Multi-Stakeholder Decision Aid for Improved Prioritization of the Public Health Impact of Climate Sensitive Infectious Diseases
Abstract
:1. Introduction
2. Methods
2.1. Stakeholders
2.2. Criteria Identification
2.3. Criteria Weighting
2.4. Pilot Prioritization of Five Diseases
3. Results
3.1. Stakeholders and Criteria
3.2. Criteria Weighting
3.3. Pilot Prioritization of Diseases
4. Discussion
4.1. Criteria and Context
4.2. Criteria Weighting
4.3. Effect on Disease Prioritization
4.4. Limitations
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kapiriri, L.; Martin, D. A strategy to improve priority setting in developing countries. Health Care Anal. 2007, 15, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, A.; Lennard, C.; Padgham, J.; Urquhart, P. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1199–1265. [Google Scholar]
- Murray, C.J.; Rosenfeld, L.C.; Lim, S.S.; Andrews, K.G.; Foreman, K.J.; Haring, D.; Fullman, N.; Naghavi, M.; Lozano, R.; Lopez, A.D. Global malaria mortality between 1980 and 2010: A systematic analysis. Lancet 2012, 379, 413–431. [Google Scholar] [CrossRef]
- GBD 2013 mortality and causes of death collaborators. Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the global burden of disease study 2013. Lancet 2015, 385, 117–171. [Google Scholar]
- Gubler, D.J. The global threat of emergent/reemergent vector-borne diseases. In Vector-Borne Diseases: Understanding the Environmental, Human Health, and Ecological Connections, Workshop Summary (Forum on Microbial Threats); Lemon, S.M., Sparling, P.F., Hamburg, M.A., Relman, D.A., Choffnes, E.R., Mack, A., Eds.; The National Academies Press: Washington, DC, USA, 2008; pp. 43–64. [Google Scholar]
- Mills, J.N.; Gage, K.L.; Khan, A.S. Potential influence of climate change on vector-borne and zoonotic diseases: A review and proposed research plan. Environ. Health Perspect. 2010, 118, 1507–1514. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, A.M.; Randolph, S.E. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 2012, 380, 1946–1955. [Google Scholar] [CrossRef]
- Altizer, S.; Ostfeld, R.S.; Johnson, P.T.J.; Kutz, S.; Harvell, C.D. Climate change and infectious diseases: From evidence to a predictive framework. Science 2013, 341, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Gage, K.L.; Burkot, T.R.; Eisen, R.J.; Hayes, E.B. Climate and vectorborne diseases. Am. J. Prev. Med. 2008, 35, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Lafferty, K.D. The ecology of climate change and infectious diseases. Ecology 2009, 90, 888–900. [Google Scholar] [CrossRef] [PubMed]
- Randolph, S.E. To what extent has climate change contributed to the recent epidemiology of tick-borne diseases? Vet. Parasitol. 2010, 167, 92–94. [Google Scholar] [CrossRef] [PubMed]
- Epstein, P. The ecology of climate change and infectious diseases: Comment. Ecology 2010, 91, 925–928. [Google Scholar] [CrossRef] [PubMed]
- Tabachnick, W.J. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J. Exp. Biol. 2010, 213, 946–954. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, J. Climate change and the geographic distribution of infectious diseases. EcoHealth 2009, 6, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Pagnoni, F.; Bosman, A. Malaria kills more than Ebola virus disease. Lancet Infect. Dis. 2015, 15, 988–989. [Google Scholar] [CrossRef]
- Plucinski, M.M.; Guilavogui, T.; Sidikiba, S.; Diakité, N.; Diakité, S.; Dioubaté, M.; Bah, I.; Hennessee, I.; Butts, J.K.; Halsey, E.S.; et al. Effect of the Ebola-virus-disease epidemic on malaria case management in Guinea, 2014: A cross-sectional survey of health facilities. Lancet Infect. Dis. 2015, 15, 1017–1023. [Google Scholar] [CrossRef]
- WHO. Global Report for Research on Infectious Diseases of Poverty; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- WHO Cost Effectiveness and Strategic Planning (WHO-CHOICE). Available online: http://www.who.int/choice/description/en/ (accessed on 13 November 2015).
