Spatially Analyzing the Inequity of the Hong Kong Urban Heat Island by Socio-Demographic Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Analysis
2.3. Methodology
2.3.1. Derivation of Land Surface Temperature Image
2.3.2. Reclassification of Socio-Demographical Indicators and LST
2.3.3. Population Density by Socio-Demographic Characteristics
2.3.4. Logistic Regression Model
2.3.5. Spatial Autocorrelation Method
3. Results
3.1. Distribution of Urban Heat Islands in Hong Kong
3.2. Inequity of SUHI by Socio-Demographic Characteristics
3.2.1. Global Autocorrelation Analysis of SUHI Inequity
3.2.2. Spatial Clustering of SUHI Inequity by Age
3.2.3. Spatial Clustering of SUHI Inequity by Income
3.2.4. Spatial Clustering of SUHI Inequity by Marital Status
3.2.5. Spatial Clustering of SUHI Inequity by Occupation
3.2.6. Spatial Clustering of SUHI Inequity by Educational Attainment
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
SUHI | Urban Heat Island |
TM | Thematic Mapper |
LST | Land Surface Temperature |
PDMM | Population Dynamic Mapping Model |
TPU | Tertiary Planning Units |
ORs | Odds Ratios |
OLS | Ordinary Least Squares Models |
GIS | Geographical Information System |
LULC | land use and land cover |
HKO | Hong Kong Observatory |
HKSAR | Hong Kong Special Administrative Region |
References
- Pellow, D.N. Environmental inequality formation: Toward a theory of environmental justice. Am. Behav. Sci. 2000, 43, 581–601. [Google Scholar] [CrossRef]
- Goggins, W.B.; Chan, E.Y.Y.; Ng, E.; Ren, C.; Chen, L. Effect modification of the Association between short-term meteorological factors and mortality by urban heat islands in Hong Kong. PLoS ONE 2012, 7, e38551. [Google Scholar] [CrossRef] [PubMed]
- Harlan, S.L.; Brazel, A.J.; Jenerette, G.D.; Jones, N.S.; Larsen, L.; Prashad, L.; Stefanov, W.L. In the shade of affluence: The inequitable distribution of the urban heat island. Res. Soc. Probl. Publ. Pol. 2007, 15, 173–202. [Google Scholar]
- Zou, B.; Peng, F.; Wan, N.; Mamady, K.; Wilson, G.J. Spatial cluster detection of air pollution exposure inequities across the United States. PLoS ONE 2014, 9, e91917. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.; Peng, F.; Wan, N.; Wilson, G.J. Air pollution exposure justice: A multi-scale source specific analysis. Atmos. Pollut. Res. 2014, 5, 491–499. [Google Scholar] [CrossRef]
- Scarcity, B. Beyond scarcity: Power, poverty and the global water crisis. In Human Development Report 2006; United Nations Development Programme; Palgrave Macmillan: New York, NY, USA, 2006. [Google Scholar]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Harlan, S.L.; Declet-Barreto, J.H.; Stefanov, W.L.; Petitti, D.B. Neighbourhood effects on heat deaths: Social and environmental predictors of vulnerability in Maricopa County, Arizona. Environ. Health Perspect. 2012, 121, 197–204. [Google Scholar] [PubMed]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Berry, H.L.; Bowen, K.; Kjellstrom, T. Climate change and mental health: a causal pathways framework. Int. J. Public Health 2010, 55, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.P.; Wilson, J.S. The socio-spatial dynamics of extreme urban heat events: The case of heat-related deaths in Philadelphia. Appl. Geogr. 2009, 29, 419–434. [Google Scholar] [CrossRef]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F.; et al. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Thorsson, S.; Lindberg, F.; Bjorklund, J.; Holmer, B.; Rayner, D. Potential changes in outdoor thermal comfort conditions in Gothenburg, Sweden due to climate change: the influence of urban geometry. Int. J. Climatol. 2011, 31, 324–335. [Google Scholar] [CrossRef]
