Technologies for Arsenic Removal from Water: Current Status and Future Perspectives
Abstract
:1. Introduction
2. Conventional Techniques for Removal of as from Water
2.1. Arsenic Removal by Oxidation Techniques
Oxidants | Operating pH | Initial as Concentration | Type of Water | Remarks | Reference |
---|---|---|---|---|---|
Oxygen and ozone | 7.6–8.5 | 46–62 µg/L | Groundwater | Oxidation of As(III) by ozone is faster than by pure oxygen or air. In less than 20 minutes, complete oxidation was obtained using ozone, whereas five days were needed to oxidize 57% and 54% of As(III) using pure oxygen and air, respectively. | [28] |
Chlorine | 8.3 | 300 µg/L | Deionized water | As(III) was completely oxidized to As(V) by active chlorine when its initial concentration was greater than 300 µg/L. Stoichiometric rate was 0.99 mg Cl2/mg As(III). | [29] |
Chlorine dioxide | 8.12 | 50 µg/L | Groundwater | After one hour contact time, 86% oxidation yield was achieved. This relatively high value is mainly due to the presence of some metals in water that could assist the catalysis of As(III) oxidation. | [30] |
Monochloroamine | 8.12 | 50 µg/L | Groundwater | Very long contact time is needed to obtain effective As(III) oxidation. An oxidation yield of only 60% was achieved after 18 h. | [30] |
Hypochlorite | 7 | 500 µg/L | Groundwater | Given a hypochlorite concentration of 500 µg/L, there was a complete oxidation of As(III) to As(V). | [31] |
Hydrogen peroxide | 7.5–10.3 | 50 µg/L | Freshwater and seawater | The efficiency of As(III) oxidation improved as pH was increased from 7.5 to 10.3 | [32] |
Potassium permanganate | 8.12 | 50 µg/L | Groundwater | Oxidation was completed after one minute. | [30] |
Photocatalytic oxidation (UV/H2O2) | 8 | 100 µg/L | Groundwater | Combining hydrogen peroxide (H2O2) with ultraviolet (UV) radiation resulted in an efficient As(III) oxidation. As UV dose increases, oxidation efficiency also increases. 85% of As(III) was oxidized to As(V) at a UV dose of 2000 mJ/cm2. | [33] |
Biological Oxidation (e.g., chemoautotrophic arsenite-oxidizing bacteria (CAOs)) | - | - | - | CAOs can participate in the oxidation of arsenite to arsenate through the use of oxygen (or nitrate) as terminal electron acceptors during the fixation of inorganic carbon into cell material. | [34] |
In situ oxidation | - | - | Groundwater | Oxygenated water is pumped into the groundwater aquifer to reduce As concentrations to <10 µg/L. | [35] |
2.2. Coagulation-Flocculation
Coagulant | Operating pH | Initial as Concentration | Type of Water | Remarks | Reference |
---|---|---|---|---|---|
Ferric Chloride | 7.0 | 2 mg/L | Distilled water | At an optimum FeCl3 dosage of 30 mg/L, As(III) and As(V) removal efficiencies were approximately 45% and 75%, respectively. Arsenic removal was enhanced at higher FeCl3 concentrations, however, residual iron after coagulation exceeded MCL of iron in drinking water. | [46] |
Alum | 7.0 | 20 µg/L | River water | About 90% of initial As(V) concentration was removed from the solution using 40 mg/L Al2(SO4)3 ·18 H2O. As(III) removal with alum was negligible even at higher alum doses. | [47] |
Zirconium(IV) Chloride | 7.5 | 50 µg/L | Distilled water | The percentage removal of As(V) with 2 mg/L ZrCl4 dosage was approximately 55%. This value increased at pH 6.5 and decreased at pH 8.5. In contrast to that of As(V), the removal efficiency of As(III) was approximately 8% regardless of pH. | [48] |
Titanium(III) Chloride | 7.5 | 50 µg/L | Distilled water | With 2 mg/L TiCl3, As(III) and As(V) removal efficiencies of 32% and 75% were achieved, respectively. Both As(III) and As(V) removal were highly pH dependent. | [48] |
Titanium(IV) Chloride | 7.5 | 50 µg/L | Distilled water | As(V) removal was highly pH dependent, whereas As(III) removal was independent of pH. With 2 mg/L TiCl4 dosage, approximately 55% of As(V) was removed, while As(III) removal was 26%. | [48] |
Titanium(IV) Oxychloride | 7.5 | 50 µg/L | Distilled water | Both As(V) and As(III) removal were pH dependent. The percent removal of As(V) with 2 mg/L TiOCl2 dosage was 37%. Given the same conditions, As(III) removal was about 20%. | [48] |
Zirconium(IV) Oxychloride | 7.5 | 50 µg/L | Distilled water | With 2 mg/L ZrOCl2 dosage, approximately 8% and 59% of As(III) and As(V) were removed, respectively. As(V) removal was highly pH dependent, whereas As(III) removal was independent of pH. | [48] |
Ferric Sulfate | 7.0 | 1 mg/L | Double distilled water | As(III) removal efficiency of 80% was achieved with 25 mg/L Fe2(SO4)3 dosage. | [49] |
Titanium(IV) Sulfate | 7.0 | 1 mg/L | Double distilled water | Ti(SO4)2 was employed for enhanced As(III) removal. The removal efficiency of As(III) was 90% at a coagulant dose of 25 mg/L. | [49] |
2.3. Membrane Technologies
Parameter | Microfiltration (MF) | Ultrafiltration (UF) | Nanofiltration (NF) | Reverse Osmosis (RO) |
---|---|---|---|---|
Permeability (l/h.m2·bar) | > 1000 | 10–1000 | 1.5–30 | 0.05–1.5 |
Pressure (bar) | 0.1–2 | 0.1–5 | 3–20 | 5–120 |
Pore size (nm) | 100–10,000 | 2–100 | 0.5–2 | < 0.5 |
Rejection Monovalent ions | − | − | − | + |
