Effects of Size-Fractionated Particulate Matter on Cellular Oxidant Radical Generation in Human Bronchial Epithelial BEAS-2B Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sampling and Particle Preparation
2.3. PM Physical and Chemical Characterization
2.4. Cell Culture and PM Treatment
2.5. MTS Assay
2.6. Reactive Oxygen Species Assay
2.7. DFO Administration in MTS and ROS Assay
2.8. Statistical Analysis
3. Results
3.1. PM Physical and Chemical Characteristics
3.2. Effect of PM on Cell Viability in BEAS-2B Cells
3.3. Effect of PM on ROS Generation in BEAS-2B Cells
3.4. Correlation of Cell Viability and ROS Generation with Different PM Compositions
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kan, H.; Chen, R.; Tong, S. Ambient air pollution, climate change, and population health in China. Environ. Int. 2012, 42, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Chen, J.; Wang, B.; Tan, S.-C.; Lee, C.M.; Yao, X.; Yan, H.; Shi, J. A study of air pollution of city clusters. Atmos. Environ. 2011, 45, 3069–3077. [Google Scholar] [CrossRef]
- Evans, J.; van Donkelaar, A.; Martin, R.V.; Burnett, R.; Rainham, D.G.; Birkett, N.J.; Krewski, D. Estimates of global mortality attributable to particulate air pollution using satellite imagery. Environ. Res. 2013, 120, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., III; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Knaapen, A.M.; Borm, P.J.; Albrecht, C.; Schins, R.P. Inhaled particles and lung cancer. Part A: Mechanisms. Int. J. Cancer 2004, 109, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Riediker, M. Cardiovascular effects of fine particulate matter components in highway patrol officers. Inhal. Toxicol. 2007, 19, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Valavanidis, A.; Fiotakis, K.; Vlachogianni, T. Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J. Environ. Sci. Health C 2008, 26, 339–362. [Google Scholar] [CrossRef] [PubMed]
- Araujo, J.A.; Nel, A.E. Particulate matter and atherosclerosis: Role of particle size, composition and oxidative stress. Part. Fibre Toxicol. 2009, 6, 24–42. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, K.; Jin, W.; Lu, Y.; Zhang, Y.; Shen, G.; Wang, R.; Shen, H.; Li, W.; Huang, Y. Properties and inflammatory effects of various size fractions of ambient particulate matter from Beijing on A549 and J774A.1 cells. Environ. Sci. Technol. 2013, 47, 10583–10590. [Google Scholar] [CrossRef] [PubMed]
- Kroll, A.; Gietl, J.K.; Wiesmüller, G.A.; Günsel, A.; Wohlleben, W.; Schnekenburger, J.; Klemm, O. In vitro toxicology of ambient particulate matter: Correlation of cellular effects with particle size and components. Environ. Toxicol. 2013, 28, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Oberdorster, G.; Oberdorster, E.; Oberdorster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef] [PubMed]
- Oberdorster, G. Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Envir. Health 2001, 74, 1–8. [Google Scholar] [CrossRef]
- Li, N.; Xia, T.; Nel, A.E. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radical Biol. Med. 2008, 44, 1689–1699. [Google Scholar] [CrossRef] [PubMed]
