Influence of Occupational and Environmental Exposure to Low Concentrations of Polychlorobiphenyls and a Smoking Habit on the Urinary Excretion of Corticosteroid Hormones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Blood and Urine Sampling
2.3. Analytical Methods
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- ATSDR. Toxicological Profile for Polychlorinated Biphenyls (PCBs). Available online: http://www.atsdr.cdc.gov/toxprofiles/tp17.pdf (accessed on 15 January 2016).
- Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: An endocrine society scientific statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef] [PubMed]
- Erickson, M.D. Introduction: PCBs properties, uses, occurrence and regulatory history. In PCBs. Recent Advances in Environmental Toxicology and Health Effects; Robertson, L.W., Hansen, L.G., Eds.; The University Press of Kentucky: Lexington, KY, USA, 2001. [Google Scholar]
- IPCS. Concise International Chemical Assessment Document 55. Polychlorinated Biphenyls: Human Health Aspects. Available online: http://www.who.int/ipcs/publications/cicad/en/cicad55.pdf (accessed on 15 January 2016).
- Rennert, A.; Wittsiepe, J.; Kasper-Sonnenberg, M.; Binder, G.; Fürst, P.; Cramer, C.; Krämer, U.; Wilhelm, M. Prenatal and early life exposure to polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls may influence dehydroepiandrosterone sulfate levels at prepubertal age: Results from the Duisburg birth cohort study. J. Toxicol. Environ. Health 2012, 75, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Romeo, L.; Catalani, S.; Pasini, F.; Bergonzi, R.; Perbellini, L.; Apostoli, P. Xenobiotic action on steroid hormone synthesis and sulfonation the example of lead and polychlorinated biphenyls. Int. Arch. Occup. Environ. Health 2009, 82, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Turyk, M.E.; Anderson, H.A.; Freels, S.; Chatterton, R., Jr.; Needham, L.L.; Patterson, D.G., Jr.; Steenport, D.N.; Knobeloch, L.; Imm, P.; Persky, V.W. Great Lakes Consortium Associations of organochlorines with endogenous hormones in male Great Lakes fish consumers and nonconsumers. Environ. Res. 2006, 102, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Sarkola, T.; Eriksson, C.J. Testosterone increases in men after a low dose of alcohol. Alcohol Clin. Exp. Res. 2003, 27, 682–685. [Google Scholar] [CrossRef] [PubMed]
