction and statistical significance mixed within buildings, true effect unlikely |
4.2. Factors Affecting PM
4.3. Comparison to Other Studies
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- McGraw-Hill Construction. Green Multifamily and Single Family Homes: Growth in a Recovering Market. Available online: http://www.seia.org/research-resources/green-multifamily-single-family-homes-growth-recovering-market (accessed on 28 December 2015).
- U.S. Department of Housing and Urban Development. HUD Strategic Plan 2014–2018. Available online: http://portal.hud.gov/hudportal/documents/huddoc?id=hudstrategicplan2014-2018.pdf (accessed on 28 December 2015).
- Pardo, M.; Shafer, M.M.; Rudich, A.; Schauer, J.J.; Rudich, Y. Single exposure to near roadway particulate matter leads to confined inflammatory and defense responses: Possible role of metals. Environ. Sci. Technol. 2015, 49, 8777–8785. [Google Scholar] [CrossRef] [PubMed]
- Mishra, N.; Ayoko, G.; Salthammer, T.; Morawska, L. Evaluating the risk of mixtures in the indoor air of primary school classrooms. Environ. Sci. Pollut. Res. 2015, 22, 1–9. [Google Scholar] [CrossRef] [PubMed]
- International WELL Building Institute. The WELL Certification. Available online: https://www.wellcertified.com/certification (accessed on 28 December 2015).
- National Center for Healthy Housing & American Public Health Association. National Healthy Housing Standard. Available online: http://www.nchh.org/Policy/NationalHealthyHousingStandard.aspx (accessed on 28 December 2015).
- Wei, W.; Ramalho, O.; Mandin, C. Indoor air quality requirements in green building certifications. Bldg. Environ. 2015, 92, 10–19. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Goldberg, M.; Veilleneuve, P.J. A Systematic review of the relation between long-term exposure to ambient air pollution and chronic diseases. Rev. Environ. Health 2008, 23, 243–298. [Google Scholar] [PubMed]
- Hoek, G.; Krishnan, R.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health 2013, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.; Shin, H.; Burnett, R.; North, T.; Cohen, A.J. Ambient particulate air pollution and acute lower respiratory infections: A systematic review and implications for estimating the global burden of disease. Air Qual. Atmos. Health 2013, 6, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Pelucchi, C.; Negri, E.; Gallus, S.; Boffetta, P.; Tramacere, I.; la Vecchia, C. Long-term particulate matter exposure and mortality: A review of European epidemiological studies. BMC Pub. Health 2009. [Google Scholar] [CrossRef] [PubMed]
- Franklin, B.A.; Brook, R.; Arden Pope, C. Air pollution and cardiovascular disease. Curr. Prob. Cardiol. 2015, 40, 207–238. [Google Scholar] [CrossRef] [PubMed]
- Fantke, P.; Jolliet, O.; Evans, J.S.; Apte, J.S.; Cohen, A.J.; Hänninen, O.O.; Hurley, F.; Jantunen, M.J.; Jerrett, M.; Levy, J.I.; et al. Health effects of fine particulate matter in life cycle impact assessment: Findings from the Basel Guidance Workshop. Int. J. Life Cycle Assess. 2014, 20, 276–288. [Google Scholar] [CrossRef] [Green Version]
- Spengler, J.D.; Chen, Q. Indoor air quality factors in designing a healthy building. Annu. Rev. Energ. Environ. 2000, 25, 567–600. [Google Scholar] [CrossRef]
- Allen, J.G.; MacNaughton, P.; Laurent, J.G.C.; Flanigan, S.S.; Eitland, E.S.; Spengler, J.D. Green buildings and health. Curr. Environ. Health Rpt. 2015, 2, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Colton, M.D.; Laurent, J.G.; MacNaughton, P.; Kane, J.; Bennett-Fripp, M.; Spengler, J.; Adamkiewicz, G. Health benefits of green public housing: Associations with asthma morbidity and building-related symptoms. Am. J. Pub. Health 2015, 105, 2482–2489. [Google Scholar] [CrossRef] [PubMed]
- Cerway Haute Qualité Environnementale. Available online: http://www.behqe.com/presentation-hqe/governance-and-organization (accessed on 17 November 2015).
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. Exposure Factors Handbook. Available online: http://www.epa.gov/ncea/efh (accessed on 28 December 2015).