- Evans, D.B.; Adam, T.; Edejer, T.T.-T.; Lim, S.S.; Cassels, A.; Evans, T.G.; WHO Choosing Interventions that are Cost Effective (CHOICE) Millennium Development Goals Team. Time to reassess strategies for improving health in developing countries. BMJ 2005, 331, 1133–1136. [Google Scholar] [CrossRef] [PubMed]
- Tan-Torres Edjer, T.; Baltussen, R.; Adam, T.; Hutubessy, R.; Acharya, A.; Evans, D.B.; Murray, C.J.L. Making Choices in Health: WHO Guide to Cost-Effectiveness Analysis; World Health Organization: Geneva, Switzerland, 2003; p. 329. [Google Scholar]
- Musgrove, P.; Fox-Rushby, J. Cost-effectiveness analysis for priority setting. In Disease Control Priorities in Developing Countries; Jamison, D.T., Breman, J.G., Measham, A.R., Alleyne, G., Claeson, M., Evans, D., Jha, P., Mills, A., Musgrove, P., Eds.; Oxford University Press: Oxford, UK; The World Bank: Washington, DC, USA, 2006; p. 1452. [Google Scholar]
- Shillcutt, S.D.; Walker, D.G.; Goodman, C.A.; Mills, A.J. Cost-effectiveness in low- and middle-income countries: A review of the debates surrounding decision rules. Pharmacoeconomics 2009, 27, 903–917. [Google Scholar] [CrossRef] [PubMed]
- Hutton, G.; Baltussen, R. Cost valuation in resource-poor settings. Health Policy Plan. 2005, 20, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Ubel, P.A.; Nord, E.; Gold, M.; Menzel, P.; Prades, J.-L.P.; Richardson, J. Improving value measurement in cost-effectiveness analysis. Med. Care 2000, 38, 829–901. [Google Scholar] [CrossRef]
- McGregor, S.; Henderson, K.J.; Kaldor, J.M. How are health research priorities set in low and middle income countries? A systematic review of published reports. PLoS ONE 2014, 9, e108787. [Google Scholar]
- Ng, V.; Sargeant, J.M. A Stakeholder-informed approach to the identification of criteria for the prioritization of zoonoses in Canada. PLoS ONE 2012, 7, e29752. [Google Scholar] [CrossRef] [PubMed]
- Cox, R.; Sanchez, J.; Revie, C.W. Multi-criteria decision analysis tools for prioritising emerging or re-emerging infectious diseases associated with climate change in Canada. PLoS ONE 2013, 8, e68338. [Google Scholar] [CrossRef] [PubMed]
- Janovsky, K. Health Policy and Systems Development—An Agenda for Research; World Health Organization: Geneva, Switzerland, 1996; p. 124. [Google Scholar]
- Viergever, R.F.; Olifson, S.; Ghaffar, A.; Terry, R.F. A checklist for health research priority setting: Nine common themes of good practice. Health Res. Policy Syst. 2010, 8, 36. [Google Scholar] [PubMed]
- WHO. Research Priorities for the Environment, Agriculture and Infectious Diseases of Poverty: Technical Report of the TDR Thematic Reference Group on Environment, Agriculture and Infectious Diseases of Poverty; Technical Report Series; World Health Organization: Geneva, Swizerland, 2013. [Google Scholar]
- Aenishaenslin, C.; Hongoh, V.; Cisse, H.; Hoen, A.; Samoura, K.; Michel, P.; Waaub, J.-P.; Belanger, D. Multi-criteria decision analysis as an innovative approach to managing zoonoses: Results from a study on Lyme disease in Canada. BMC Public Health 2013, 13. [Google Scholar] [CrossRef] [PubMed]
- Brans, J.-P.; Mareschal, B. Promethee Methods. In Multiple Criteria Decision Analysis: State of the Art Surveys; International Series in Operations Research & Management Science; Springer: New York, NY, USA, 2005; Volume 78, pp. 163–186. [Google Scholar]
