Measurement of Low Carbon Economy Efficiency with a Three-Stage Data Envelopment Analysis: A Comparison of the Largest Twenty CO2 Emitting Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Three-Stage Undesirable Output SBM-DEA Model
2.2. Data and Variables
2.2.1. Inputs and Outputs
2.2.2. External Environmental Factors Impact Efficiency
3. Results and Discussion
3.1. Stage I: Efficiency Based on Traditional Undesirable Output DEA Model
3.2. Stage II: Using SFA to Quantify Environmental Effects
3.3. Stage III: Re-Estimate Efficiency Using Adjusted Data
3.4. Comparison of Results between Stage I and Stage III
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Solomon, S. (Ed.) Climate Change 2007-the Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4.
- Stern, N. (Ed.) The Economics of Climate Change: The Stern Review; Cambridge University Press: Cambridge, UK, 2007.
- Song, M.; Wang, S.; Liu, Q. Environmental efficiency evaluation considering the maximization of desirable outputs and its application. Math. Comput. Model. 2013, 58, 1110–1116. [Google Scholar] [CrossRef]
- Chiu, Y.H.; Huang, C.W.; Ma, C.M. Assessment of China transit and economic efficiencies in a modified value-chains DEA model. Eur. J. Oper. Res. 2011, 209, 95–103. [Google Scholar] [CrossRef]
- Wang, K.; Lu, B.; Wei, Y.M. China’s regional energy and environmental efficiency: A Range-Adjusted Measure based analysis. Appl. Energy 2013, 112, 1403–1415. [Google Scholar] [CrossRef]
- Wu, H.Q.; Shi, Y.; Xia, Q.; Zhu, W.D. Effectiveness of the policy of circular economy in China: A DEA-based analysis for the period of 11th five-year-plan. Resour. Conserv. Recycl. 2013, 83, 163–175. [Google Scholar] [CrossRef]
- Ramanathan, R. Evaluating the comparative performance of countries of the Middle East and North Africa: A DEA application. Socio-Econ. Plan. Sci. 2006, 40, 156–167. [Google Scholar] [CrossRef]
- Tyteca, D. Linear programming models for the measurement of environmental performance of firms—Concepts and empirical results. J. Prod. Anal. 1997, 8, 183–197. [Google Scholar] [CrossRef]
- Seiford, L.M.; Zhu, J. Modeling Undesirable Factors in Efficiency Evaluation. Eur. J. Oper. Res. 2002, 142, 16–20. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Poh, K.L. A survey of data envelopment analysis in energy and environmental studies. Eur. J. Oper. Res. 2008, 189, 1–18. [Google Scholar] [CrossRef]
- Liu, W.B.; Meng, W.; Li, X.X.; Zhang, D.Q. DEA models with undesirable inputs and outputs. Ann. Oper. Res. 2010, 173, 177–194. [Google Scholar] [CrossRef]
- Song, M.L.; An, Q.A.; Zhang, W.; Wang, Z.Y.; Wu, J. Environmental efficiency evaluation based on data envelopment analysis: A review. Renew. Sustain. Energy Rev. 2012, 16, 4465–4469. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Choi, Y.; Zhang, N.; Zhou, P. Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure. Appl. Energy 2012, 98, 198–208. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Poh, K.L. Slacks-based efficiency measures for modeling environmental performance. Ecol. Econ. 2006, 60, 111–118. [Google Scholar] [CrossRef]
- Hu, J.L.; Kao, C.H. Efficient energy-saving targets for APEC economies. Energy Policy 2007, 35, 373–382. [Google Scholar] [CrossRef]