- Waring, R.H.; Ayers, S.; Gescher, A.J.; Glatt, H.R.; Meinl, W.; Jarratt, P.; Kirk, C.J.; Pettitt, T.; Rea, D.; Harris, R.M. Phytoestrogens and xenoestrogens: The contribution of diet and environment to endocrine disruption. J. Steroid. Biochem. Mol. Biol. 2008, 108, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, D.; Jones, T.H. Smoking and hormones in health and endocrine disorders. Eur. J. Endocrinol. 2005, 152, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Turci, R.; Angeleri, F.; Minoia, C. A rapid screening method for routine congener-specific analysis of polychlorinated biphenyls in human serum by high-resolution gas chromatography with mass spectrometric detection. Rapid Commun. Mass Spectrom. 2002, 16, 1957–1964. [Google Scholar] [CrossRef] [PubMed]
- Apostoli, P.; Magoni, M.; Bergonzi, R.; Carasi, S.; Indelicato, A.; Scarcella, C.; Donato, F. Assessment of reference values for polychlorinated biphenyl concentration in human blood. Chemosphere 2005, 61, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Phillips, D.L.; Pirkle, J.L.; Burse, V.W.; Bernert, J.T., Jr.; Henderson, L.O.; Needham, L.L. Chlorinated hydrocarbon levels in human serum: Effects of fasting and feeding. Arch. Environ. Contam. Toxicol. 1989, 18, 495–500. [Google Scholar] [CrossRef] [PubMed]
- D’Errico, M.N.; de Tullio, G.; di Gioacchino, M.; Lovreglio, P.; Basso, A.; Drago, I.; Serra, R.; Apostoli, P.; Vacca, A.; Soleo, L. Immune effects of polychlorinated biphenyls, smoking and alcohol. Int. J. Immunopathol. Pharmacol. 2012, 25, 1041–1054. [Google Scholar] [PubMed]
- Faccini, G.; Bertozzo, L.; Pasini, F.; Gerani, C.; Martinelli, C.; Pasqualini, E. A new simplified method for the determination of 23 urinary steroids for the assessment of gonadic-adrenal functionality. G. Ital. Chim. Clin. 1995, 20, 305–316. [Google Scholar]
- Apostoli, P.; Romeo, L.; Peroni, E.; Ferioli, A.; Ferrari, S.; Pasini, F.; Aprili, F. Steroid hormone sulphation in lead workers. Br. J. Ind. Med. 1989, 46, 204–208. [Google Scholar] [CrossRef] [PubMed]
- WHO. Biological Monitoring of Chemical Exposure in the Workplace; World Health Organization: Geneva, Switzerland, 1996; Volume 1. [Google Scholar]
- Moon, H.B.; Kim, H.S.; Choi, M.; Yu, J.; Choi, H.G. Human health risk of polychlorinated biphenyls and organochlorine pesticides resulting from seafood consumption in South Korea, 2005–2007. Food Chem. Toxicol. 2009, 47, 1819–1825. [Google Scholar] [CrossRef] [PubMed]
- Daidoji, T.; Gozu, K.; Iwano, H.; Inoue, H.; Yokota, H. UDP-glucuronosyltransferase isoforms catalyzing glucuronidation of hydroxy-polychlorinated biphenyls in rat. Drug Metab. Dispos. 2005, 33, 1466–1476. [Google Scholar] [CrossRef] [PubMed]
- James, M.O. Polychlorinated biphenyls: Metabolism and metabolites. In PCBs. Recent Advances in Environmental Toxicology and Health Effects; Robertson, L.W., Hansen, L.G., Eds.; The University Press of Kentucky: Lexington, KY, USA, 2001; pp. 35–46. [Google Scholar]