Multivalent ions | − | −/+ | + | + |
Small organic compounds | − | − | −/+ | + |
Macromolecules | − | + | + | + |
Particles | + | + | + | + |
Separation mechanism | Sieving | Sieving | Sieving Charge effects | Solution-Diffusion |
Applications | Clarification; Pretreatment; Sterilization | Removal of macromolecules, bacteria, viruses | Removal of organic compounds and some dissolved salts | Removal of salts |
2.4. Adsorption and Ion Exchange
Adsorbent | Type of Water | Optimum pH | Adsorbent Dosage (g/L) | Surface Area (m2/g) | Temperature (°C) | Sorption Capacity (mg/g) | References | |
---|---|---|---|---|---|---|---|---|
As(III) | As(V) | |||||||
Coconut-shell carbon | Distilled water | 5.0 | 5 | 1200 | 25 | - | 2.40 | [74] |
Coconut-shell carbon pretreated with Fe(III) | Distilled water | 5.0 | 10 | - | 25 | - | 4.53 | [74] |
Coal-based carbon | Distilled water | 5.0 | 5 | 1125 | 25 | - | 4.09 | [74] |
Copper-impregnated coconut husk carbon | Distilled water | 6.5 | 2 | 206 | 30 | 20.35 | - | [75] |
Rice polish | Deionized double-distilled water | 7.0 | 20 | 452 | 20 | 0.14 | 0.15 | [76] |
Sorghum biomass | Deionized water | 5.0 | 10 | - | - | 3.6 | - | [77] |
Fly ash | Distilled water | 4.0 | 1 | 0.8 * | 20 | - | 30 | [78] |
Activated alumina | Drinking water | 7.6 | 1–13 | 370 | 25 | 0.18 | - | [66] |
Modified chicken feathers | Synthetic water | 4.0 | 10 | - | 20 | 0.13 | - | [79] |
Allyl alcohol-treated chicken feathers | Synthetic water | 7.0 | 10 | - | 25 | 0.115 | - | [80] |
Eggshell membrane | Distilled water | 7.0 | 8 | - | 30 | - | 24.2 | [81,82] |
Synthetic zeolite H-MFI-24 | Deionized water | 6.5 | 2 | 450 | 20 | - | 35.8 | [83] |
Granular titanium dioxide | Groundwater | 7.0 | 1 | 250.7 | 13.4 | 32.4 | 41.4 | [84] |
Granular ferric hydroxide (GFH) | Deionized-distilled water | 6.5 | 0.25 | 240–300 | 20 | - | 1.1 | [85] |
Iron oxide-coated cement | Double-distilled water | 7.0 | 30 | - | 15 | 0.73 | - | [86] |
Iron oxide-coated sand | Distilled water | 7.5 | 20 | - | 27 | 0.029 | - | [87] |
Iron-oxide-coated manganese sand (IOCMS) | Deionized water | 7.0 | 5 | 9.18 * | 25 | 2.216 | 5.452 | [88] |
Iron-modified activated carbon | Deionized-distilled water | 7.6–8.0 | 0.1–20 | 723 | 20-23 | 38.8 | 51.3 | [89] |
Amorphous iron hydroxide | Deionized water | 6.0–8.0 | 1.6 | - | - | 28.0 | 7.0 | [70] |
Zero-valent iron | Groundwater | 10.0 | 5 | 1.8 * | 25 | - | 1.92 | [90] |
Goethite | Deionized water | 6.0–8.0 | 1.6 | - | - | 22.0 | 4.0 | [70] |
Fex(OH)y-Montmorillonite | Deionized water | 6.0–8.0 | 1.6 | 165 | - | 13.0 | 4.0 | [70] |
TixHy-Montmorillonite | Deionized water | 6.0–8.0 | 1.6 | 249 | - | 13.0 | 3.0 | [70] |
Natural siderite | Tap water | 7.31 | 2 | - | 20 | 1.04 | 0.52 | [91] |
Kaolinite | - | 5.0 | 100 | 33 * | 25 | - | 0.86 | [92] |
Modified calcined bauxite | Double-distilled water | 7.0 | 5 | - | 30 | - | 1.566 | [93] |
Activated red mud | Distilled water | 7.25/3.50 | 20 | - | 25 | 0.884 | 0.941 | [94] |
Chitosan resin | Deionized distilled water | 6.0 | 2 | - | 40 | 4.45 | - | [95] |
Cerium-loaded cation exchange resin | Deionized water | 5.0–6.0 | 10 | - | 25 | 2.5 | 1.03 | [96] |
Surface-modified diatomite | Artificial wastewater | 7.0 | - | 50–55 * | 25 | - | 8.0 | [97] |
3. Application of Nanoparticles for Removal of Arsenic from Water
3.1. Carbon Nanotubes (CNTs)
3.2. Titanium-Based Nanoparticles
Nano-Adsorbent | Properties | Operating pH | Adsorbent Dosage (mg/L) | Temperature (°C) | Sorption Capacity (mg/g) | References | ||
---|---|---|---|---|---|---|---|---|
Average Particle Size (nm) | Surface Area (m2/g) | As(III) | As(V) | |||||
Multiwall carbon nanotubes functionalized with polyethylene glycol (PEG-MWCNTs) | 17.4 | 22.5 | 4.0 | 0.1 | 25 | - | 13.0 | [93] |
Hydrous titanium dioxide | 4.8 | 312 | 7.0 | 500 | 25 | 83.0 | - | [95] |
Iron-doped TiO2 | 108.0 | - | 7.0 | 4000 | - | - | 20.4 | [108] |
Ti-loaded basic yttrium carbonate (Ti-BYC) | 10.0–30.0 | 82.0 | 7.0 | 1000 | 25 | - | 348.5 | [109] |
α-Fe2O3 nanoparticles | 5.0 | 162.0 | 7.0 | 100 | 25 | 95.0 | 47.0 | [104] |
γ-Fe2O3 nanoparticles | 7.0–12.0 | 168.73 | - | - | - | 67.02 | - | [110] |
Fe2O3 nanoparticles | 12.3 | - | 6.0 | 100 | - | 20.0 | 4.9 | [111] |
Magnetite nanoparticles | 20.0 | 69.4 | 6.5 | 400 | 25 | 8.0 | 8.8 | [105] |
Fe3O4 nanoparticles | 5.0 | 178.48 | 7.0 | 60 | - | 46.06 | 16.56 | [112] |
Ceria nanoparticles | 6.6 | 86.85 | - | 5000 | 30 | 18.02 * | [107] | |
CeO2–CNT | - | 189.0 | 7.0 | 25 | - | - | 81.9 | [113] |
Zirconium oxide nanoparticles | 10.8 | 98.0 | 7.0 | 100 | - | 5.2 | 6.0 | [108] |
Zirconium oxide nanoparticles | - | 327.1 | 7.0 | 100 | 25 | 83.0 | 32.4 | [109] |
3.3. Iron-Based Nanoparticles
3.3.1. Zero-Valent Iron Nanoparticles (nZVI)
3.3.2. Iron Oxide Nanoparticles
3.4. Other Metal-Based Nanoparticles
3.4.1. Ceria Nanoparticles
3.4.2. Zirconium Oxide Nanoparticles
3.5. Disposal of Arsenic-Contaminated Nanoparticles
3.6. Regeneration and Reuse
3.7. Stability Issues
4. Metal Organic Frameworks as Novel Porous Adsorbents