- Steerenberg, P.A.; van Amelsvoort, L.; Lovik, M.; Hetland, R.B.; Alberg, T.; Halatek, T.; Bloemen, H.J.; Rydzynski, K.; Swaen, G.; Schwarze, P.; et al. Relation between sources of particulate air pollution and biological effect parameters in samples from four European cities: An exploratory study. Inhal. Toxicol. 2006, 18, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Burnett, R.T.; Brook, J.; Dann, T.; Delocla, C.; Philips, O.; Cakmak, S.; Vincent, R.; Goldberg, M.S.; Krewski, D. Association between particulate- and gas-phase components of urban air pollution and daily mortality in eight canadian cities. Inhal. Toxicol. 2000, 12, S15–S39. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Mu, Y.; Liu, Y.; Shao, L. A comparison study on airborne particles during haze days and non-haze days in Beijing. Sci. Total Environ. 2013, 456–457, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Dong, F.; He, D.; Zhao, X.; Zhang, X.; Zhang, W.; Yao, Q.; Liu, H. Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China. Atmos. Chem. Phys. 2013, 13, 4631–4644. [Google Scholar] [CrossRef]
- Deng, X.; Rui, W.; Zhang, F.; Ding, W. PM2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activating PIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells. Cell Biol. Toxicol. 2013, 29, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Zhang, F.; Rui, W.; Long, F.; Wang, L.; Feng, Z.; Chen, D.; Ding, W. PM2.5 -induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicol. Vitro 2013, 27, 1762–1770. [Google Scholar] [CrossRef] [PubMed]
- Limon-Pacheco, J.; Gonsebatt, M.E. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat. Res. 2009, 674, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, U.S.; McWhinney, R.D.; Rastogi, N.; Abbatt, J.P.; Evans, G.J.; Scott, J.A. Cytotoxic and proinflammatory effects of ambient and source-related particulate matter (PM) in relation to the production of reactive oxygen species (ROS) and cytokine adsorption by particles. Inhal. Toxicol. 2010, 22, S37–S47. [Google Scholar] [CrossRef] [PubMed]
- Tao, F.; Gonzalez-Flecha, B.; Kobzik, L. Reactive oxygen species in pulmonary inflammation by ambient particulates. Free Radical Biol. Med. 2003, 35, 327–340. [Google Scholar] [CrossRef]
- Yi, S.; Zhang, F.; Qu, F.; Ding, W. Water-insoluble fraction of airborne particulate matter (PM10) induces oxidative stress in human lung epithelial A549 cells. Environ. Toxicol. 2014, 29, 226–233. [Google Scholar] [CrossRef] [PubMed]
- DiStefano, E.; Eiguren-Fernandez, A.; Delfino, R.J.; Sioutas, C.; Froines, J.R.; Cho, A.K. Determination of metal-based hydroxyl radical generating capacity of ambient and diesel exhaust particles. Inhal. Toxicol. 2009, 21, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Michael, S.; Montag, M.; Dott, W. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter. Environ. Pollut. (Barking, Essex: 1987). 2013, 183, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Imrich, A.; Ning, Y.; Kobzik, L. Insoluble components of concentrated air particles mediate alveolar macrophage responses in vitro. Toxicol. Appl. Pharmacol. 