- James, M.O.; Sacco, J.C.; Faux, L.R. Effects of food natural products on the biotransformation of PCBs. Environ. Toxicol. Pharmacol. 2008, 25, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Tampal, N.; Lehmler, H.J.; Espandiari, P.; Malmberg, T.; Robertson, L.W. Glucuronidation of hydroxylated polychlorinated biphenyls (PCBs). Chem. Res. Toxicol. 2002, 15, 1259–1266. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.S.; Wilson, J.X.; Selliah, S.; Bilodeau, M.; Zwingmann, C.; Poon, R.; O’Brien, P.J. Organochlorines inhibit acetaminophen glucuronidation by redirecting UDP-glucuronic acid towards the d-glucuronate pathway. Toxicol. Appl. Pharmacol. 2008, 232, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Tabb, M.M.; Kholodovych, V.; Grün, F.; Zhou, C.; Welsh, W.J.; Blumberg, B. Highly chlorinated PCBs inhibit the human xenobiotic response mediated by the steroid and xenobiotic receptor (SXR). Environ. Health Perspect. 2004, 112, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Lauby-Secretan, B.; Loomis, D.; Grosse, Y.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.; Mattock, H.; Straif, K.; et al. Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. Lancet Oncol. 2013, 14, 287–288. [Google Scholar] [CrossRef]
- Nimmagadda, D.; Cherala, G.; Ghatta, S. Cytosolic sulfotransferases. Indian J. Exp. Biol. 2006, 44, 171–182. [Google Scholar] [PubMed]
- Shimada, T.; Inoue, K.; Suzuki, Y.; Kawai, T.; Azuma, E.; Nakajima, T.; Shindo, M.; Kurose, K.; Sugie, A.; Yamagishi, Y.; et al. Arylhydrocarbon receptor-dependent induction of liver and lung cytochromes P450 1A1, 1A2, and 1B1 by polycyclic aromatic hydrocarbons and polychlorinated biphenyls in genetically engineered C57BL/6J mice. Carcinogenesis 2002, 23, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- You, L. Steroid hormone biotransformation and xenobiotic induction of hepatic steroid metabolizing enzymes. Chem. Biol. Interact. 2004, 147, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Ekuase, E.J.; Liu, Y.; Lehmler, H.J.; Robertson, L.W.; Duffel, M.W. Structure-activity relationships for hydroxylated polychlorinated biphenyls as inhibitors of the sulfation of dehydroepiandrosterone catalyzed by human hydroxysteroid sulfotransferase SULT2A1. Chem. Res. Toxicol. 2011, 24, 1720–1728. [Google Scholar] [CrossRef] [PubMed]