- Brans, J.-P.; Mareschal, B. A Decision Aid Methodology when in the Presence of Multiple Criteria; Ellipses: Paris, France, 2002. [Google Scholar]
- Doherty, J.-A. Establishing priorities for national communicable disease surveillance. Can. J. Infect. Dis. 2000, 11, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Balabanova, Y.; Gilsdorf, A.; Buda, S.; Burger, R.; Eckmanns, T.; Gärtner, B.; Groß, U.; Haas, W.; Hamouda, O.; Hübner, J.; et al. Communicable diseases prioritized for surveillance and epidemiological research: Results of a standardized prioritization procedure in Germany, 2011. PLoS ONE 2011, 6, e25691. [Google Scholar] [CrossRef] [PubMed]
- Humblet, M.F.; Vandeputte, S.; Albert, A.; Gosset, C.; Kirschvink, N.; Haubruge, E.; Fecher-Bourgeois, F.; Pastoret, P.P.; Saegerman, C. Multidisciplinary and evidence-based method for prioritizing diseases of food-producing animals and zoonoses. Emerg. Infect. Dis. 2012, 18. [Google Scholar] [CrossRef] [PubMed]
- Brookes, V.J.; Hernández-Jover, M.; Cowled, B.; Holyoake, P.K.; Ward, M.P. Building a picture: Prioritisation of exotic diseases for the pig industry in Australia using multi-criteria decision analysis. Prev. Vet. Med. 2014, 113, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Kadohira, M.; Hill, G.; Yoshizaki, R.; Ota, S.; Yoshikawa, Y. Stakeholder prioritization of zoonoses in Japan with analytic hierarchy process method. Epidemiol. Infect. 2015, 143, 1477–1485. [Google Scholar] [CrossRef] [PubMed]
- WHO. An assessment of interactions between global health initiatives and country health systems. Lancet 2009, 373, 2137–2169. [Google Scholar]
- Marsh, K.; Dolan, P.; Kempster, J.; Lugon, M. Prioritizing investments in public health: A multi-criteria decision analysis. J. Public Health 2013, 35, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Ridde, V. “The problem of the worst-off is dealt with after all other issues”: The equity and health policy implementation gap in Burkina Faso. Soc. Sci. Med. 2008, 66, 1368–1378. [Google Scholar] [CrossRef] [PubMed]
- Nitièma, A.P.; Ridde, V.; Girard, J. The effectiveness of public health policy in a country in West Africa: The case of Burkina Faso. Int. Polit. Sci. Rev. Int. Sci. Polit. 2003, 24, 237–256. [Google Scholar] [CrossRef]
- Malik, K. Human Development Report 2014—Sustaining Human Progress: Reducing Vulnerabilities and Building Resilience; UNDP: New York, NY, USA, 2014; p. 226. [Google Scholar]
- Lowe, A.-M. Risk Linked to West Nile Virus in Quebec and Interventions to Focus on in 2013; Institut National de Santé Publique du Québec: Quebec, Canada, 2014; p. 83. [Google Scholar]
- Burton, I.; Huq, S.; Lim, B.; Pilifosova, O.; Schipper, E.L. From impacts assessment to adaptation priorities: The shaping of adaptation policy. Clim. Policy 2002, 2, 145–159. [Google Scholar] [CrossRef]
- Moore, C.G.; Mitchel, C.J. Aedes albopictus in the United States: Ten-year presence and public health implications. Emerg. Infect. Dis. 1997, 3, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Ogden, N.; Milka, R.; Caminade, C.; Gachon, P. Recent and projected future climatic suitability of North America for the Asian tiger mosquito Aedes albopictus. Parasites Vectors 2014, 7, 532. [Google Scholar] [CrossRef] [PubMed]
- Berrang-Ford, L.; McLean, J.D.; Gyorkos, T.W.; Ford, J.D.; Ogden, N.H. Climate change and Malaria in Canada: A systems approach. Interdiscip. Perspect. Infect. Dis. 2009, 2009, 385487. [Google Scholar] [CrossRef] [PubMed]