5. Conclusions and Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lowenbach, W.; Schlessinger, J. Arsenic: A Preliminary Materials Balance; Lowenbach and Schlesinger Associates: Washington, DC, USA, 1979. [Google Scholar]
- Mandal, B.; Suzuki, K. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Sharma, V.; Sohn, M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Env. Int. 2009, 35, 743–759. [Google Scholar] [CrossRef] [PubMed]
- Al-Abed, S.; Jegadeesan, G.; Purandare, J.; Allen, D. Arsenic release from iron rich mineral processing waste: Influence of ph and redox potential. Chemosphere 2007, 66, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Pous, N.; Casentini, B.; Rossetti, S.; Fazi, S.; Puig, S.; Aulenta, F. Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: A novel approach to the bioremediation of arsenic-polluted groundwater. J. Hazard. Mater. 2015, 283, 617–622. [Google Scholar] [CrossRef] [PubMed]
- WHO. Arsenic in Drinking Water; Organisation, W.H., Ed.; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Henke, K.; Hutchison, A. Arsenic Chemistry; John Wiley & Sons Ltd.: West Sussex, UK, 2009. [Google Scholar]
- Villa-Lojo, M.; Beceiro-Ganzalez, E.; Alonso-Rodriguez, E.; Prada-Rodriguez, D. Arsenic speciation in marine sediments: Effects of redox potential and reducing conditions. Int. J. Env. Anal. Chem. 1997, 68, 377–389. [Google Scholar] [CrossRef]
- Ngai, T. Arsenic Speciation and Evaluation of An Adsorption Media in Rupandehi and Nawalparasi Districts of Nepal. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2002. [Google Scholar]
- Association, W.Q. Arsenic Fact Sheet. Available online: https://www.wqa.org/Learn-About-Water/Common-Contaminants/Arsenic (accessed on 15 December 2015).
- Singh, R.; Singh, S.; Parihar, P.; Singh, V.; Prasad, S. Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicol. Environ. Saf. 2015, 112, 247–270. [Google Scholar] [CrossRef] [PubMed]
- Van Halem, D.; Bakker, S.; Amy, G.; van Dijk, J. Arsenic in drinking water: A worldwide water quality concern for water supply companies. Drinking Water Eng. Sci. 2009, 2, 29–34. [Google Scholar] [CrossRef]
- Jain, C.; Ali, I. Arsenic: Occurence, toxicity and speciation techniques. Water Res. 2000, 34, 4303–4312. [Google Scholar] [CrossRef]
- Islam, K.; Haque, A.; Karim, R.; Fajol, A.; Hossain, E.; Salam, K.; Hossain, K. Dose-response relationship between arsenic exposure and the serum enzymes for liver function tests in the individuals exposed to arsenic: A cross sectional study in Bangladesh. Environ. Health 2011, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.; Waters, S.; Styblo, M. Elucidating the pathway for arsenic methylation. Toxicol. Appl. Pharmacol. 2004, 198, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Rossman, T.; Uddin, A.; Burns, F. Evidence that arsenite acts a cocarcinogen in skin cancer. Toxicol. Appl. Pharmacol. 2004, 198, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Mulligan, C. Occurrence of arsenic contamination in Canada: Sources, behavior and distribution. Sci. Total Environ. 2006, 366, 701–721. [Google Scholar] [CrossRef] [PubMed]
- Murcott, S. Arsenic Contamination in the World: An. International Sourcebook; IWA Publishing: London, UK, 2012. [Google Scholar]
- Ratnaike, R. Acute and chronic arsenic toxicity. Postgrad. Med. J. 2003, 79, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Smedley, P.; Kinniburgh, D. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef]
- Zhao, F.-J.; McGrath, S.P.; Meharg, A.A. Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Annu. Rev. Plant. Biol. 2010, 61, 535–559. [Google Scholar] [PubMed]
- Chakraborti, D.; Rahman, M.T.; Das, B.; Murrill, M.; Dey, S.; Mukherjee, S.; Quamruzzaman, Q. Status of groundwater arsenic contamination in Bangladesh: A 14-year study report. Water Res. 2010, 44, 5789–5802. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, H.; Chen, Y.; Zablotska, L.; Argos, M.; Hussain, I.; Graziano, J.H. Arsenic exposure from drinking water and risk of premalignant skin lesions in bangladesh: Baseline results from the health efects of arsenic longitudinal study. Am. J. Epidemiol. 2006, 163, 1138–1148. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Parvez, F.; Gamble, M.; Islam, T.; Ahmed, A.; Argos, M.; Ahsan, H. Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurologcial functions, and biomarkers for respiratory and cardiovascular disease: Review of recent findings from health effects of arsenic longitudinal study in Bangladesh. Toxicol. Appl. Pharmacol. 2009, 239, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Maity, J.; Nath, B.; Kar, S.; Chen, C.; Banerjee, S.; Jean, J.; Santra, S. Arsenic-induced health crisis in peri-urban, moyna and Ardebok villages, west Bengal, India: An exposure assessment study. Environ. Geochem. Health 2012, 34, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, G.; Dasgupta, U. Chronic arsenic toxicity: Studies in west bengal, India. Kaohsiung J. Med. Sci. 2011, 27, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Johnston, R.; Heijnen, H. Safe Water Technology for Arsenic Removal. Available online: http://archive.unu.edu/env/Arsenic/Han.pdf (accessed on 18 December 2015).