- Habre, R.; Coull, B.; Moshier, E.; Godbold, J.; Grunin, A.; Nath, A.; Castro, W.; Schachter, N.; Rohr, A.; Kattan, M.; et al. Sources of indoor air pollution in New York City residences of asthmatic children. J. Expos. Sci. Environ. Epidemiol. 2014, 24, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Wallace, L.A.; Mitchell, H.; O’Connor, G.T.; Neas, L.; Lippmann, M.; Kattan, M.; Koenig, J.; Stout, J.W.; Vaughn, B.J.; Wallace, D.; et al. Particle concentrations in inner-city homes of children with asthma: The effect of smoking, cooking, and outdoor pollution. Environ. Health Perspect. 2003, 111, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.Y.; Turpin, B.J.; Korn, L.; Weisel, C.P.; Morandi, M.; Colome, S.; Zhang, J.; Stock, T.; Spektor, D.; Winer, A.; et al. Influence of ambient (outdoor) sources on residential indoor and personal PM2.5 concentrations: Analyses of RIOPA data. J. Expo. Anal. Environ. Epidemiol. 2004, 15, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Hodas, N.; Loh, M.; Shin, H.M.; Li, D.; Bennett, D.; McKone, T.E.; Jolliet, O.; Weschler, C.J.; Jantunen, M.; Lioy, P.; Fantke, P. Indoor inhalation intake fractions of fine particulate matter: Review of influencing factors. Indoor Air 2015. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Morawska, L.; Hitchins, J.; Gilbert, D. Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmos. Environ. 2004, 38, 3405–3415. [Google Scholar] [CrossRef] [Green Version]
- Cyrys, J.; Pitz, M.; Bischof, W.; Wichmann, H.E.; Heinrich, J. Relationship between indoor and outdoor levels of fine particle mass, particle number concentrations and black smoke under different ventilation conditions. J. Expos. Anal. Environ. Epidemiol. 2004, 14, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Fabian, P.; Adamkiewicz, G.; Levy, J.I. Simulating indoor concentrations of NO2 and PM2.5 in multi-family housing for use in health-based intervention modeling. Indoor Air 2012, 22, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Tunno, B.J.; Kyra Naumoff, S.; Cambal, L.; Tripathy, S.; Holguin, F.; Lioy, P.; Clougherty, J.E. Indoor air sampling for fine particulate matter and black carbon in industrial communities in Pittsburgh. Sci. Total Environ. 2015, 536, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Fabian, M.P.; Adamkiewicz, G.; Stout, N.K.; Sandel, M.; Levy, J.I. A simulation model of building intervention impacts on indoor environmental quality, pediatric asthma, and costs. J. Allergy Clin. Immunol. 2014, 133, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Kearney, J.; Wallace, L.; MacNeill, M.; Heroux, M.E.; Kindzierski, W.; Wheeler, A. Residential infiltration of fine and ultrafine particles in Edmonton. Atmos. Environ. 2014, 94, 793–805. [Google Scholar] [CrossRef]
- Rim, D.; Wallace, L.A.; Persily, A.K. Indoor ultrafine particles of outdoor origin: Importance of window opening area and fan operation condition. Environ. Sci. Technol. 2013, 47, 1922–1929. [Google Scholar] [CrossRef] [PubMed]
- Wallace, L.; Kindzierski, W.; Kearney, J.; MacNeill, M.; Heroux, M.E.; Wheeler, A.J. Fine and ultrafine particle decay rates in multiple homes. Environ. Sci. Technol. 2013, 47, 12929–12937. [Google Scholar] [CrossRef] [PubMed]
- Ahrentzen, S.; Ball, J.; Destaillets, H.; Fonseca, E.; Fraser, M.; Johnson, W.; Patel, M.; Shea, K. Is green housing healthy housing: A question for seniors. In Processing of the ENHR 2012 Conference (European Network for Housing Research), Workshop 19: Residential Context of Health, Lillihamer, Norway, June 2012.
- Offermann, F.J. Ventilation and Indoor Air Quality in New Homes. California Air Resources Board and California Energy Commission, PIER Energy-Related Environmental Research Program. Collaborative Report. CEC-500-2009-085. Available online: http://www.arb.ca.gov/research/apr/past/04-310.pdf (accessed on 28 December 2015).
- Colton, M.D.; MacNaughton, P.; Vallarino, J.; Kane, J.; Bennett-Fripp, M.; Spengler, J.D.; Adamkiewicz, G. Indoor air quality in green vs. conventional multifamily low-income housing. Environ. Sci. Technol. 2014, 48, 7833–7841. [Google Scholar] [CrossRef] [PubMed]
- Frey, S.E.; Destaillats, H.; Cohn, S.; Ahrentzen, S.; Fraser, M.P. The effects of an energy efficiency retrofit on indoor air quality. Indoor Air 2014, 25, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C. Comparing Indoor Air Quality in Newer “Green” Low-Income Housing with Traditional Housing. Master’s Thesis, University of Illinois at Chicago, Chicago, IL, USA, 2012. [Google Scholar]
- Noris, F.; Adamkiewicz, G.; Delp, W.W.; Hotchi, T.; Russell, M.; Singer, B.C.; Spears, M.; Vermeer, K.; Fisk, W.J. Indoor environmental quality benefits of apartment energy retrofits. Bldg. Environ. 2013, 68, 170–178. [Google Scholar] [CrossRef]
- Xiong, Y.; Krogmann, U.; Mainelis, G.; Rodenburg, L.A.; Andrews, C.J. Indoor air quality in green buildings: A case-study in a residential high-rise building in the northeastern United States. J. Environ. Sci. Health Pt. A 2015, 50, 225–242. [Google Scholar] [CrossRef] [PubMed]
- Laden, F.; Schwartz, J.; Speizer, F.E.; Dockery, D.W. Reduction in fine particulate air pollution and mortality: Extended follow-up of the Harvard Six Cities study. Am. J. Respir. Crit. Care Med. 2006, 173, 667–672. [Google Scholar] [CrossRef] [PubMed]
- McConnell, R.; Islam, T.; Shankardass, K.; Jerrett, M.; Lurmann, F.; Gilliland, F.; Gauderman, J.; Avol, E.; Kunzli, N.; Yao, L.; et al. Childhood incident asthma and traffic-related air pollution at home and school. Environ. Health Perspect. 2010, 118, 1021–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pope, C.A.; Thun, M.J.; Namboodiri, M.M.; Dockery, D.W.; Evans, J.S.; Speizer, F.E.; Heath, C.W. Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am. J. Respir. Crit. Care Med. 1995, 151, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Azimi, P.; Zhao, D.; Stephens, B. Estimates of HVAC filtration efficiency for fine and ultrafine particles of outdoor origin. Atmos. Environ. 2014, 98, 337–346. [Google Scholar] [CrossRef]
- TSI Rationale for Programming a Photometer Calibration Factor (PCF) of 0.38 for Ambient Monitoring. Available online: http://www.tsi.com/uploadedFiles/_Site_Root/Products/Literature/Application_Notes/EXPMN-007_Rationale_Programming_PCF_Ambient_Monitoring.pdf (accessed on 28 December 2015).