- Harlan, S.L.; Brazel, A.J.; Prashad, L.; Stefanov, W.L.; Larsen, L. Neighbourhood microclimates and vulnerability to heat stress. Soc. Sci. Med. 2006, 63, 2847–2863. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Zhou, W.; Cadenasso, M.L. Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighbourhood socioeconomic characteristics in Baltimore, MD. J. Environ. Manag. 2011, 92, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.Y.Y.; Goggins, W.B.; Kim, J.J.; Griffiths, S.M. A study of intracity variation of temperature-related mortality and socioeconomic status among the Chinese population in Hong Kong. J. Epidemiol. Commun. Health 2012, 66, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Bonstein, R.D. Observations of the urban heat island effect in New York City. J. Appl. Meteorol. 1968, 7, 575–582. [Google Scholar] [CrossRef]
- Weng, Q. Estimation of land surface-vegetation abundance relationship for Urban Heat Island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Gallo, K.P.; McNab, A.L.; Karl, T.R.; Brown, J.F.; Hood, J.J.; Tarpley, J.D. The Use of a vegetation index for assessment of the urban heat island effect. Int. J. Remote Sens. 1993, 14, 2223–2230. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, P.; Li, X. Research on spatial thermal environment in Shanghai city based on remote sensing and GIS. J. Surv. Map. 2002, 31, 139–144. [Google Scholar]
- Oke, T.R. The heat island of the urban boundary layer: Characteristics cause and effects. In Wind Climate in Cities; Cermak, J.E., Davenport, A.G., Plate, E.J., Viegas, D.X., Eds.; Springer Science & Business Media: Waldbronn, Germany, 1995; Volume 277, pp. 81–107. [Google Scholar]
- Yang, L. Integration of a numerical model and remotely sensed data to study urban/rural land surface climate process. Comput. Geosci. 2000, 26, 451–468. [Google Scholar] [CrossRef]
- Pham, T.T.H.; Apparicio, P.; Séguin, A.M.; Landry, S.; Gagnon, M. Spatial distribution of vegetation in Montreal: An uneven distribution or environmental inequity? Landsc. Urban Plan. 2012, 107, 214–224. [Google Scholar] [CrossRef]
- Census and Statistics Department. Available online: http://www.censtatd.gov.hk/home.html (accessed on 20 June 2014).
- Census and Statistics Department: Hong Kong in Figures. Available online: http://www.censtatd.gov.hk/hkstat/sub/sp140.jsp?productCode=B1010006 (accessed on 10 June 2014).
- Hong Kong Observatory. Available online: http://www.hko.gov.hk/abouthko/aboutus.htm (accessed on 20 July 2003).
- Memon, R.A.; Leung, D.Y.C.; Liu, C.H. An investigation of urban heat island intensity (SUHII) as an indicator of urban heating. Atmos. Res. 2009, 94, 491–500. [Google Scholar] [CrossRef]
- Basic Tables for Tertiary Planning Units. 2006 Population By-Census Office Census and Statistics Department. Available online: www.censtatd.gov.hk (accessed on 12 June 2014).
- Census and Statistics Department: Hong Kong 2006 Population By-Census—Basic Tables for Tertiary Planning Units. Available online: http://www.bycensus2006.gov.hk/en/data/data2/index.htm (accessed on 20 August 2014).
- Planning Department, the Government of Hong Kong Special. 2001. Available online: http://www.landsd.gov.hk/mapping/en/metadata/metadata/web/data/others/pland_tpu.faq.html (accessed on 5 June 2008).
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Weng, Q. Fractal analysis of satellite-detected urban heat island effect. Photogramm. Eng. Rem. S. 2003, 69, 555–566. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Ou, C.Q.; Hedley, A.J.; Chung, R.Y.; Thach, T.Q.; Chau, Y.K.; Chan, K.P.; Yang, L.; Ho, S.Y.; Wong, C.M.; Lam, T.H. Socioeconomic disparities in air pollution– associated mortality. Environ. Res. 2008, 107, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Y. Study of the relationships between the spatial extent of surface urban heat islands and urban characteristic factors based on landsat ETM+ Data. Sensors 2008, 8, 7453–7468. [Google Scholar] [CrossRef]
- Mennis, J. Generating surface models of population using dasymetric mapping. Prof. Geogr. 2003, 55, 31–42. [Google Scholar]
- Sleeter, R.; Gould, M.D. Geographic Information System Software to Remodel Population Data Using Dasymetric Mapping Methods; US Department of the Interior, US Geological Survey: Denver, CO, USA, 2007.