- Patz, J.A.; Githeko, A.K.; McCarty, J.P.; Hussein, S.; Confalonieri, U.; de Wet, N. Climate change and infectious diseases. In Climate Change and Human Health: Risks and Responses; McMichael, A.J., Campbell-Lendrum, D.H., Corvalán, C.F., Ebi, K.L., Githeko, A.K, Scheraga, J.D., Woodward, A., Eds.; World Health Organization: Geneva, Switzerland, 2003; p. 322. [Google Scholar]
- Medlock, J.M.; Leach, S.A. Effect of climate change on vector-borne disease risk in the UK. Lancet Infect. Dis. 2015, 15, 721–730. [Google Scholar] [CrossRef]
- McArthur, M.A.; Edelman, R. A promising, single-dose, live attenuated tetravalent dengue vaccine candidate. J. Infect. Dis. 2015. [Google Scholar] [CrossRef] [PubMed]
- Ridde, V.; Carabali, M.; Ly, A.; Druetz, T.; Kouanda, S.; Bonnet, E.; Haddad, S. The need for more research and public health interventions on dengue fever in Burkina Faso. PLoS Negl. Trop. Dis. 2014, 8. [Google Scholar] [CrossRef] [PubMed]
- Youngkong, S.; Baltussen, R.; Tantivess, S.; Koolman, X.; Teerawattananon, Y. Criteria for priority setting of HIV/AIDS interventions in Thailand: A discrete choice experiment. BMC Health Serv. Res. 2010, 10. [Google Scholar] [CrossRef] [PubMed]
- Baltussen, R.; Niessen, L. Priority setting of health interventions: The need for multi-criteria decision analysis. Cost Eff. Resour. Alloc. 2006, 4. [Google Scholar] [CrossRef] [PubMed]
Category | Criteria | Quebec (Canada) | Burkina Faso |
---|---|---|---|
Public Health Criteria (PHC) | PHC-01—Current incidence of human cases in country | X | X |
PHC-02—Severity of the disease (both physically and mentally) | X | X | |
PHC-03—Vulnerable groups | X | X | |
PHC-04—Potential to increase social inequality * | X | ||
PHC-05—New disease † | X | ||
Social Impact Criteria (SIC) | SIC-01—Risk perception of the public | X | X |
SIC-02—General level of knowledge, attitude and behaviour of the public | X | X | |
SIC-03—Risk perception of health workers † | X | ||
SIC-04—Risk perception of decision makers † | X | ||
SIC-05—International position with regards to the disease † | X | ||
Risk and Epidemiology Criteria (REC) | REC-01—Existence of favourable conditions for disease transmission | X | X |
REC-02—Epidemic potential | X | X | |
REC-03—Current global trend of disease over last 5 years | X | X | |
REC-04—Proportion of susceptible population | X | X | |
Animal and Environmental Health Criteria (AEC) | AEC-01—Incidence of animal cases | X | X |
AEC-02—Severity of disease | X | X | |
AEC-03—Can infect environment | X | X | |
Economic Criteria (ECC) | ECC-01—Cost to the government | X | X |
ECC-02—Cost to private sector (and NGOs) † | X | X | |
ECC-03—Cost to individuals (and families) † | X | X | |
Strategic and Operational Criteria (SOC) | SOC-01—Capacity to detect and diagnose | X | X |
SOC-02—Existence and effectiveness of current treatments | X | X | |
SOC-03—Level of scientific knowledge of the disease | X | X | |
SOC-04—Optimization opportunities | X | X | |
SOC-05—Reportable disease | X | X | |
SOC-06—Access to treatment † | X | ||
SOC-07—Adequate conditions to treat the disease † | X |
Diseases | Criteria | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PHC1 | PHC2 | PHC3 | PHC5 | SIC1 | SIC2 | SIC3 | SIC4 | SIC5 | REC1 | REC2 | REC3 | REC4 | AEC1 | AEC2 | AEC3 | ECC1 | ECC2 | ECC3 | SOC1 | SOC2 | SOC3 | SOC4 | SOC5 | SOC6 | SOC7 | |