- Li, H.; Fang, K.N.; Yang, W.; Wang, D.; Hong, X.X. Regional environmental efficiency evaluation in China: Analysis based on the Super-SBM model with undesirable outputs. Math. Comput. Model. 2013, 58, 1018–1031. [Google Scholar] [CrossRef]
- Lee, T.; Yeo, G.T.; Thai, V.V. Environmental efficiency analysis of port cities: Slacks-based measure data envelopment analysis approach. Trans. Policy 2014, 33, 82–88. [Google Scholar] [CrossRef]
- De Castro Camioto, F.; Mariano, E.B.; do Nascimento Rebelatto, D.A. Efficiency in Brazil’s industrial sectors in terms of energy and sustainable development. Environ. Sci. Policy 2014, 37, 50–60. [Google Scholar] [CrossRef]
- Shyu, J.; Chiang, T. Measuring the true managerial efficiency of bank branches in Taiwan: A three-stage DEA analysis. Expert Syst. Appl. 2012, 39, 11494–11502. [Google Scholar] [CrossRef]
- Avkiran, N.K.; Rowlands, T. How to better identify the true managerial performance: State of the art using DEA. Omega 2008, 36, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Ferrier, G.D.; Lovell, C.K. Measuring cost efficiency in banking: Econometric and linear programming evidence. J. Econ. 1990, 46, 229–245. [Google Scholar] [CrossRef]
- Fried, H.O.; Schmidt, S.S.; Yaisawarng, S. Incorporating the operating environment into a nonparametric measure of technical efficiency. J. Prod. Anal. 1999, 12, 249–267. [Google Scholar] [CrossRef]
- Fried, H.O.; Lovell, C.K.; Schmidt, S.S.; Yaisawarng, S. Accounting for environmental effects and statistical noise in data envelopment analysis. J. Prod. Anal. 2002, 17, 157–174. [Google Scholar] [CrossRef]
- Li, K.; Lin, B. Impact of energy conservation policies on the green productivity in China’s manufacturing sector: Evidence from a three-stage DEA model. Appl. Energy 2016, 168, 351–363. [Google Scholar] [CrossRef]
- Bi, G.B.; Song, W.; Zhou, P.; Liang, L. Does environmental regulation affect energy efficiency in China’s thermal power generation? Empirical evidence from a slacks-based DEA model. Energy Policy 2014, 66, 537–546. [Google Scholar] [CrossRef]
- Yang, H.; Pollitt, M. Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants. Eur. J. Oper. Res. 2009, 197, 1095–1105. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, B.; Shen, Y.; Wang, X. The energy efficiency of China’s regional construction industry based on the three-stage DEA model and the DEA-DA model. KSCE J. Civ. Eng. 2016, 20, 34–47. [Google Scholar] [CrossRef]
- Aigner, D.; Lovell, C.A.A.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econ. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Meeusen, W.; Van den Broeck, J. Efficiency estimation from Cobb-Douglas production functions with composed error. Int. Econ. Rev. 1977, 18, 435–444. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Lovell, C.K. Stochastic Frontier Analysis; Cambridge University Press: Cambridge, UK, 2000; pp. 136–142. [Google Scholar]
- British Petroleum (BP). BP Statistical Review of World Energy 2013. 2013. Available online: http://www.bp.com/content/dam/bp/pdf/statisticalreview/statistical_review_of_world_energy_2013.pdf (accessed on 5 May 2014).
- Chen, S. The evaluation indicator of ecological development transition in China’s regional economy. Ecol. Indic. 2015, 51, 42–52. [Google Scholar] [CrossRef]
- World Bank Open Data. Available online: http://data.worldbank.org/ (accessed on 5 November 2016).