- Ekuase, E.J.; Lehmler, H.J.; Robertson, L.W.; Duffel, M.W. Binding interactions of hydroxylated polychlorinated biphenyls (OHPCBs) with human hydroxysteroid sulfotransferase hSULT2A1. Chem. Biol. Interact. 2014, 212, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Apak, T.I.; Lehmler, H.J.; Robertson, L.W.; Duffel, M.W. Hydroxylated polychlorinated biphenyls are substrates and inhibitors of human hydroxysteroid sulfotransferase SULT2A1. Chem. Res. Toxicol. 2006, 19, 1420–1425. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Lehmler, H.J.; Teesch, L.M.; Robertson, L.W.; Duffel, M.W. Chlorinated biphenyl quinones and phenyl-2,5-benzoquinone differentially modify the catalytic activity of human hydroxysteroid sulfotransferase hSULT2A1. Chem. Res. Toxicol. 2013, 26, 1474–1485. [Google Scholar] [CrossRef] [PubMed]
- Van den Hurk, P.; Kubiczak, G.A.; Lehmler, H.J.; James, M.O. Hydroxylated polychlorinated biphenyls as inhibitors of the sulfation and glucuronidation of 3-hydroxy-benzo[a]pyrene. Environ. Health Perspect. 2002, 110, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Soldin, O.P.; Makambi, K.H.; Soldin, S.J.; O’Mara, D.M. Steroid hormone levels associated with passive and active smoking. Steroids 2011, 76, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Tweed, J.O.; Hsia, S.H.; Lutfy, K.; Friedman, T.C. The endocrine effects of nicotine and cigarette smoke. Trends Endocrinol. Metab. 2012, 23, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Villard, P.H.; Herber, R.; Sérée, E.M.; Attolini, L.; Magdalou, J.; Lacarelle, B. Effect of cigarette smoke on UDP-glucuronosyltransferase activity and cytochrome P450 content in liver, lung and kidney microsomes in mice. Pharmacol. Toxicol. 1998, 82, 74–79. [Google Scholar] [CrossRef] [PubMed]
Variable | Exposed Subjects | Controls | ||||||
---|---|---|---|---|---|---|---|---|
N (%) | Mean ± SD | Median | Range | N (%) | Mean ± SD | Median | Range | |
Age (years) | 26 | 37.0 ± 6.9 | 34.0 | 28.0–55.0 | 30 | 38.0 ± 8.6 | 36.0 | 24.0–55.0 |
Body Mass Index (kg/m2) | 26 | 26.3 ± 3.3 | 25.8 | 20.9–36.9 | 30 | 25.7 ± 3.4 | 26.4 | 16.2–32.9 |
Occupational exposure to PCBs (years) | 26 | 10.0 ± 6.5 | 8.0 | 2.0–25.0 | - | |||
Smoking habit | ||||||||
Smoker | 6 (23.1) | 14 (46.6) | ||||||
Non-smoker | 9 (34.6) | 8 (26.7) | ||||||
Ex-smoker (>1 year ago) | 11 (42.3) | 8 (26.7) | ||||||
Smokers (cigarettes/day) | ||||||||
1–10 | 5 (19.2) | 5 (16.7) | ||||||
11–20 | 1 (3.9) | 7 (23.3) | ||||||
>20 | - | 2 (6.6) | ||||||
Alcohol consumption | ||||||||
Teetotal | 5 (19.2) | 1 (3.3) | ||||||
<12 g/day | 14 (53.9) | 17 (56.7) | ||||||
≥12 g/day | 7 (26.9) | 12 (40.0) |
PCBs | Exposed Subjects (N = 26) | Controls (N = 30) | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Median | Range | N<LOQ a | Mean ± SD | Median | Range | N<LOQ a | ||
Total | ng/g lipids ** | 1623.4 ± 384.6 | 259.0 | 79.3–19006.0 | - | 166.3 ± 114.9 | 126.8 | 19.3–528.8 | - |
Congener 118 | ng/g lipids * | 51.5 ± 109.5 | 15.5 | 6.3–564.1 | 8 | - | 8.5 | 5.0–36.5 | 23 |
% * | 3.6 ± 3.7 | 3.6 | 0.0–16.7 | 1.5 ± 2.9 | 0.0 | 0.0–8.3 | |||