- Zou, B.; Zhan, F.B.; Wilson, J.G.; Zeng, Y. Spatially differentiated and source-specific population exposure to ambient urban air population. Atmos. Environ. 2009, 43, 3981–3988. [Google Scholar] [CrossRef]
- Zou, B.; Peng, F.; Jiao, L.M.; Weng, M. GIS based spatial zoning of high-resolution population exposure to air pollution. Wuhan Univ. J. Inf. Sci. 2013, 38, 334–338. [Google Scholar]
- Dong, M.H.; Zou, B.; Pu, Q.; Wan, N. Spatial pattern evolution and casual analysis of county level economy in Changsha-Zhuzhou-Xiangtan urban agglomeration, China. Chinese Geogr. Sci. 2014, 24, 620–630. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Analy. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Rogerson, P.A.; Kedron, P. Optimal weights for focused tests of clustering using the Local Moran statistic. Geogr. Analy. 2012, 44, 121–133. [Google Scholar] [CrossRef]
- Toan, D.T.T.; Hu, W.; Thai, P.Q.; Hoat, L.N.; Wright, P.; Marterns, P. Hot spot detection and spatio-temporal dispersion of dengue fever in Hanoi, Vietnam. Global Health Action 2013, 6, 18632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cliff, A.D.; Ord, J.K. Spatial Processes: Models and Applications; Pion: London, UK, 1981. [Google Scholar]
- Population By-Census: 2006 Population By-Census. Available online: http://www.bycensus2006.gov.hk/ en/data/data3/statistical_tables/ (accessed on 10 March 2013).
- Anselin, L. The Moran scatter plot as an ESDA tool to assess local instability in spatial association. Spat. Analy. Perspect. GIS 1996, 4, 111–127. [Google Scholar]
- Spatial Cluster Detection. Available online: https://geodacenter.asu.edu/ (accessed on 5 October 2013).
- Jacquez, G.M. Spatial cluster analysis. In The Handbook of Geographic Information Science; Wilson, J.P., Fotheringham, A.S., Eds.; Blackwell: Oxford, UK, 2008; Volume 395, p. 416. [Google Scholar]
- Rey, S.J.; Anselin, L.; Hwang, M. Dynamic Manipulation of Spatial Weights Using Web Services. Available online: https://geodacenter.asu.edu/system/files/200812_Reyetal.pdf (accessed on 2 February 2016).
Age | Income (HK$ per Month) | Educational Attainment | Marital Status | Occupation |
---|---|---|---|---|
0–14 | <4 K | Pre-primary Primary | Unmarried | Managers, Administrators, Professionals, Associate Professionals 1 |
14–60 1 | 4 K–10 K | Secondary Sixth form | Married 1 | Clerks, Service Workers, Shop Sales Workers |
>60 | 10 K–20 K | Post-secondary 1 | Widowed Divorced Separated | Craft and Related Workers, Plant and Machine Operators, Assemblers |
20 K–40 K | Elementary Occupations, Skilled Agricultural and Fishery Workers, Occupations not classified | |||
>40 K 1 |
Temperature Range | Class |
---|---|
Extreme high temperature area | TS > μ+ SD |
High temperature area | μ + 0.5SD < Ts ≤ μ + SD |
Sub-high temperature area | μ < Ts ≤ µ + 0.5SD |
Medium temperature area | μ − 0.5SD ≤ Ts ≤ μ |
Sub-low temperature area | μ – SD ≤ Ts<μ − 0.5SD |
Low temperature area | Ts < μ − SD |
Characteristics | Level | Count (%) 1 | Minimum (95% CI) | Maximum (95% CI) | Mean |
---|---|---|---|---|---|