- Kim, M.; Nriagu, J. Oxidation of arsenite in groundwater using ozone and oxygen. Sci. Total. Environ. 2000, 247, 71–79. [Google Scholar] [CrossRef]
- Hu, C.; Liu, H.; Chen, G.; Jefferson, W.; Qu, J. As(III) oxidation by active chlorine and subsequent removal of As(V) by al13 polymer coagulation using a novel dual function reagent. Environ. Sci. Technol. 2012, 46, 6776–6782. [Google Scholar] [CrossRef] [PubMed]
- Sorlini, S.; Gialdini, F. Conventional oxidation treatments for the removal of arsenic with chlorine dioxide, hypochlorite, potassium permanganate and monochloramine. Water Res. 2010, 44, 5653–5659. [Google Scholar] [CrossRef] [PubMed]
- Viet, P.H.; Con, T.H.; Ha, C.T.; Ha, H.V.; Berg, M.; Giger, W.; Schertenleib, R. Investigation of Arsenic Removal Technologies for Drinking Water in Vietnam. In Proceeding of the Fifth International Conference on Arsenic Exposure and Health Effects; San Diego, CA, USA, 14–18 July 2002, Elsevier: Amsterdam, The Netherlands, 2003; pp. 459–469. [Google Scholar]
- Pettine, M.; Campanella, L.; Millero, F.J. Arsenite oxidation by H2O2 in aqueous solutions. Geochim. Cosmochim. Acta 1999, 63, 2727–2735. [Google Scholar] [CrossRef]
- Sorlini, S.; Gialdini, F.; Stefan, M. Uv/h2o2 oxidation of arsenic and tertbutylazine in drinking water. Environ. Monit. Assess. 2014, 186, 1311–1316. [Google Scholar] [CrossRef] [PubMed]
- Katsoyiannis, I.; Zouboulis, A. Application of biological processes for the removal of arsenic from groundwaters. Water Res. 2004, 38, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Sen Gupta, B.; Chatterjee, S.; Rott, U.; Kaufman, H.; Bandopadyay, A.; DeGroot, W.; Mukhjerjee, S. A simple chemical free arsenic removal method for community water supply—A case study from west Bengal, India. Environ. Pollut. 2009, 157, 3351–3353. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.F. An overview of arsenic removal technologies in Bangladesh and India. Technol. Arsenic Removal Drinking Water 2001, 251–269. [Google Scholar]
- Dodd, M.; Vu, N.; Ammann, A.; Le, V.; Kissner, R.; Pham, H.; Gunten, U. Kinetics and mechanistic aspects of As(III) oxidation by aqueous chlorine, chloramines, and ozone: Relevance to drinking water treatment. Environ. Sci. Technol. 2006, 40, 3285–3292. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Du, J.; Meng, X.; Sun, Y.; Sun, B.; Hu, Q. Application of titanium dioxide in arsenic removal from water: A review. J. Hazard. Mater. 2012, 27, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Choong, T.; Chuah, T.; Robiah, Y.; Gregory, K.; Azni, I. Arsenic toxicity, health hazards and removal techniques from water: An overview. Desalination 2007, 217, 139–166. [Google Scholar] [CrossRef]
- Mondal, P.; Bhowmick, S.; Chatterjee, D.; Figoli, A.; Van der Bruggen, B. Remediation of inorganic arsenic in groundwater for safe water supply: A critical assessment of technological solutions. Chemosphere 2013, 92, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Garelick, H.; Dybdowska, A.; Valsami-Jones, E.; Priest, N. Remediation technologies for arsenic contaminated drinking waters. J. Soils Sediments 2005, 5, 182–190. [Google Scholar] [CrossRef]
- Cheng, R.; Liang, S.; Wang, H.; Beuhler, M. Enhanced coagulation for arsenic removal. J. Am. Water Work Assoc. 1994, 86, 79–90. [Google Scholar]
- Hering, J.; Chen, P.; Wilkie, J.; Elimelech, M.; Liang, S. Arsenic removal by ferric chloride. J. Am. Water Work Assoc. 1996, 88, 155–167. [Google Scholar]
- Saha, J.; Dikshit, K.; Bandyopadyay, M. Comparative Studies for Selection of Technologies for Arsenic Removal from Drinking Water. Available online: http://archive.unu.edu/env/Arsenic/Saha.pdf (accessed on 18 December 2015).
- Scott, K.; Green, J.; Do, H.; Mclean, S. Arsenic removal by coagulation. Am. Water Work Assoc. 1995, 87, 114–126. [Google Scholar]
- Hesami, F.; Bina, B.; Ebrahimi, A.; Amin, M.M. Arsenic removal by coagulation using ferric chloride and chitosan from water. Int. J. Environ. Health Eng. 2013, 2, 1–6. [Google Scholar]
- Hering, J.; Chen, P.-Y.; Wilkie, J.; Elimelech, M. Arsenic removal from drinking water during coagulation. J. Environ. Eng. 1997, 800–807. [Google Scholar] [CrossRef]
- Lakshmanan, D.; Clifford, D.; Samanta, G. Arsenic removal by coagulation: With aluminum, iron, titanium, and zirconium. Am. Water Work Assoc. 2008, 100, 76. [Google Scholar]
- Sun, Y.; Zhou, G.; Xiong, X.; Guan, X.; Li, L.; Bao, H. Enhanced arsenite removal from water by Ti(SO4)2 coagulation. Water Res. 2013, 47, 4340–4348. [Google Scholar] [CrossRef] [PubMed]
- Shih, M. An overview of arsenic removal by pressure-driven membrane processes. Desalination 2005, 172, 85–97. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Vandecasteele, C.; Gestel, T.; Doyen, W.; Leysen, R. A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ. Prog. 2003, 22, 46–56. [Google Scholar] [CrossRef]
- Bottino, A.; Capannelli, G.; Comite, A.; Ferrari, F.; Firpo, R.; Venzano, S. Membrane technologies for water treatment and agroindustrial sectors. Comtes Rendus Chim. 2009, 12, 882–888. [Google Scholar] [CrossRef]
- Han, B.; Runnells, T.; Zimbron, J.; Wickramasinghe, R. Arsenic removal from drinking water by flocculation and microfiltration. Desalination 2002, 145, 293–298. [Google Scholar] [CrossRef]
- Velizarov, S.; Crespo, J.; Reis, M. Removal of inorganic anions from drinking water supplies by membrane bio/processes. Rev. Environ. Sci. Biol. 2004, 3, 361–380. [Google Scholar] [CrossRef]