2000, 167, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Schauer, J.J.; Zhang, Y.; Zeng, L.; Wei, Y.; Liu, Y.; Shao, M. Characteristics of particulate carbon emissions from real-world Chinese coal combustion. Environ. Sci. Technol. 2008, 42, 5068–5073. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Mattei, E.; Rivera, E.; Gioda, A.; Sanchez-Rivera, D.; Roman-Velazquez, F.R.; Jimenez-Velez, B.D. Use of human bronchial epithelial cells (BEAS-2B) to study immunological markers resulting from exposure to PM(2.5) organic extract from puerto rico. Toxicol. Appl. Pharmacol. 2010, 243, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Malich, G.; Markovic, B.; Winder, C. The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicology 1997, 124, 179–192. [Google Scholar] [CrossRef]
- Shafer, M.M.; Perkins, D.A.; Antkiewicz, D.S.; Stone, E.A.; Quraishi, T.A.; Schauer, J.J. Reactive oxygen species activity and chemical speciation of size-fractionated atmospheric particulate matter from lahore, pakistan: An important role for transition metals. J. Environ. Monit. 2010, 12, 704–715. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.J.; Zhang, Y.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, G.; Lin, Z.; Wang, Y.; He, H.; Liu, T.; Kamp, D.W. Pro-inflammatory response and oxidative stress induced by specific components in ambient particulate matter in human bronchial epithelial cells. Environ. Toxicol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Ntziachristos, L.; Froines, J.R.; Cho, A.K.; Sioutas, C. Relationship between redox activity and chemical speciation of size-fractionated particulate matter. Part. Fibre Toxicol. 2007, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, R.; De Berardis, B.; Paoletti, L.; Guastadisegni, C. Inflammatory mediators induced by coarse (PM2.5–10) and fine (PM2.5) urban air particles in RAW 264.7 cells. Toxicology 2003, 183, 243–254. [Google Scholar] [CrossRef]
- Uski, O.; Jalava, P.; Happo, M.; Torvela, T.; Leskinen, J.; Mäki-Paakkanen, J.; Tissari, J.; Sippula, O.; Lamberg, H.; Jokiniemi, J. Effect of fuel zinc content on toxicological responses of particulate matter from pellet combustion in vitro. Sci. Total Environ. 2015, 511, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Marcazzan, G.M.; Vaccaro, S.; Valli, G.; Vecchi, R. Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmos. Environ. 2001, 35, 4639–4650. [Google Scholar] [CrossRef]
- Hetland, R.B.; Cassee, F.R.; Refsnes, M.; Schwarze, P.E.; Lag, M.; Boere, A.J.; Dybing, E. Release of inflammatory cytokines, cell toxicity and apoptosis in epithelial lung cells after exposure to ambient air particles of different size fractions. Toxicol. Vitro 2004, 18, 203–212. [Google Scholar] [CrossRef]
- Osornio-Vargas, A.R.; Bonner, J.C.; Alfaro-Moreno, E.; Martinez, L.; Garcia-Cuellar, C.; Ponce-de-Leon Rosales, S.; Miranda, J.; Rosas, I. Proinflammatory and cytotoxic effects of mexico city air pollution particulate matter in vitro are dependent on particle size and composition. Environ. Health Perspect. 2003, 111, 1289–1293. [Google Scholar] [CrossRef] [PubMed]