- Wu, L.; Kaneko, S.; Matsuoka, S. Driving forces behind the stagnancy of China’s energy-related CO2 emissions from 1996 to 1999: The relative importance of structural change, intensity change and scale change. Energy Policy 2005, 33, 319–335. [Google Scholar] [CrossRef]
- Liu, L.C.; Fan, Y.; Wu, G.; Wei, Y.M. Using LMDI method to analyze the change of China’s industrial CO2 emissions from final fuel use: An empirical analysis. Energy Policy 2007, 35, 5892–5900. [Google Scholar] [CrossRef]
- Levine, M.D.; Aden, N.T. Global carbon emissions in the coming decades: The case of China. Annu. Rev. Environ. Resour. 2008, 33, 19–38. [Google Scholar] [CrossRef]
- Dhakal, S. Urban energy use and carbon emissions from cities in China and policy implications. Energy Policy 2009, 37, 4208–4219. [Google Scholar] [CrossRef]
- Yan, Y.F.; Yang, L.K. China’s foreign trade and climate change: A case study of CO2 emissions. Energy Policy 2010, 38, 350–356. [Google Scholar]
- Zhang, Z.X. Who should bear the cost of China’s carbon emissions embodied in goods for exports? Miner. Econ. 2012, 24, 103–117. [Google Scholar] [CrossRef]
Countries | Inputs | Output | Undesirable Output | |||||||
---|---|---|---|---|---|---|---|---|---|---|
E (100 Mtce) | K (1010) | L (1 Million Persons) | GDP (1010) | CO2 (100 Million Tonnes) | ||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Annex I countries | ||||||||||
United States | 2296.7 | 51.8 | 276.4 | 31.1 | 153.6 | 4.2 | 1330.7 | 198.5 | 6255.8 | 232.9 |
Russia | 659.1 | 26.1 | 21.3 | 14.4 | 75 | 1.8 | 102.4 | 62.5 | 1626.3 | 54.3 |
Japan | 510.9 | 19.5 | 106.3 | 10.4 | 66.6 | 0.7 | 479.6 | 63.8 | 1358.7 | 51.4 |
Germany | 327.2 | 11.7 | 51.9 | 10.5 | 41.3 | 0.8 | 286 | 64.1 | 866.9 | 42.5 |
Canada | 316.6 | 10.6 | 26.3 | 9.6 | 17.9 | 1 | 122.2 | 39.4 | 617.5 | 17.9 |
United Kingdom | 218.7 | 9.4 | 35.7 | 7.5 | 31 | 1.1 | 219.1 | 44.5 | 577 | 30.1 |
Italy | 176.8 | 7 | 36 | 8.2 | 24.3 | 0.5 | 178.1 | 41.6 | 467 | 29.3 |
Australia | 119.5 | 6.8 | 22 | 10.8 | 10.8 | 0.8 | 81.6 | 38 | 382.9 | 20.2 |
France | 255.6 | 6.8 | 42.8 | 12.3 | 28.8 | 1 | 217.9 | 54.8 | 417.7 | 19.2 |
Spain | 146.6 | 8.5 | 29.5 | 9.8 | 21.4 | 2.1 | 113.9 | 35 | 363.6 | 27.5 |
Non-Annex I countries | ||||||||||
China | 1746.9 | 583.1 | 155.7 | 115.8 | 759.5 | 19.6 | 361.6 | 238.5 | 6006.7 | 1942.5 |
India | 406.7 | 94.1 | 32 | 17.3 | 453.7 | 23.9 | 106.7 | 51.4 | 1310.2 | 301.6 |
Korea | 227.1 | 26.2 | 23.8 | 5.8 | 24.2 | 0.9 | 83.5 | 22 | 631.1 | 75.9 |
Saudi Arabia | 163.5 | 34 | 8.4 | 4.6 | 8.3 | 1.4 | 38.5 | 18.1 | 454.5 | 94.2 |
Iran | 182.6 | 37.5 | 7.3 | 4.2 | 23.5 | 2.2 | 27.2 | 15.6 | 483.7 | 93.4 |
Brazil | 220.1 | 32.6 | 22.7 | 14.2 | 94.9 | 6.9 | 126.2 | 70.8 | 405.1 | 53.8 |
Mexico | 162.3 | 15.8 | 19.7 | 4.7 | 46.2 | 4 | 91.8 | 17.5 | 432.6 | 38 |
Indonesia | 125.7 | 19.7 | 12.1 | 9.3 | 107.8 | 6.7 | 42.9 | 25.2 | 377.7 | 67.4 |
South Africa | 115.9 | 9.5 | 4.7 | 2.2 | 18 | 0.7 | 25 | 9.8 | 419.7 | 34.7 |
Thailand | 89.1 | 16.8 | 5.7 | 2.5 | 37.4 | 1.6 | 22 | 8.8 | 255.3 | 47.1 |
Variables | Definition | Mean | SD |
---|---|---|---|
GDP per capita | The amount of GDP divided by midyear population (US$) | 15,182.08 | 13,788.06 |
Government support | The proportion of general government final consumption expenditure in GDP (%) | 16.99 | 4.24 |
Industry structure | The proportion of industry value added in GDP (%) | 33.49 | 9.66 |
Import and exports | The proportion of exports and imports in GDP (%) | 48.82 | 22.07 |
Urbanization rate | The proportion of urban population in total (%) | 69.53 | 17.40 |
DMU | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annex I countries | |||||||||||||