- Beolchini, F.; Pagnanelli, F.; De Michelis, I.; Veglio, F. Treatment of concentrated arsenic(V) solutions by micellar enhanced ultrafiltration with high molecular weight cut-off membrane. J. Hazard. Mater. 2007, 148, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Gecol, H.; Ergican, E.; Fuchs, A. Molecular level separation of arsenic (v) from water using cationic surfactant micelles and ultrafiltration membrane. J. Membr. Sci. 2004, 241, 105–119. [Google Scholar] [CrossRef]
- Iqbal, J.; Kim, H.; Yang, J.; Baek, K.; Yang, J. Removal of arsenic from groundwater by micellar-enhanced ultrafiltration (MEUF). Chemosphere 2007, 66, 970–976. [Google Scholar] [CrossRef] [PubMed]
- Figoli, A.; Cassano, A.; Criscuoli, A.; Mozumder, M.; Uddin, M.; Islam, M.; Drioli, E. Influence of operating parameters on the arsenic removal by nanofiltration. Water Res. 2010, 44, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Kang, M.; Kamei, T.; Magara, Y. Performance of nanofiltration for arsenic removal. Water Res. 2002, 36, 3371–3377. [Google Scholar] [CrossRef]
- Uddin, M.; Mozumder, M.; Figoli, A.; Islam, M.; Drioli, E. Arsenic removal by conventional and membrane technology: An overview. Indian J. Chem. Technol. 2007, 14, 441–450. [Google Scholar]
- Brandhuber, P.; Amy, G. Alternative methods for membrane filtration of arsenic from drinking water. Desalination 1998, 117, 1–10. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Mirliss, M.J. Diatomaceous Earth filtration for drinking water. In Water Encyclopedia; John Wiley & Sons, Inc.: New York, NY, USA, 2005. [Google Scholar]
- Health, W.S.D. Slow Sand Filtration and Diatomaceous Earth Filtration for Small Water Systems; Environmental Health Programs Division of Drinking Water: Washington, DC, USA, 2003.
- Misra, M.; Lenz, P. Removal of Arsenic from Drinking and Process Water. Available online: https://www.google.com/patents/WO2003086564A2?cl=en (accessed on 18 December 2015).
- Gupta, A.; Yunus, M.; Sankararakrishnan, N. Zerovalent iron encapsulated chitosan nanospheres—A novel adsorbent for the removal of total inorganic arsenic from aqueous systems. Chemosphere 2012, 86, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Pant, K. Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina. Sep. Purif. Technol. 2004, 36, 139–147. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U., Jr. Arsenic removal from water/wastewater using adsorbents—A critical review. J. Hazard. Mater. 2007, 142, 1–53. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.; Chen, W.; Cannon, F. Preloading hydrous ferric oxide into granular activated carbon for arsenic removal. Environ. Sci. Technol. 2008, 42, 3369–3374. [Google Scholar] [CrossRef] [PubMed]
- Anjum, A.; Lokeswari, P.; Kaur, M.; Datta, M. Removal of As(III) from aqueous solution using montmorillonite. J. Chromatogr. B 2011, 1, 25–30. [Google Scholar] [CrossRef]
- Lenoble, V.; Bouras, O.; Deluchat, V.; Serpaud, B.; Bollinger, J. Arsenic adsorption onto pillared clays and iron oxides. J. Colloid Interface Sci. 2002, 225, 52–58. [Google Scholar] [CrossRef]
- Giles, D.; Mohapatra, M.; Issa, T.; Anand, S.; Singh, P. Iron and aluminium based adsorption strategies for removing arsenic from drinking water. J. Environ. Manag. 2011, 92, 3011–3022. [Google Scholar] [CrossRef] [PubMed]
- Habuda-Stanic, M.; Nujic, M. Arsenic removal by nanoparticles: A review. Environ. Sci. Pollut. Res. 2015, 22, 8094–8123. [Google Scholar] [CrossRef] [PubMed]
- Samiey, B.; Cheng, C.; Wu, J. Organic-inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: A review. Materials 2014, 7, 673–726. [Google Scholar] [CrossRef]
- Lorenzen, L.; Deventer, J.; Landi, W. Factors affecting the mechanism of the adsorption of arsenic species on activated carbon. Miner. Eng. 1995, 8, 557–569. [Google Scholar] [CrossRef]
- Manju, G.; Raji, C.; Anirudhan, T. Evaluation of coconut husk carbon for the removal of arsenic from water. Water Res. 1998, 32, 3062–3070. [Google Scholar] [CrossRef]
- Ranjan, D.; Talat, M.; Hasan, S. Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish’. J. Hazard. Mater. 2009, 166, 1050–1059. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.; Morrisson, G.; Perrusquia, G.; Gutierrez, M.; Aguilera, A.; Cano-Aguilera, I.; Gardea-Torresdey, J. Characteristics of arsenic adsorption to sorghum biomass. J. Hazard. Mater. 2007, 145, 30–45. [Google Scholar] [CrossRef] [PubMed]
- Diamadopoulos, E.; Ioannidis, S.; Sakellaropoulos, G. As(v) removal from aqueous solutions by fly ash. Water Res. 1993, 27, 1773–1777. [Google Scholar] [CrossRef]
- Khosa, M.A.; Wu, J.; Ullah, A. Chemical modification, characterization, and application of chicken feathers as novel biosorbents. RSC Adv. 2013, 3, 20800–20810. [Google Scholar] [CrossRef]
- Khosa, M.A.; Ullah, A. In-situ modification, regeneration, and application of keratin biopolymer for arsenic removal. J. Hazard. Mater. 2014, 278, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Khosa, M.A.; Ullah, A. A sustainable role of keratin biopolymer in green chemistry: A review. J. Food Process. Pres. 2013, 1, 8. [Google Scholar]
- Ishikawa, S.; Sekine, S.; Miura, N.; Suyama, K.; Arihara, K.; Itoh, M. Removal of selenium and arsenic by animal biopolymers. Biol. Trace Element Res. 2004, 102, 113–127. [Google Scholar] [CrossRef]
- Chutia, P.; Kato, S.; Kojima, T.; Satokawa, S. Arsenic adsorption from aqueous solution on synthetic zeolites. J. Hazard. Mater. 2009, 162, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Bang, S.; Patel, M.; Lippincott, L.; Meng, X. Removal of arsenic from groundwater by granular titanium dioxide adsorbents. Chemosphere 2005, 60, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, K.; Amy, G.; Prevost, M.; Nour, S.; Jekel, M.; Gallagher, P.; Blumenschein, C. Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide (GFH). Water Res. 2008, 42, 3371–3378. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Gupta, A. Adsorptive removal of As(III) from aqueous solution using iron oxide coated cement (IOCC): Evaluation of kinetic, equilibrium and thermodynamic models. Sep. Purif. Technol. 2006, 51, 165–172. [Google Scholar] [CrossRef]