- Alfaro-Moreno, E.; Ponce-de-Leon, S.; Osornio-Vargas, A.R.; Garcia-Cuellar, C.; Martinez, L.; Rosas, I. Potential toxic effects associated to metals and endotoxin present in PM10: An ancillary study using multivariate analysis. Inhal. Toxicol. 2007, 19, S49–S53. [Google Scholar] [CrossRef] [PubMed]
- Prieditis, H.; Adamson, I.Y. Comparative pulmonary toxicity of various soluble metals found in urban particulate dusts. Exp. Lung Res. 2002, 28, 563–576. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, M.; Ovrevik, J.; Holme, J.A.; Perrone, M.G.; Bolzacchini, E.; Schwarze, P.E.; Camatini, M. Differences in cytotoxicity versus pro-inflammatory potency of different PM fractions in human epithelial lung cells. Toxicol. Vitro 2010, 24, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Perrone, M.G.; Gualtieri, M.; Ferrero, L.; Porto, C.L.; Udisti, R.; Bolzacchini, E.; Camatini, M. Seasonal variations in chemical composition and in vitro biological effects of fine PM from Milan. Chemosphere 2010, 78, 1368–1377. [Google Scholar] [CrossRef] [PubMed]
- Rui, W.; Guan, L.; Zhang, F.; Zhang, W.; Ding, W. PM2.5-induced oxidative stress increases adhesion molecules expression in human endothelial cells through the ERK/AKT/NK-kB-dependent pathway. J. Appl. Toxicol. 2016, 36, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.Z.; Huang, H.Y.; Yang, L.Q.; Yuan, J.H.; Yang, X.H.; Liu, Y.G.; Zhuang, Z.X. Hydrogen peroxide induces adaptive response and differential gene expression in human embryo lung fibroblast cells. Environ. Toxicol. 2014, 29, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Eckers, A.; Klotz, L.O. Heavy metal ion-induced insulin-mimetic signaling. Redox Rep. 2009, 14, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Zhu, M.; Zhang, M.; Jia, X.; Cheng, X.; Ding, S.; Zhu, Q. Amelioration of compound 4,4′-diphenylmethane-bis(methyl)carbamate on high mobility group box1-mediated inflammation and oxidant stress responses in human umbilical vein endothelial cells via RAGE/ERK1/2/NF-kB pathway. Int. Immunopharmacol. 2013, 15, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, T.D. Introduction to NF-kB: Players, pathways, perspectives. Oncogene 2006, 25, 6680–6684. [Google Scholar] [CrossRef] [PubMed]
- Ying, Z.; Kampfrath, T.; Thurston, G.; Farrar, B.; Lippmann, M.; Wang, A.; Sun, Q.; Chen, L.C.; Rajagopalan, S. Ambient particulates alter vascular function through induction of reactive oxygen and nitrogen species. Toxicol. Sci. 2009, 111, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Wei, D.; Yi, S.; Zhang, F.; Ding, W. Oxidative stress induced by urban fine particles in cultured EA.hy926 cells. Hum. Exp. Toxicol. 2011, 30, 579–590. [Google Scholar]
Sampling Site | Sampling Period | Particles | Aerodynamic Diameter (µm) | Hydrated Diameter (µm) |
---|---|---|---|---|
Urban (Beijing) | March–July | uPM1.0 | <1.0 | 0.22 (0.15–0.31) |
uPM1.0–2.5 | 1.0–2.5 | 0.36 (0.23–0.55) | ||
uPM2.5–10 | 2.5–10 | 0.49 (0.36–0.64) | ||
Steel factory (Anshan) | November–December | sPM1.0 | <1.0 | 0.28 (0.20–0.36) |
sPM1.0–2.5 | 1.0–2.5 | 0.53 (0.30–0.86) | ||
sPM2.5–10 | 2.5–10 | 0.62 (0.41–0.99) |