United States | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Russia | 0.330 | 0.304 | 0.316 | 0.315 | 0.325 | 0.340 | 0.343 | 0.329 | 0.323 | 0.311 | 0.303 | 0.293 | 0.292 |
Japan | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Germany | 0.757 | 0.789 | 0.884 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.909 | 0.954 |
Canada | 0.709 | 0.714 | 0.692 | 0.692 | 0.683 | 0.686 | 0.711 | 0.687 | 0.693 | 0.716 | 0.709 | 0.691 | 0.692 |
United Kingdom | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Italy | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Australia | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
France | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Spain | 1.000 | 1.000 | 1.000 | 1.000 | 0.871 | 0.829 | 1.000 | 0.845 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Mean | 0.880 | 0.881 | 0.889 | 0.901 | 0.888 | 0.885 | 0.905 | 0.886 | 0.902 | 0.903 | 0.901 | 0.889 | 0.894 |
Non-Annex I countries | |||||||||||||
China | 0.175 | 0.175 | 0.166 | 0.147 | 0.137 | 0.137 | 0.139 | 0.149 | 0.154 | 0.145 | 0.145 | 0.145 | 0.147 |
India | 0.306 | 0.291 | 0.297 | 0.290 | 0.263 | 0.255 | 0.248 | 0.238 | 0.232 | 0.214 | 0.214 | 0.205 | 0.204 |
Korea | 0.560 | 0.551 | 0.557 | 0.545 | 0.537 | 0.557 | 0.591 | 0.570 | 0.549 | 0.545 | 0.525 | 0.517 | 0.539 |
Saudi Arabia | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Iran | 0.653 | 0.608 | 0.582 | 0.581 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.558 | 0.536 |
Brazil | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.598 | 0.592 | 0.562 | 0.532 | 0.524 |
Mexico | 0.823 | 0.859 | 0.862 | 0.757 | 0.730 | 0.714 | 0.712 | 0.705 | 0.702 | 0.668 | 0.686 | 0.637 | 0.592 |
Indonesia | 0.624 | 0.646 | 0.662 | 0.655 | 0.644 | 0.660 | 0.650 | 0.613 | 0.624 | 0.515 | 0.485 | 0.441 | 0.429 |
South Africa | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Thailand | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Mean | 0.714 | 0.713 | 0.713 | 0.697 | 0.731 | 0.732 | 0.734 | 0.727 | 0.686 | 0.668 | 0.662 | 0.604 | 0.597 |
Mean of the 20 countries | 0.797 | 0.797 | 0.801 | 0.799 | 0.809 | 0.809 | 0.820 | 0.807 | 0.794 | 0.785 | 0.781 | 0.746 | 0.745 |
Variables | Slacks of | |||
---|---|---|---|---|
E | K | L | CO2 | |
Constant | 689.12 *** | 26.91 *** | 632.96 *** | 2462.35 *** |
Gross Domestic Product (GDP) per capita | −0.00078 | −0.000042 *** | 0.00003 *** | −0.0019 |
Government support | −44.08 *** | −1.95 *** | 0.93 *** | −0.85 |
Industry structure | −9.54 *** | −0.11 *** | 0.90 ** | 12.49 *** |
Import and exports | −1.16 | −0.08 *** | 0.21 ** | 2.00 ** |
Urbanization | 14.95 *** | 0.40 *** | 0.51 *** | −16.47 *** |
Sigma-squared | 237,647.09 | 433.34 | 39,319.84 | 2,796,319.9 |
Gamma | 0.95 | 0.83 | 1.00 | 0.92 |
Log-likelihood function | −1662.93 | −982.06 | −1162.11 | −2018.07 |
Likelihood Ratio (LR) test of the one-sided error | 401.32 | 170.58 | 922.91 | 332.01 |
DMU | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annex I countries | |||||||||||||
United States | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Russia | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.954 | 0.907 | 0.876 | 0.909 | 0.785 | 0.839 |
Japan | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Germany | 0.993 | 0.994 | 0.993 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Canada | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 1.000 | 1.000 | 1.000 | 0.984 | 0.971 | 0.981 | 0.981 | 0.978 |