- Gupta, V.; Saini, V.; Jain, N. Adsorption of As(III) from aqueous solutions by iron oxide-coated sand. J. Colloid Interface Sci. 2005, 288, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Liu, R.; Liu, H.; Zhao, X.; Qu, J. Arsenic(III,V) adsorption on iron-oxide coated manganese sand and quartz sand: Comparison of different carriers and adsorption capacities. Environ. Eng. Sci. 2011, 28, 643–651. [Google Scholar] [CrossRef]
- Chen, W.; Parette, R.; Zou, J.; Cannon, F.; Dempsey, B. Arsenic removal by iron-modified activated carbon. Water Res. 2007, 41, 1851–1858. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Nakano, H.; Wilopo, W.; Miura, Y.; Hirajima, T. Sorption and speciation of arsenic by zero-valent iron. Colloids Surf. A Physicochem. Eng. Asp. 2009, 347, 8–17. [Google Scholar] [CrossRef]
- Guo, H.; Stüben, D.; Berner, Z. Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent. J. Colloid Interface Sci. 2007, 315, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, D.; Mishra, D.; Chaudhury, G.; Das, R. Arsenic adsorption mechanism on clay minerals and its dependence on temperature. Korean J. Chem. Eng. 2007, 24, 426–430. [Google Scholar] [CrossRef]
- Bhakat, P.; Gupta, A.; Ayoob, S.; Kundu, S. Investigations on arsenic(V) removal by modified calcined bauxite. Colloids Surf. A Physicochem. Eng. Asp. 2006, 281, 237–245. [Google Scholar] [CrossRef]
- Altundogan, H.; Altundogan, S.; Tumen, F.; Bildik, M. Arsenic removal from aqueous solutions by adsorption on red mud. Waste Manage. 2000, 20, 761–767. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Leus, K.; Grzywa, M.; Weinberger, D.; Strubbe, K.; Vrielinck, H.; van Deun, R.; Volkmer, D.; van Speybroeck, V.; van der Voort, P. Synthesis, structural characterization, and catalytic performance of a vanadium-based metal-organic framework (COMOC-3). Eur. J. Inorg. Chem. 2012, 2012, 2819–2827. [Google Scholar] [CrossRef]
- Zongliang, H.; Senlin, T.; Ping, N. Adsorption of arsenate and arsenite from aqueous solutions by cerium-loaded cation exchange resin. J. Rare Earth 2012, 30, 563–572. [Google Scholar]
- Wu, C.-C.; Wang, Y.-C.; Lin, T.-F.; Tsao, H.-L.; Chen, P.-C. Removal of arsenic from waste water using surface modified diatomite. J. Chin. Inst. Environ. Eng. 2005, 15, 255–261. [Google Scholar]
- Hristovski, K.; Baumgardner, A.; Westerhoff, P. Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: From nanopowders to aggregated nanoparticle media. J. Hazard. Mater. 2007, 147, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lu, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 2012, 211–212, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Alvarez, P.; Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47, 3931–3946. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Lo, I. Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Res. 2013, 47, 2613–2632. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Xing, B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci Technol. 2008, 42, 9005–9013. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, S.; Luan, Z.; Ding, J.; Xu, C.; Wu, D. Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 2003, 41, 1057–1062. [Google Scholar] [CrossRef]
- Lu, C.; Liu, C. Removal of nickel(II) from aqueous solution by carbon nanotubes. J. Chem. Technol. Biotechnol. 2006, 81, 1932–1940. [Google Scholar] [CrossRef]
- Roy, P.; Choudhury, M.; Ali, M. As(III) and As(V) adsorption on magnetite nanoparticles: Adsorption isotherms, effect of ph and phosphate, and adsorption kinetics. Int. J. Chem. Environ. Eng. 2013, 4, 55–63. [Google Scholar]
- Velickovic, Z.; Bajic, Z.; Rsitic, M.; Djokic, V.; Marinkovic, A.; Uskokovic, P.; Vuruna, M. Modification of multi-wall carbon nanotubes for the removal of cadmium, lead and arsenic from wastewater. Dig. J. Nanomater Biostruct. 2013, 8, 501–511. [Google Scholar]
- Pena, M.; Korfiatis, G.P.; Patel, M.; Lippincott, L.; Meng, X. Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res. 2005, 39, 2327–2337. [Google Scholar] [CrossRef] [PubMed]
- Nabi, D.; Aslam, I.; Qazi, I.A. Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal. J. Environ. Sci. China 2009, 21, 402–408. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, K.-W.; Lee, B.-T.; Bang, S.; Kim, H.; Kang, H.; Jang, A. Enhanced arsenate removal performance in aqueous solution by yttrium-based adsorbents. Int. J. Environ. Res. Public Health 2015, 12, 13523. [Google Scholar] [CrossRef] [PubMed]
- Dave, P.; Chopda, L. Application of iron oxide nanomaterials for the removal of heavy metals. J. Nanotechnol. 2014, 246, 572–574. [Google Scholar] [CrossRef]
- Luther, S.; Borgfeld, N.; Kim, J.; Parsons, J.G. Removal of arsenic from aqueous solution: A study of the effects of ph and interfering ions using iron oxide nanomaterials. Microchemical. J. 2012, 101, 30–36. [Google Scholar] [CrossRef]
- Feng, L.; Cao, M.; Ma, X.; Zhu, Y.; Hu, C. Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J. Hazard. Mater. 2012, 217–218, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Luan, Z.; Ding, J.; Di, Z.; Li, Y.; Tian, B. Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Mater. Lett. 2005, 59, 399–403. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Q.; Gao, S.; Shang, J. As(III) removal by hydrous titanium dioxide prepared from one-step hydrolysis of aqueous Ticl4 solution. Water Res. 2010, 44, 5713–5721. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Mallavarapu, M.; Naidu, R. Reduction and adsorption of Pb2+ in aqueous solutions by nano-zero-valent iron—A sem, tem and xps study. Mater. Res. Bull. 2010, 44, 5713–5721. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Q.; Ding, Y.; Bei, Y. 3-aminopropyltriethoxysilane functionalized nanoscale zero-valent iron for the removal of dyes from aqueous solutions. Pol. J. Chem. Technol. 2011, 13, 35–39. [Google Scholar] [CrossRef]