Element | Urban (Beijing) | Steel Factory (Anshan) | ||||
---|---|---|---|---|---|---|
uPM1.0 | uPM1.0–2.5 | uPM2.5–10 | sPM1.0 | sPM1.0–2.5 | sPM2.5–10 | |
Al | 18.71 ± 0.12 | 37.56 ± 0.14 | 54.91 ± 0.38 | 14.00 ± 0.11 | 32.18 ± 0.01 | 44.91 ± 0.30 |
Ca | 23.23 ± 0.22 | 72.64 ± 0.33 | 97.74 ± 0.47 | 47.57 ± 0.28 | 32.62 ± 0.24 | 34.62 ± 0.28 |
Fe | 12.68 ± 0.10 | 30.30 ± 0.19 | 32.72 ± 0.20 | 142.43 ± 0.30 | 51.81 ± 0.19 | 34.41 ± 0.14 |
K | 22.55 ± 0.11 | 12.68 ± 0.09 | 16.56 ± 0.12 | 64.90 ± 0.15 | 11.06 ± 0.03 | 12.82 ± 0.14 |
Mg | 6.36 ± 0.03 | 15.19 ± 0.09 | 24.27 ± 0.11 | 22.63 ± 0.08 | 18.46 ± 0.06 | 22.56 ± 0.08 |
Na | 5.74 ± 0.03 | 8.39 ± 0.04 | 12.75 ± 0.07 | 54.03 ± 0.16 | 10.12 ± 0.05 | 9.53 ± 0.04 |
Ti | 0.69 ± 0.02 | 2.32 ± 0.06 | 3.79 ± 0.08 | 1.19 ± 0.003 | 3.28 ± 0.005 | 4.87 ± 0.005 |
V | 0.05 ± 0.001 | 0.08 ± 0.001 | 0.10 ± 0.002 | 0.11 ± 0.0004 | 0.08 ± 0.001 | 0.11 ± 0.001 |
Cr | 0.13 ± 0.003 | 0.15 ± 0.003 | 0.14 ± 0.004 | 0.84 ± 0.001 | 0.24 ± 0.0004 | 0.17 ± 0.0002 |
Mn | 0.81 ± 0.02 | 0.85 ± 0.02 | 1.09 ± 0.02 | 19.81 ± 0.08 | 2.42 ± 0.02 | 1.22 ± 0.01 |
Co | 0.009 ± 0.002 | 0.02 ± 0.003 | 0.02 ± 0.003 | 0.02 ± 0.002 | 0.03 ± 0.004 | 0.03 ± 0.004 |
Ni | 0.05 ± 0.001 | 0.07 ± 0.001 | 0.07 ± 0.001 | 0.20 ± 0.001 | 0.11 ± 0.001 | 0.10 ± 0.001 |
Cu | 0.51 ± 0.008 | 0.36 ± 0.005 | 0.19 ± 0.001 | 7.19 ± 0.02 | 0.56 ± 0.007 | 0.29 ± 0.004 |
As | 0.17 ± 0.005 | 0.11 ± 0.004 | 0.03 ± 0.002 | 0.51 ± 0.003 | 0.13 ± 0.003 | 0.06 ± 0.001 |
Sr | 0.30 ± 0.005 | 0.36 ± 0.004 | 0.39 ± 0.005 | 0.17 ± 0.0002 | 0.42 ± 0.007 | 0.45 ± 0.006 |
Cd | 0.03 ± 0.001 | 0.01 ± 0.0003 | 0.003 ± 0.0001 | 0.05 ± 0.0003 | 0.02 ± 0.001 | 0.01 ± 0.0001 |
Cs | 0.01 ± 0.0001 | 0.01 ± 0.0001 | 0.005 ± 0.0001 | 0.07 ± 0.0004 | 0.009 ± 0.0001 | 0.01 ± 0.0001 |
Ba | 0.85 ± 0.007 | 0.88 ± 0.007 | 0.81 ± 0.006 | 0.40 ± 0.004 | 1.22 ± 0.01 | 1.20 ± 0.01 |
Pb | 0.97 ± 0.008 | 0.39 ± 0.004 | 0.05 ± 0.001 | 8.50 ± 0.06 | 0.82 ± 0.004 | 0.35 ± 0.003 |
Zn | 3.39 ± 0.05 | 1.38 ± 0.03 | 0.52 ± 0.008 | 13.25 ± 0.03 | 2.82 ± 0.02 | 0.81 ± 0.01 |
Ions | Urban (Beijing) | Steel Factory (Anshan) | ||||
---|---|---|---|---|---|---|
uPM1.0 | uPM1.0–2.5 | uPM2.5–10 | sPM1.0 | sPM1.0–2.5 | sPM2.5–10 | |
SO42− | 141.45 ± 10.05 | 70.50 ± 5.27 | 39.16 ± 3.36 | 125.04 ± 7.83 | 45.92 ± 4.82 | 25.26 ± 0.82 |
NO3− | 114.94 ± 9.86 | 85.71 ± 6.13 | 32.08 ± 1.52 | 80.79 ± 8.60 | 48.71 ± 3.52 | 23.95 ± 1.05 |
NH4+ | 61.50 ± 8.62 | 9.10 ± 0.88 | 1.55 ± 0.02 | 36.40 ± 5.26 | 7.38 ± 0.85 | 1.12 ± 0.03 |
Cl− | 31.95 ± 3.26 | 10.95 ± 1.05 | 9.59 ± 0.89 | 48.58 ± 4.75 | 17.46 ± 1.24 | 7.18 ± 0.34 |
Ca2+ | 15.39 ± 0.58 | 46.81 ± 2.23 | 36.65 ± 1.37 | 10.25 ± 0.27 | 39.27 ± 1.93 | 30.15 ± 0.61 |
K+ | 13.15 ± 1.07 | 2.62 ± 0.17 | 1.45 ± 0.11 | 23.31 ± 1.58 | 3.73 ± 0.21 | 1.38 ± 0.05 |
Na+ | 4.55 ± 0.16 | 3.99 ± 0.14 | 4.30 ± 0.19 | 17.49 ± 0.89 | 8.35 ± 0.54 | 3.19 ± 0.10 |
Mg2+ | 2.64 ± 0.23 | 3.27 ± 0.30 | 2.49 ± 0.26 | 4.84 ± 0.51 | 4.05 ± 0.36 | 0.87 ± 0.09 |
OC/EC | Urban (Beijing) | Steel Factory (Anshan) | ||||
---|---|---|---|---|---|---|
PM1.0 | PM1.0–2.5 | PM2.5–10 | PM1.0 | PM1.0–2.5 | PM2.5–10 | |
OC | 108.62 ± 6.61 | 60.99 ± 4.96 | 56.53 ± 0.18 | 67.61 ± 1.18 | 82.49 ± 10.59 | 71.84 ± 1.45 |