Age | <14 | 11(33.3%) | 1.04(1.00,1.08) | 1.39(1.20,1.61) | 1.12 |
>60 | 50(64.9%) | 1.03(1.00,1.06) | 2.58(1.37,4.85) | 1.33 | |
Income (HK$ per month) | <4 K | 56(57.7%) | 1.07(1.00,1.14) | 6.11(2.16,17.28) | 1.70 |
4 K–10 K | 67(60.9%) | 1.09(1.00,1.19) | 7.25(4.49,11.70) | 2.01 | |
10 K–20 K | 61(61.0%) | 1.07(1.00,1.15) | 8.61(1.14,65.05) | 2.02 | |
20 K–40 K | 44(66.7%) | 1.11(1.02,1.21) | 7.13(2.48,20.51) | 1.75 | |
Educational attainment | Pre-primary Primary | 61(47.3%) | 1.05(1.02,1.08) | 7.68(5.89,10.01) | 1.89 |
Secondary Sixth form | 56(60.9%) | 1.03(1.00,1.06) | 3.75(2.55,5.50) | 1.36 | |
Marital status | Unmarried | 8(53.3%) | 1.07(1.02,1.12) | 1.20(1.11,1.30) | 1.13 |
Widowed Divorced Separated | 28(66.7%) | 1.07(1.01,1.13) | 1.95(1.60,2.38) | 1.34 | |
Occupation | Clerks, Service Workers, Shop Sales Workers | 51(63.0%) | 1.04(1.00,1.07) | 4.26(3.06,5.93) | 1.47 |
Craft and Related Workers, Plant and Machine Operators, Assemblers | 53(60.2%) | 1.06(1.02,1.10) | 8.84(5.75,13.59) | 1.82 | |
Elementary Occupations, Skilled Agricultural and Fishery Workers, Occupations not classified | 46(52.9%) | 1.04(1.00,1.07) | 1.95(1.78,2.13) | 1.24 |
Characteristics | Level | Moran’s I | z-Value |
---|---|---|---|
Age | <14 | 0.226 | 9.596 |
>60 | 0.176 | 7.492 | |
Income (HK$ per month) | <4 K | 0.393 | 16.138 |
4 K–10 K | 0.347 | 14.708 | |
10 K–20 K | 0.565 | 24.118 | |
20 K–40 K | 0.455 | 18.435 | |
Educational attainment | Pre-primary Primary | 0.801 | 34.565 |
Secondary Sixth form | 0.360 | 14.471 | |
Marital status | Unmarried | 0.139 | 6.088 |
Widowed Divorced Separated | 0.101 | 4.360 | |
Occupation | Clerks, Service Workers, Shop Sales Workers | 0.490 | 20.549 |
Craft and Related Workers, Plant and Machine Operators, Assemblers | 0.276 | 12.303 | |
Elementary Occupations, Skilled Agricultural and Fishery Workers, Occupations not classified | 0.260 | 10.955 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, M.S.; Peng, F.; Zou, B.; Shi, W.Z.; Wilson, G.J. Spatially Analyzing the Inequity of the Hong Kong Urban Heat Island by Socio-Demographic Characteristics. Int. J. Environ. Res. Public Health 2016, 13, 317. https://doi.org/10.3390/ijerph13030317
Wong MS, Peng F, Zou B, Shi WZ, Wilson GJ. Spatially Analyzing the Inequity of the Hong Kong Urban Heat Island by Socio-Demographic Characteristics. International Journal of Environmental Research and Public Health. 2016; 13(3):317. https://doi.org/10.3390/ijerph13030317
Chicago/Turabian StyleWong, Man Sing, Fen Peng, Bin Zou, Wen Zhong Shi, and Gaines J. Wilson. 2016. "Spatially Analyzing the Inequity of the Hong Kong Urban Heat Island by Socio-Demographic Characteristics" International Journal of Environmental Research and Public Health 13, no. 3: 317. https://doi.org/10.3390/ijerph13030317
APA StyleWong, M. S., Peng, F., Zou, B., Shi, W. Z., & Wilson, G. J. (2016). Spatially Analyzing the Inequity of the Hong Kong Urban Heat Island by Socio-Demographic Characteristics. International Journal of Environmental Research and Public Health, 13(3), 317. https://doi.org/10.3390/ijerph13030317