Congener 138 | ng/g lipids ** | 319.6 ± 733.6 | 66.1 | 18.4–3666.4 | - | 39.5 ± 23.2 | 33.6 | 8.6–109.4 | 2 |
% | 23.2 ± 3.8 | 23.8 | 16.3–29.4 | 24.2 ± 9.4 | 23.6 | 0.0–50.1 | |||
Congener 153 | ng/g lipids ** | 381.0 ± 837.8 | 78.4 | 36.7–4136.5 | - | 59.6 ± 33.2 | 51.9 | 17.1–164.1 | - |
% ** | 31.4 ± 7.9 | 29.8 | 21.3–50.1 | 40.7 ± 13.7 | 36.4 | 30.0–100 | |||
Congener 170 | ng/g lipids * | 121.9 ± 287.9 | 22.7 | 7.0–1410.2 | 7 | - | 9.7 | 5.8–36.5 | 17 |
% | 5.6 ± 3.7 | 7.2 | 0.0–9.5 | 3.5 ± 4.2 | 0.0 | 0.0–11.1 | |||
Congener 180 | ng/g lipids * | 329.3 ± 765.7 | 58.6 | 19.8–3744.8 | - | 42.9 ± 23.4 | 38.0 | 8.2–109.4 | 3 |
% | 23.4 ± 5.1 | 22.3 | 14.7–33.3 | 25.9 ± 12.7 | 27.3 | 0.0–66.7 | |||
Congener 187 | ng/g lipids * | 105.9 ± 254.4 | 18.9 | 7.2–1269.2 | 7 | - | 9.4 | 5.0–36.5 | 19 |
% | 5.1 ± 3.4 | 6.1 | 0.0–9.5 | 3.3 ± 4.6 | 0.0 | 0.0–13.0 | |||
Sum of the 6 congeners | ng/g lipids ** | 1309.3 ± 2984.4 | 255.2 | 109.1–14,791.1 | - | - | 150.9 | 67.7–492.3 | - |
% ** | 92.1 ± 9.4 | 96.6 | 76.4–100 | 99.0 ± 2.5 | 100 | 90.1–100 |
17-KS (mg/L) | Exposed Subjects (N = 26) | Controls (N = 30) | ||||
---|---|---|---|---|---|---|
Mean ± SD | Median | Range | Mean ± SD | Median | Range | |
Total c | 6.14 ± 3.44 | 5.78 | 1.58–14.68 | 9.86 ± 4.28 | 8.92 | 1.38–21.85 |
Glucuronides b | 3.89 ± 3.29 | 2.97 | 0.25–13.81 | 6.85 ± 3.82 | 6.16 | 0.16–17.68 |
Sulfonates | 2.24 ± 1.29 | 2.06 | 0.15–4.83 | 3.01 ± 2.08 | 2.42 | 0.18–9.21 |
Androsterone b | 2.51 ± 1.31 | 2.54 | 0.66–5.67 | 3.66 ± 1.84 | 3.27 | 0.74–10.30 |
Glucuronide a | 1.59 ± 1.31 | 1.21 | 0.08–4.80 | 2.61 ± 1.69 | 1.91 | 0.06–7.71 |
Sulfonate | 0.92 ± 0.52 | 0.89 | 0–1.85 | 1.05 ± 0.86 | 0.83 | 0–3.92 |
Etiocholanolone c | 1.62 ± 1.02 | 1.47 | 0.41–4.40 | 2.74 ± 1.26 | 2.49 | 0.24–6.67 |
Glucuronide c | 1.33 ± 1.07 | 1.00 | 0.13–4.40 | 2.34 ± 1.17 | 2.10 | 0.05–5.81 |
Sulfonate | 0.29 ± 0.22 | 0.27 | 0–0.78 | 0.40 ± 0.47 | 0.24 | 0–2.04 |
DHEA b | 0.17 ± 0.36 | 0.03 | 0.01–1.63 | 0.26 ± 0.39 | 0.09 | 0.01–1.74 |
Glucuronide b | 0.05 ± 0.09 | 0.02 | <0.01–0.38 | 0.09 ± 0.09 | 0.06 | 0.01–0.43 |
Sulfonate | 0.11 ± 0.28 | 0.01 | 0–1.25 | 0.17 ± 0.31 | 0.04 | 0–1.42 |
11-hydroxyandrosterone b | 1.43 ± 0.77 | 1.45 | 0.17–3.74 | 2.33 ± 1.58 | 2.22 | 0.28–8.84 |
Glucuronide a | 0.61 ± 0.69 | 0.40 | 0.01–3.02 | 1.13 ± 1.06 | 0.76 | 0.01–4.47 |
Sulfonate | 0.83 ± 0.49 | 0.73 | 0–1.64 | 1.20 ± 1.00 | 0.86 | 0–5.00 |
11-ketoandrosterone c | 0.06 ± 0.05 | 0.04 | 0.01–0.25 | 0.13 ± 0.15 | 0.09 | 0.01–0.76 |
Glucuronide a | 0.04 ± 0.04 | 0.02 | <0.01–0.19 | 0.07 ± 0.07 | 0.04 | 0.01–0.36 |
Sulfonate a | 0.02 ± 0.02 | 0.01 | 0–0.07 | 0.06 ± 0.14 | 0.03 | 0–0.75 |