United Kingdom | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Italy | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.987 | 0.993 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Australia | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
France | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Spain | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Mean | 0.999 | 0.999 | 0.999 | 1.000 | 1.000 | 1.000 | 0.999 | 0.995 | 0.989 | 0.985 | 0.989 | 0.977 | 0.982 |
Non-Annex I countries | |||||||||||||
China | 0.660 | 0.672 | 0.661 | 0.628 | 0.600 | 0.604 | 0.614 | 0.629 | 0.627 | 0.584 | 0.572 | 0.572 | 0.577 |
India | 0.954 | 0.956 | 0.904 | 0.927 | 0.882 | 0.887 | 0.866 | 0.862 | 0.811 | 0.826 | 0.832 | 0.801 | 0.815 |
Korea | 0.995 | 0.990 | 1.000 | 0.986 | 1.000 | 1.000 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Saudi Arabia | 1.000 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Iran | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Brazil | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.949 | 1.000 | 0.959 | 0.948 | 0.942 |
Mexico | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Indonesia | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.798 | 0.844 |
South Africa | 1.000 | 1.000 | 0.831 | 0.802 | 0.998 | 1.000 | 1.000 | 0.999 | 0.999 | 0.999 | 0.999 | 0.996 | 0.997 |
Thailand | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Mean | 0.961 | 0.962 | 0.939 | 0.934 | 0.948 | 0.949 | 0.948 | 0.949 | 0.938 | 0.941 | 0.936 | 0.911 | 0.917 |
Mean of the 20 countries | 0.980 | 0.980 | 0.969 | 0.967 | 0.974 | 0.974 | 0.973 | 0.972 | 0.964 | 0.963 | 0.963 | 0.944 | 0.950 |
Stage 1 | Stage 3 | |
---|---|---|
All 20 countries | ||
Mean of Efficiency scores | 0.792 | 0.967 |
Std. Deviation of Efficiency scores | 0.023 | 0.011 |
Maximum | 0.745 | 0.944 |
Minimum | 0.820 | 0.980 |
Pearson correlation coefficients | 0.874 *** | |
Spearman rank correlation of Efficiency | 0.709 *** | |
Annex I countries | ||
Mean of Efficiency scores | 0.893 | 0.993 |
Std. Deviation of Efficiency scores | 0.009 | 0.008 |
Maximum | 0.880 | 0.977 |
Minimum | 0.905 | 1.000 |
Pearson correlation coefficients | −0.294 | |
Spearman rank correlation of Efficiency | −0.429 | |
Non-Annex I countries | ||
Mean of Efficiency scores | 0.691 | 0.941 |
Std. Deviation of Efficiency scores | 0.046 | 0.015 |
Maximum | 0.597 | 0.911 |
Minimum | 0.734 | 0.962 |
Pearson correlation coefficients | 0.859 *** | |
Spearman rank correlation of Efficiency | 0.764 *** |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Liu, J. Measurement of Low Carbon Economy Efficiency with a Three-Stage Data Envelopment Analysis: A Comparison of the Largest Twenty CO2 Emitting Countries. Int. J. Environ. Res. Public Health 2016, 13, 1116. https://doi.org/10.3390/ijerph13111116
Liu X, Liu J. Measurement of Low Carbon Economy Efficiency with a Three-Stage Data Envelopment Analysis: A Comparison of the Largest Twenty CO2 Emitting Countries. International Journal of Environmental Research and Public Health. 2016; 13(11):1116. https://doi.org/10.3390/ijerph13111116
Chicago/Turabian StyleLiu, Xiang, and Jia Liu. 2016. "Measurement of Low Carbon Economy Efficiency with a Three-Stage Data Envelopment Analysis: A Comparison of the Largest Twenty CO2 Emitting Countries" International Journal of Environmental Research and Public Health 13, no. 11: 1116. https://doi.org/10.3390/ijerph13111116
APA StyleLiu, X., & Liu, J. (2016). Measurement of Low Carbon Economy Efficiency with a Three-Stage Data Envelopment Analysis: A Comparison of the Largest Twenty CO2 Emitting Countries. International Journal of Environmental Research and Public Health, 13(11), 1116. https://doi.org/10.3390/ijerph13111116