- Kanel, S.; Manning, B.; Charlet, L.; Choi, H. Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol. 2005, 39, 1291–1298. [Google Scholar] [CrossRef] [PubMed]
- Jegadeesan, G.; Mondal, K.; Lalvani, S. Arsenate remediation using nanosized modified zeovalent iron nanoparticles. Environ. Prog. 2005, 24, 289–296. [Google Scholar] [CrossRef]
- Ramos, M.; Yan, W.; Li, X.; Koel, B.; Zhang, W. Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: Understanding the significance of the core-shell structure. J. Phys. Chem. C 2009, 113, 14591–14594. [Google Scholar] [CrossRef]
- Litter, M.; Morgada, M.; Bundschuh, J. Possible treatments for arsenic removal in latin american waters for human consumption. Environ. Pollut. 2010, 158, 1105–1118. [Google Scholar] [CrossRef] [PubMed]
- Mohmood, I.; Lopes, C.; Lopes, I.; Ahmad, I.; Duarte, A.; Pereira, E. Nanoscale materials and their use in water contaminants removal—A review. Environ. Sci. Pollut. Res. 2013, 20, 1239–1260. [Google Scholar] [CrossRef] [PubMed]
- Sharma, Y.; Srivastava, V.; Singh, V.; Kaul, S.; Weng, C. Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environ. Technol. 2009, 30, 583–609. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Li, Q.; Gao, S.; Shang, J. Arsenic (III,V) removal from aqueous solution by ultrafine a-Fe2O3 nanoparticles synthesized from solvent thermal method. J. Hazard. Mater. 2011, 192, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Yanful, E. Arsenic removal from aqueous solutions by adsorption on magnetite nanoparticles. Water Environ. J. 2011, 25, 429–437. [Google Scholar] [CrossRef]
- Mayo, J.; Yavuz, C.; Yean, S.; Cong, L.; Shipley, H.; Yu, W.; Colvin, V. The effect of nanocrystalline magnetite size on arsenic removal. Sci. Technol. Adv. Mater. 2007, 8, 71–75. [Google Scholar] [CrossRef]
- Feng, Q.; Zhang, Z.; Ma, Y.; He, X.; Zhao, Y.; Chai, Z. Adsorption and desorption characteristics of arsenic onto ceria nanoparticles. Nanoscale Res. Lett. 2012, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Su, Y.; Li, Q.; Gao, S.; Shang, J. Exceptional arsenic (III,V) removal performance of highly porous, nanostructured ZeO2 spheres for fixed bed reactors and the full-scale system modelling. Water Res. 2013, 47, 6258–6268. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Li, Q.; Gao, S.; Shang, J. Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. J. Ind. Eng. Chem. 2012, 18, 1418–1427. [Google Scholar] [CrossRef]
- Saiz, J.; Bringas, E.; Ortiz, I. New functionalized magnetic materials for As5+ removal: Adsorbent regeneration and reuse. Ind. Eng. Chem. Res. 2014, 53, 18928–18934. [Google Scholar] [CrossRef]
- Bystrzejewska-Piotrowska, G.; Golimowski, J.; Urban, P.L. Nanoparticles: Their potential toxicity, waste and environmental management. Waste Manag. 2009, 29, 2587–2595. [Google Scholar] [CrossRef] [PubMed]
- Leist, M.; Casey, R.J.; Caridi, D. The management of arsenic wastes: Problems and prospects. J. Hazard. Mater. 2000, 76, 125–138. [Google Scholar] [CrossRef]
- Tuutijärvi, T.; Vahala, R.; Sillanpää, M.; Chen, G. Maghemite nanoparticles for As(V) removal: Desorption characteristics and adsorbent recovery. Environ. Technol. 2012, 33, 1927–1936. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Chen, G.; Lo, I. Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res. 2005, 39, 4528–4536. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Chen, G.; Lo, I.; Asce, M. Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: Performance and mechanisms. Environ. Technol. 2006. [Google Scholar] [CrossRef]
- Banerjee, S.; Chen, D. Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. J. Hazard. Mater. 2007, 147, 792–799. [Google Scholar] [CrossRef] [PubMed]
- Deliyanni, E.; Bakoyannakis, D.; Zouboulis, A.; Matis, K. Sorption of As(V) ions bu akagenetite-type nanocrystals. Chemosphere 2003, 50, 155–163. [Google Scholar] [CrossRef]
- Petosa, A.; Jaisi, D.; Quevedo, I.; Elimelech, M.; Tufenkji, N. Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions. Environ. Sci. Technol. 2010, 44, 6532–6549. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Chen, D. Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ion. J. Colloid Interface Sci. 2005, 283, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, Y.; Qian, Q.; Machida, M.; Tatsumoto, H. Effect of zno loading to activated carbon on Pb(II) adsorption from aqueous solution. Carbon 2006, 44, 195–202. [Google Scholar] [CrossRef]
- Eren, E.; Tabak, A.; Eren, B. Performance of magnesium oxide-coated bentonite in removal process of copper ions from aqueous solution. Desalination 2010, 257, 163–169. [Google Scholar] [CrossRef]
- Boujelben, N.; Bouzid, J.; Elouear, Z.; Feki, M. Retention of nickel from aqueous solutions using iron oxide and manganese oxide coated sand: Kinetic and thermodynamic studies. Environ. Technol. 2010, 31, 1623–1634. [Google Scholar] [CrossRef] [PubMed]
- Hulteen, J.C.; Chen, H.X.; Chambliss, C.K.; Martin, C.R. Template synthesis of carbon nanotubule and nanofiber arrays. Nanostruct. Mater. 1997, 9, 133–136. [Google Scholar] [CrossRef]