- Wheeler, A.J.; Wallace, L.A.; Kearney, J.; Van Ryswyk, K.; You, H.; Kulka, R.; Brook, J.R.; Xu, X. Personal, indoor, and outdoor concentrations of fine and ultrafine particles using continuous monitors in multiple residences. Aerosol Sci. Technol. 2011, 45, 1078–1089. [Google Scholar] [CrossRef]
- TSI Dusttrak DRX Aerosol Monitor Theory of Operation. Available online: http://www.tsi.com/uploadedFiles/Product_Information/Literature/Application_Notes/EXPMN002_DustTrak_DRX_Theory_of_Operation.pdf (accessed on 28 December 2015).
- Persily, A.K. Field measurement of ventilation rates. Indoor Air 2015. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; 2.13.1; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Lumley, T. Rmeta: Meta-Analysis; R Package Version 2.16. Available online: http://CRAN.R-project.org/package=rmeta (accessed on 28 December 2015).
- ASHRAE. ASHRAE Handbook of Fundamentals; American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc.: NE Atlanta, GA, USA, 2009. [Google Scholar]
- DeGaetano, A.; Doherty, O.M. Temporal, spatial and meteorological variations in hourly PM2.5 concentration extremes in New York City. Atmos. Environ. 2004, 38, 1547–1558. [Google Scholar] [CrossRef]
- Kam, W.; Delfino, R.J.; Schauer, J.J.; Sioutas, C. A comparative assessment of PM2.5 exposures in light-rail, subway, freeway, and surface street environments in Los Angeles and estimated lung cancer risk. Environ. Sci.-Process. Impact. 2013, 15, 234–243. [Google Scholar] [CrossRef]
- Kleeman, M.J.; Schauer, J.J.; Cass, G.R. Size and composition distribution of fine particulate matter emitted from wood burning, meat charbroiling, and cigarettes. Environ. Sci. Technol. 1999, 33, 3516–3523. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patton, A.P.; Calderon, L.; Xiong, Y.; Wang, Z.; Senick, J.; Sorensen Allacci, M.; Plotnik, D.; Wener, R.; Andrews, C.J.; Krogmann, U.; et al. Airborne Particulate Matter in Two Multi-Family Green Buildings: Concentrations and Effect of Ventilation and Occupant Behavior. Int. J. Environ. Res. Public Health 2016, 13, 144. https://doi.org/10.3390/ijerph13010144
Patton AP, Calderon L, Xiong Y, Wang Z, Senick J, Sorensen Allacci M, Plotnik D, Wener R, Andrews CJ, Krogmann U, et al. Airborne Particulate Matter in Two Multi-Family Green Buildings: Concentrations and Effect of Ventilation and Occupant Behavior. International Journal of Environmental Research and Public Health. 2016; 13(1):144. https://doi.org/10.3390/ijerph13010144
Chicago/Turabian StylePatton, Allison P., Leonardo Calderon, Youyou Xiong, Zuocheng Wang, Jennifer Senick, MaryAnn Sorensen Allacci, Deborah Plotnik, Richard Wener, Clinton J. Andrews, Uta Krogmann, and et al. 2016. "Airborne Particulate Matter in Two Multi-Family Green Buildings: Concentrations and Effect of Ventilation and Occupant Behavior" International Journal of Environmental Research and Public Health 13, no. 1: 144. https://doi.org/10.3390/ijerph13010144
APA StylePatton, A. P., Calderon, L., Xiong, Y., Wang, Z., Senick, J., Sorensen Allacci, M., Plotnik, D., Wener, R., Andrews, C. J., Krogmann, U., & Mainelis, G. (2016). Airborne Particulate Matter in Two Multi-Family Green Buildings: Concentrations and Effect of Ventilation and Occupant Behavior. International Journal of Environmental Research and Public Health, 13(1), 144. https://doi.org/10.3390/ijerph13010144