11-ketoetiocholanolone c | 0.37 ± 0.32 | 0.26 | 0.05–1.42 | 0.82 ± 0.50 | 0.80 | 0.10–2.73 |
Glucuronide c | 0.27 ± 0.31 | 0.17 | 0.01–1.40 | 0.66 ± 0.50 | 0.51 | 0.02–2.73 |
Sulfonate | 0.09 ± 0.12 | 0.05 | 0–0.44 | 0.17 ± 0.25 | 0.10 | 0–1.13 |
PREGNANES (mg/L) | Exposed Subjects (N = 26) | Controls (N = 30) | ||||
---|---|---|---|---|---|---|
Mean ± SD | Median | Range | Mean ± SD | Median | Range | |
Total b | 1.66 ± 1.26 | 1.37 | 0.37–5.64 | 2.58 ± 1.14 | 2.43 | 0.22–4.75 |
Glucuronides a | 1.09 ± 1.14 | 0.68 | 0.09–5.26 | 1.87 ± 1.06 | 1.68 | 0.09–4.35 |
Sulfonates | 0.57 ± 0.31 | 0.48 | 0.15–1.24 | 0.72 ± 0.47 | 0.61 | 0.02–2.19 |
Pregnandiol b | 0.25 ± 0.27 | 0.20 | 0.05–1.34 | 0.37 ± 0.22 | 0.32 | 0.04–0.88 |
Glucuronide b | 0.20 ± 0.26 | 0.12 | 0.02–1.28 | 0.31 ± 0.21 | 0.23 | 0.02–0.78 |
Sulfonate | 0.05 ± 0.04 | 0.04 | 0–0.16 | 0.06 ± 0.05 | 0.05 | 0–0.20 |
α-pregnanediol | 0.08 ± 0.06 | 0.06 | 0.01–0.21 | 0.15 ± 0.17 | 0.10 | 0.01–0.61 |
Glucuronide | 0.06 ± 0.05 | 0.04 | 0.01–0.20 | 0.10 ± 0.07 | 0.08 | 0.01–0.26 |
Sulfonate | 0.02 ± 0.02 | 0.01 | 0–0.06 | 0.05 ± 0.11 | 0.01 | 0–0.39 |
α -d5-pregnanediol c | 0.27 ± 0.32 | 0.16 | 0.01–1.56 | 0.56 ± 0.40 | 0.50 | 0.04–1.90 |
Glucuronate c | 0.22 ± 0.28 | 0.09 | 0.01–1.29 | 0.46 ± 0.37 | 0.43 | 0.02–1.90 |
Sulfonate | 0.05 ± 0.06 | 0.04 | 0–0.27 | 0.10 ± 0.16 | 0.05 | 0–0.77 |
d5-pregnanediol a | 0.10 ± 0.08 | 0.08 | 0.01–0.29 | 0.15 ± 0.08 | 0.14 | 0.01–0.33 |
Glucuronide b | 0.04 ± 0.04 | 0.03 | <0.01–0.15 | 0.08 ± 0.05 | 0.08 | 0.01–0.19 |
Sulfonate | 0.06 ± 0.05 | 0.03 | 0–0.15 | 0.07 ± 0.05 | 0.06 | 0–0.22 |
Pregnanetriol b | 0.69 ± 0.46 | 0.54 | 0.18–1.88 | 1.10 ± 0.48 | 1.08 | 0.09–2.26 |
Glucuronide c | 0.40 ± 0.44 | 0.23 | 0.02–1.88 | 0.74 ± 0.49 | 0.65 | 0.01–1.98 |
Sulfonate | 0.29 ± 0.19 | 0.25 | 0–0.77 | 0.35 ± 0.27 | 0.29 | 0–1.02 |
d5-pregnanetriol | 0.10 ± 0.17 | 0.05 | 0.01–0.80 | 0.10 ± 0.08 | 0.07 | 0.01–0.29 |
Glucuronide | 0.10 ± 0.17 | 0.05 | 0.01–0.80 | 0.10 ± 0.08 | 0.07 | 0.01–0.29 |
Sulfonate | - | - | - | - | - | 0–0.03 |
Pregnanetriolone | 0.19 ± 0.16 | 0.17 | 0.01–0.55 | 0.22 ± 0.15 | 0.19 | 0.02–0.72 |
Glucuronide a | 0.08 ± 0.10 | 0.04 | 0.01–0.45 | 0.12 ± 0.13 | 0.09 | 0.01–0.72 |
Sulfonate | 0.11 ± 0.11 | 0.10 | 0–0.38 | 0.10 ± 0.07 | 0.10 | 0–0.22 |
Hormones | Total PCBs | |
---|---|---|
Smokers (N = 20) | Non-Smokers + Ex-Smokers (N = 36) | |
Total 17-KS | 0.01 | −0.45 b |
Glucuronides | 0.06 | −0.40 a |
Androsterone | −0.15 | −0.52 c |
Glucuronide | −0.07 | −0.40 a |
Etiocholanolone | −0.05 | −0.36 a |
DHEA | 0.11 | −0.44 b |
Glucuronide | 0.07 | −0.34 a |
Total Pregnanes | 0.12 | −0.38 a |
Glucuronides | 0.14 | −0.33 a |
d5-pregnanediol | 0.23 | −0.35 a |
Glucuronide | 0.13 | −0.35 a |