- Pan, B.; Qiu, H.; Nie, G.; Xiao, L.; Lu, L. Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: Behavior and xps study. Water Res. 2010, 44, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.-J.; Yu, X.-Y.; Jia, Y.; Peng, F.-M.; Sun, B.; Zhang, M.-Y.; Luo, T.; Liu, J.-H.; Huang, X.-J. Iron and 1,3,5-benzenetricarbarboxylic metal-organic coordination polymers prepared by solvothermal method and their application in efficient As(V) removal from aqueous solutions. J. Phys. Chem. 2012, 116, 8601–8607. [Google Scholar]
- Hasan, Z.; Jhung, S.H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. J. Hazard. Mater. 2015, 283, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Hasan, Z.; Jhung, S. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review. J. Hazard. Mater. 2013, 244–245, 444–456. [Google Scholar] [CrossRef] [PubMed]
- Shen, L. Synthesis, Characterization and Application of Metal-Organic Frameworks. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Illinois, UO, USA, 2012. [Google Scholar]
- Eddaoudi, M.; Moler, D.; Li, H.; Chen, B.; Reineke, T.; O’Keeffe, M.; Yaghi, O. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Account. Chem. Res. 2001, 34, 319–330. [Google Scholar] [CrossRef]
- Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. Engl. 2004, 43, 2334–2375. [Google Scholar] [CrossRef] [PubMed]
- Yaghi, O.; O’Keeffe, M.; Ockwig, N.; Chae, H.; Eddaoudi, M.; Kim, J.B. Reticular synthesis and design of new materials. Nature 2003, 423, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Langmi, H.; Ren, J.; North, B.; Mathe, M.; Bessarabov, D. Hydrogen storage in metal-organic frameworks: A review. Electrochim. Acta 2014, 128, 368–392. [Google Scholar] [CrossRef]
- Li, Z.; Qiu, L.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z.; Jiang, X. Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmental friendly method. Mater. Lett. 2009, 63, 78–80. [Google Scholar] [CrossRef]
- Mu, B.; Walton, K. Adsorption equilibrium of methane and carbon dioxide on porous metal-organic framework Zn-BTB. Adsorption 2011, 17, 777–782. [Google Scholar] [CrossRef]
- He, Y.; Zhou, W.; Krishna, R.; Chen, B. Microporous metal-organic frameworks for storage and separation of small hydrocarbons. Chem. Commun. 2012, 48, 11813–11831. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011–6061. [Google Scholar] [CrossRef] [PubMed]
- Huxford, R.; Della Rocca, J.; Lin, W. Metal-organic frameworks a potential drug carriers. Curr. Opin. Chem. Biol. 2010, 14, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Kurmoo, M. Magnetic metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1353–1379. [Google Scholar] [CrossRef] [PubMed]
- Chandler, B.; Cramb, D.; Shimizu, G. Microporous metal-organic frameworks formed in a stepwise manner from luminescent building blocks. J. Am. Chem. Soc. 2006, 128, 10403–10412. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wang, L.; Zapata, F.; Qian, G.; Lobkovsky, E. A luminescent microporous metal-organic framework for the recognition and sensing of anions. J. Am. Chem. Soc. 2008, 130, 6718–6719. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Zhang, Y.; Liu, Y.; Qin, F.; Ren, H.; Wu, S. Adsorptive removal of dibenzothiophene from model fuels overone-pot synthesized pta@mil-101(Cr) hybrid material. J. Hazard. Mater. 2013, 262, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, G.; Santos, S.; Boaventura, R.; Botelho, C. Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption. J. Environ. Manag. 2015, 151, 326–342. [Google Scholar] [CrossRef] [PubMed]
- Low, J.; Benin, A.; Jakubczak, P.; Abrahamian, J.; Faheem, S.; Willis, R. Virtual high troughput screening confirmed experimentally: Porous coordination polymer hydration. J. Am. Chem. Soc. 2009, 131, 15834–15842. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, H.; Ko, N.; Go, Y.; Aratani, N.; Choi, S.; Choi, E.; Yaghi, O. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Jian, M.; Liu, B.; Zhang, G.; Liu, R.; Zhang, X. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2015, 465, 67–76. [Google Scholar] [CrossRef]
- Ke, F.; Qiu, L.; Yuan, Y.; Peng, F.-M.; Jiang, X.; Xie, A.; Zhu, J. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water. J. Hazard. Mater. 2011, 196, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, Y.-n.; Li, Z.; Zhu, M.; Li, F. Characteristics of arsenate removal from water by metal-organic frameworks (MOFs). Water Sci. Technol. 2014, 70, 1391–1397. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.; Le, G.; Dao, C.; Dang, L.; Nguyen, K.; Nguyen, Q.; Dang, P.; Tran, H.; Duong, Q.; Nguyen, T.; et al. Arsenic removal from aqueous solutions by adsorption using novel mil-53(Fe) as a highly efficient adsorbent. RSD Adv. 2015, 5, 5261–5268. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicomel, N.R.; Leus, K.; Folens, K.; Van Der Voort, P.; Du Laing, G. Technologies for Arsenic Removal from Water: Current Status and Future Perspectives. Int. J. Environ. Res. Public Health 2016, 13, 62. https://doi.org/10.3390/ijerph13010062
Nicomel NR, Leus K, Folens K, Van Der Voort P, Du Laing G. Technologies for Arsenic Removal from Water: Current Status and Future Perspectives. International Journal of Environmental Research and Public Health. 2016; 13(1):62. https://doi.org/10.3390/ijerph13010062
Chicago/Turabian StyleNicomel, Nina Ricci, Karen Leus, Karel Folens, Pascal Van Der Voort, and Gijs Du Laing. 2016. "Technologies for Arsenic Removal from Water: Current Status and Future Perspectives" International Journal of Environmental Research and Public Health 13, no. 1: 62. https://doi.org/10.3390/ijerph13010062
APA StyleNicomel, N. R., Leus, K., Folens, K., Van Der Voort, P., & Du Laing, G. (2016). Technologies for Arsenic Removal from Water: Current Status and Future Perspectives. International Journal of Environmental Research and Public Health, 13(1), 62. https://doi.org/10.3390/ijerph13010062