Malaria (MAL) | 4 | 4 | 1 | 0 | 3 | 3 | 2 | 3 | 2 | 3 | 2 | 1 | 5 | 0 | 0 | 2 | 3 | 3 | 2 | 1 | 2 | 3 | 1 | 1 | 1 | 1 |
Dengue (DENV) | 6 | 4 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 3 | 2 | 2 | 5 | 6 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 3 | 1 | 1 | 1 | 1 |
Lymphatic filariasis (LF) | 4 | 3 | 0 | 0 | 2 | 2 | 1 | 1 | 1 | 3 | 2 | 1 | 5 | 6 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 3 | 1 | 1 | 2 | 2 |
Chikungunya (CHIKV) | 6 | 2 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 3 | 5 | 6 | 2 | 2 | 2 | 2 | 2 | 1 | 0 | 2 | 1 | 0 | 1 | 1 |
West Nile virus (WNv) | 6 | 2 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | 5 | 5 | 4 | 2 | 1 | 1 | 1 | 1 | 0 | 3 | 1 | 0 | 1 | 1 |
Diseases | Criteria | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PHC1 | PHC2 | PHC3 | PHC4 | SIC1 | SIC2 | REC1 | REC2 | REC3 | REC4 | AEC1 | AEC2 | AEC3 | ECC1 | ECC2 | ECC3 | SOC1 | SOC2 | SOC3 | SOC4 | SOC5 | |
Malaria (MAL) | 0 | 4 | 1 | 1 | 2 | 1 | 3 | 1 | 1 | 5 | 0 | 0 | 2 | 2 | 1 | 1 | 1 | 2 | 3 | 1 | 1 |
Dengue (DENV) | 0 | 4 | 0 | 1 | 1 | 1 | 1 | 1 | 3 | 5 | 0 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 3 | 1 | 0 |
Lymphatic filariasis (LF) | 0 | 3 | 0 | 1 | 1 | 1 | 2 | 2 | 1 | 5 | 0 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 3 | 1 | 0 |
Chikungunya (CHIKV) | 0 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 3 | 5 | 0 | 2 | 2 | 1 | 1 | 1 | 1 | 0 | 2 | 1 | 0 |
West Nile virus (WNv) | 1 | 2 | 1 | 1 | 1 | 2 | 3 | 2 | 1 | 5 | 6 | 4 | 2 | 2 | 1 | 1 | 1 | 0 | 3 | 1 | 1 |
Diseases | Burkina Faso | Quebec (Canada) | ||
---|---|---|---|---|
Rank | Phi | Rank | Phi | |
Malaria (MAL) | 2 | 0.10 | 2 | 0.05 |
Dengue (DENV) | 1 | 0.26 | 3 | 0.03 |
Lymphatic filariasis (LF) | 4 | −0.11 | 5 | −0.25 |
Chikungunya virus (CHIKV) | 3 | 0.03 | 4 | −0.02 |
West Nile virus (WNv) | 5 | −0.27 | 1 | 0.19 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hongoh, V.; Michel, P.; Gosselin, P.; Samoura, K.; Ravel, A.; Campagna, C.; Cissé, H.D.; Waaub, J.-P. Multi-Stakeholder Decision Aid for Improved Prioritization of the Public Health Impact of Climate Sensitive Infectious Diseases. Int. J. Environ. Res. Public Health 2016, 13, 419. https://doi.org/10.3390/ijerph13040419
Hongoh V, Michel P, Gosselin P, Samoura K, Ravel A, Campagna C, Cissé HD, Waaub J-P. Multi-Stakeholder Decision Aid for Improved Prioritization of the Public Health Impact of Climate Sensitive Infectious Diseases. International Journal of Environmental Research and Public Health. 2016; 13(4):419. https://doi.org/10.3390/ijerph13040419
Chicago/Turabian StyleHongoh, Valerie, Pascal Michel, Pierre Gosselin, Karim Samoura, André Ravel, Céline Campagna, Hassane Djibrilla Cissé, and Jean-Philippe Waaub. 2016. "Multi-Stakeholder Decision Aid for Improved Prioritization of the Public Health Impact of Climate Sensitive Infectious Diseases" International Journal of Environmental Research and Public Health 13, no. 4: 419. https://doi.org/10.3390/ijerph13040419
APA StyleHongoh, V., Michel, P., Gosselin, P., Samoura, K., Ravel, A., Campagna, C., Cissé, H. D., & Waaub, J. -P. (2016). Multi-Stakeholder Decision Aid for Improved Prioritization of the Public Health Impact of Climate Sensitive Infectious Diseases. International Journal of Environmental Research and Public Health, 13(4), 419. https://doi.org/10.3390/ijerph13040419