EC | 51.96 ± 6.64 | 20.44 ± 1.35 | 11.67 ± 0.37 | 34.18 ± 4.13 | 26.48 ± 2.27 | 14.03 ± 3.61 |
OC/EC | 2.09 ± 0.40 | 2.98 ± 0.44 | 4.85 ± 0.17 | 1.98 ± 0.21 | 3.12 ± 0.23 | 5.12 ± 1.71 |
Components | Correlation of Cell Viability | ||
---|---|---|---|
r | p | Significance | |
OC | −0.5080 | 0.3036 | |
EC | −0.8467 | 0.0335 | * |
SO42− | −0.9181 | 0.0098 | ** |
NO3− | −0.4664 | 0.3511 | |
NH4+ | −0.8686 | 0.0248 | * |
Cl− | −0.9698 | 0.0014 | ** |
Al | 0.9702 | 0.0013 | ** |
Ca | 0.5266 | 0.2832 | |
Fe | −0.5922 | 0.2155 | |
K | −0.8005 | 0.0557 | |
Mg | 0.3924 | 0.4416 | |
Na | −0.6420 | 0.1693 | |
Ti | 0.8591 | 0.0284 | * |
V | 0.2356 | 0.6531 | |
Cr | −0.7017 | 0.1202 | |
Mn | −0.7140 | 0.1110 | |
Co | 0.4167 | 0.4112 | |
Ni | −0.5377 | 0.2712 | |
Cu | −0.7493 | 0.0864 | |
As | −0.8739 | 0.0228 | * |
Sr | 0.8759 | 0.0221 | * |
Cd | −0.9525 | 0.0033 | ** |
Cs | −0.7699 | 0.0733 | |
Ba | 0.6471 | 0.1648 | |
Pb | −0.7831 | 0.0655 | |
Zn | −0.8500 | 0.0320 | * |
Compositions | Correlation of ROS Generation | ||
---|---|---|---|
r | p | Significance | |
OC | −0.0710 | 0.8936 | |
EC | 0.3819 | 0.4551 | |
SO42− | 0.6250 | 0.1846 | |
NO3− | −0.0508 | 0.9238 | |
NH4+ | 0.4553 | 0.3642 | |
Cl− | 0.8976 | 0.0152 | * |
Al | −0.7245 | 0.1034 | |
Ca | −0.1358 | 0.7975 | |
Fe | 0.9349 | 0.0062 | ** |
K | 0.9833 | 0.0004 | *** |
Mg | 0.1795 | 0.7336 | |
Na | 0.9655 | 0.0018 | ** |
Ti | −0.5826 | 0.2249 | |
V | 0.3212 | 0.5347 | |
Cr | 0.9768 | 0.0008 | *** |
Mn | 0.9844 | 0.0004 | *** |
Co | −0.1077 | 0.8391 | |
Ni | 0.8871 | 0.0184 | * |
Cu | 0.9933 | <0.0001 | *** |
As | 0.9901 | 0.0001 | *** |
Sr | −0.9073 | 0.0125 | * |
Cd | 0.9166 | 0.0101 | * |
Cs | 0.9951 | <0.0001 | *** |
Ba | −0.8200 | 0.0457 | * |
Pb | 0.9962 | <0.0001 | *** |
Zn | 0.9923 | <0.0001 | *** |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, L.; Rui, W.; Bai, R.; Zhang, W.; Zhang, F.; Ding, W. Effects of Size-Fractionated Particulate Matter on Cellular Oxidant Radical Generation in Human Bronchial Epithelial BEAS-2B Cells. Int. J. Environ. Res. Public Health 2016, 13, 483. https://doi.org/10.3390/ijerph13050483
Guan L, Rui W, Bai R, Zhang W, Zhang F, Ding W. Effects of Size-Fractionated Particulate Matter on Cellular Oxidant Radical Generation in Human Bronchial Epithelial BEAS-2B Cells. International Journal of Environmental Research and Public Health. 2016; 13(5):483. https://doi.org/10.3390/ijerph13050483
Chicago/Turabian StyleGuan, Longfei, Wei Rui, Ru Bai, Wei Zhang, Fang Zhang, and Wenjun Ding. 2016. "Effects of Size-Fractionated Particulate Matter on Cellular Oxidant Radical Generation in Human Bronchial Epithelial BEAS-2B Cells" International Journal of Environmental Research and Public Health 13, no. 5: 483. https://doi.org/10.3390/ijerph13050483
APA StyleGuan, L., Rui, W., Bai, R., Zhang, W., Zhang, F., & Ding, W. (2016). Effects of Size-Fractionated Particulate Matter on Cellular Oxidant Radical Generation in Human Bronchial Epithelial BEAS-2B Cells. International Journal of Environmental Research and Public Health, 13(5), 483. https://doi.org/10.3390/ijerph13050483