Hormones | Exposure to PCBs | Smokers | Non-Smokers + Ex-Smokers | |||||||
---|---|---|---|---|---|---|---|---|---|---|
N | Mean ± SD | Median | Range | N | Mean ± SD | Median | Range | ANOVA | ||
Total 17-KS | Yes No | 6 14 | 7.97 ± 5.74 10.59 ± 3.69 | 6.52 9.63 | 2.15–14.68 4.80–17.49 | 20 16 | 5.59 ± 2.35 9.23 ± 4.75 | 5.78 8.50 | 1.58–10.58 1.38–21.85 | Model: p ≤ 0.01 Smoke: p ≤ 0.01 PCB: NS |
Glucuronides | Yes No | 6 14 | 5.71 ± 5.06 7.98 ± 3.50 | 3.47 6.93 | 1.24–13.81 3.43–15.48 | 20 16 | 3.35 ± 2.48 5.86 ± 3.92 | 2.97 4.67 | 0.25–9.17 0.16–17.68 | Model: p ≤ 0.01 Smoke: p < 0.05 PCB: p < 0.05 |
Androsterone | Yes No | 6 14 | 2.88 ± 2.12 3.99 ± 1.41 | 2.55 3.61 | 0.66–5.67 1.90–6.09 | 20 16 | 2.40 ± 1.01 3.37 ± 2.15 | 2.54 2.82 | 0.88–4.71 0.74–10.30 | Model: p < 0.05 Smoke: p < 0.05 PCB: NS |
Etiocholanolone | Yes No | 6 14 | 2.17 ± 1.63 3.34 ± 1.43 | 1.69 3.22 | 0.63–4.40 1.11–6.67 | 20 16 | 1.46 ± 0.75 2.21 ± 0.82 | 1.48 2.34 | 0.41–3.09 0.24–3.32 | Model: p < 0.001 Smoke: p ≤ 0.01 PCB: p ≤ 0.01 |
Glucuronide | Yes No | 6 14 | 2.02 ± 1.60 2.93 ± 1.28 | 1.46 2.67 | 0.48–4.40 0.99–5.81 | 20 16 | 1.12 ± 0.79 1.82 ± 0.77 | 0.97 1.93 | 0.13–3.09 0.05–3.07 | Model: p < 0.001 Smoke: p < 0.05 PCB: p ≤ 0.01 |
11-hydroxyandrosterone | Yes No | 6 14 | 1.84 ± 1.23 2.07 ± 0.68 | 1.82 2.14 | 0.40–3.74 0.83–3.18 | 20 16 | 1.32 ± 0.56 2.58 ± 2.11 | 1.42 2.22 | 0.17–2.57 0.28–8.84 | Model: p < 0.05 Smoke: NS PCB: NS |
11-ketoetiocholanolone | Yes No | 6 14 | 0.59 ± 0.51 0.82 ± 0.32 | 0.51 0.87 | 0.09–1.42 0.29–1.32 | 20 16 | 0.30 ± 0.22 0.82 ± 0.63 | 0.26 0.74 | 0.05–0.87 0.10–2.73 | Model: p ≤ 0.01 Smoke: p ≤ 0.01 PCB: NS |
Glucuronide | Yes No | 6 14 | 0.46 ± 0.55 0.69 ± 0.28 | 0.17 0.59 | 0.06–1.40 0.29–1.32 | 20 16 | 0.22 ± 0.18 0.63 ± 0.64 | 0.18 0.47 | 0.01–0.71 0.02–2.73 | Model: p ≤ 0.01 Smoke: p < 0.05 PCB: NS |
Hormones | Exposure to PCBs | Smokers | Non-Smokers + Ex-Smokers | |||||||
---|---|---|---|---|---|---|---|---|---|---|
N | Mean ± SD | Median | Range | N | Mean ± SD | Median | Range | ANOVA | ||
Total Pregnanes | Yes No | 6 14 | 2.47 ± 2.05 2.84 ± 1.11 | 1.82 2.75 | 0.69–5.64 1.29–4.75 | 20 16 | 1.42 ± 0.84 2.36 ± 1.15 | 1.37 2.24 | 0.37–3.42 0.22–4.66 | Model: p ≤ 0.01 Smoke: NS PCB: p < 0.05 |
Glucuronides | Yes No | 6 14 | 1.89 ± 1.89 2.15 ± 1.05 | 1.06 1.76 | 0.50–5.26 0.85–4.33 | 20 16 | 0.85 ± 0.72 1.62 ± 1.03 | 0.67 1.56 | 0.09–2.49 0.09–4.35 | Model: p ≤ 0.01 Smoke: NS PCB: p < 0.05 |
Pregnanediol | Yes No | 6 14 | 0.49 ± 0.48 0.44 ± 0.25 | 0.32 0.32 | 0.12–1.34 0.188–0.88 | 20 16 | 0.18 ± 0.10 0.31 ± 0.18 | 0.20 0.30 | 0.05–0.37 0.04–0.70 | Model: p ≤ 0.01 Smoke: NS PCB: p ≤ 0.01 |
Glucuronide | Yes No | 6 14 | 0.45 ± 0.47 0.38 ± 0.23 | 0.28 0.29 | 0.10–1.28 0.14–0.78 | 20 16 | 0.13 ± 0.08 0.25 ± 0.16 | 0.12 0.20 | 0.02–0.28 0.02–0.62 | Model: p ≤ 0.01 Smoke: NS PCB: p < 0.001 |
α-d5-pregnanediol | Yes No | 6 14 | 0.41 ± 0.24 0.61 ± 0.46 | 0.37 0.51 | 0.06–0.74 0.13–1.90 | 20 16 | 0.23 ± 0.34 0.51 ± 0.34 | 0.11 0.46 | 0.01–1.56 0.04–1.24 | Model: p < 0.05 Smoke: p < 0.05 PCB: NS |
d5-pregnanediol | Yes No | 6 14 | 0.15 ± 0.12 0.16 ± 0.07 | 0.13 0.15 | 0.03–0.29 0.07–0.32 | 20 16 | 0.08 ± 0.06 0.14 ± 0.09 | 0.07 0.14 | 0.01–0.18 0.01–0.33 | Model: p < 0.05 Smoke: NS PCB: p < 0.05 |
Glucuronide | Yes No | 6 14 | 0.07 ± 0.06 0.09 ± 0.04 | 0.05 0.08 | 0.01–0.15 0.01–0.19 | 20 16 | 0.04 ± 0.03 0.08 ± 0.05 | 0.02 0.07 | <0.01–0.13 0.01–0.18 | Model: p < 0.05 Smoke: p < 0.05 PCB: NS |
Pregnanetriol | Yes No | 6 14 | 0.85 ± 0.68 1.21 ± 0.50 | 0.69 1.23 | 0.18–1.88 0.37–2.26 | 20 16 | 0.64 ± 0.38 1.00 ± 0.46 | 0.55 0.92 | 0.20–0.52 0.09–1.65 | Model: p ≤ 0.01 Smoke: p < 0.05 PCB: NS |
Glucuronide | Yes No | 6 14 | 0.59 ± 0.69 0.88 ± 0.53 | 0.27 0.74 | 0.14–1.88 0.22–1.98 | 20 16 | 0.34 ± 0.34 0.62 ± 0.43 | 0.23 0.55 | 0.02–1.43 0.01–1.65 | Model: p < 0.05 Smoke: p < 0.05 PCB: NS |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Errico, M.N.; Lovreglio, P.; Drago, I.; Apostoli, P.; Soleo, L. Influence of Occupational and Environmental Exposure to Low Concentrations of Polychlorobiphenyls and a Smoking Habit on the Urinary Excretion of Corticosteroid Hormones. Int. J. Environ. Res. Public Health 2016, 13, 360. https://doi.org/10.3390/ijerph13040360
D’Errico MN, Lovreglio P, Drago I, Apostoli P, Soleo L. Influence of Occupational and Environmental Exposure to Low Concentrations of Polychlorobiphenyls and a Smoking Habit on the Urinary Excretion of Corticosteroid Hormones. International Journal of Environmental Research and Public Health. 2016; 13(4):360. https://doi.org/10.3390/ijerph13040360
Chicago/Turabian StyleD’Errico, Maria Nicolà, Piero Lovreglio, Ignazio Drago, Pietro Apostoli, and Leonardo Soleo. 2016. "Influence of Occupational and Environmental Exposure to Low Concentrations of Polychlorobiphenyls and a Smoking Habit on the Urinary Excretion of Corticosteroid Hormones" International Journal of Environmental Research and Public Health 13, no. 4: 360. https://doi.org/10.3390/ijerph13040360
APA StyleD’Errico, M. N., Lovreglio, P., Drago, I., Apostoli, P., & Soleo, L. (2016). Influence of Occupational and Environmental Exposure to Low Concentrations of Polychlorobiphenyls and a Smoking Habit on the Urinary Excretion of Corticosteroid Hormones. International Journal of Environmental Research and Public Health, 13(4), 360. https://doi.org/10.3390/ijerph13040360