Evaluation of Volatile Organic Compounds and Carbonyl Compounds Present in the Cabins of Newly Produced, Medium- and Large-Size Coaches in China
Abstract
:1. Introduction
2. Experimental Section
2.1. Description of Coaches
2.2. Air Sampling
2.3. Analytics
2.4. Statistical Analysis
3. Results
3.1. Identification of Organic Compounds in the Cabins of Air-Conditioned Coaches
3.2. Emission Characteristics and the Composition Ratios of the Organic Compounds in the Cabins of Air-Conditioned Coaches
3.3. Comparison of the Emission Characteristics for Organic Compounds of the Medium- and Large-Size Air-Conditioned Coaches
3.4. Influence of Interior Temperature on the Emissions of Organic Compounds
3.5. Effects of the Interior Relative Humidity (RH) on Organic Compounds Emissions
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
VOCs | volatile organic compounds |
CCs | carbonyl compounds |
∑VOCs | the sum of monitored VOCs |
∑CCs | the sum of monitored CCs |
RH | relative humidity |
LOD | Limit of detection |
S/N | signal-to-noise ratios |
References
- Faber, J.; Brodzik, K.; Golda-Kopek, A.; Lomankiewicz, D.; Nowak, J.; Swiatek, A. Comparison of air pollution by VOCs inside the cabins of new vehicles. Environ. Nat. Resour. Res. 2014, 4, 155–165. [Google Scholar] [CrossRef]
- Liu, H.; Man, H.Y.; Tschantz, M.; Wu, Y.; He, K.; Hao, J.M. VOC from Vehicular Evaporation Emissions: Status and Control Strategy. Environ. Sci. Technol. 2015, 49, 14424–14431. [Google Scholar] [CrossRef] [PubMed]
- Weichenthal, S.; Van Ryswyk, K.; Kulka, R.; Sun, L.; Wallace, L.; Joseph, L. In-Vehicle Exposures to Particulate Air Pollution in Canadian Metropolitan Areas: The Urban Transportation Exposure Study. Environ. Sci. Technol. 2014, 49, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Kim, K.H. Exposure to hazardous volatile pollutants back diffusing from automobile exhaust systems. J. Hazard. Mater. 2012, 241, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Faber, J.; Brodzik, K.; Gołda-Kopek, A.; Łomankiewicz, D. Air pollution in new vehicles as a result of VOC emissions from interior materials. Pol. J. Environ. Stud. 2013, 22, 1701–1709. [Google Scholar]
- Lau, W.L.; Chan, L.Y. Commuter exposure to aromatic VOCs in public transportation modes in Hong Kong. Sci. Total Environ. 2003, 308, 143–155. [Google Scholar] [CrossRef]
- Ongwandee, M.; Chavalparit, O. Commuter exposure to BTEX in public transportation modes in Bangkok, Thailand. J. Environ. Sci. 2010, 22, 397–404. [Google Scholar] [CrossRef]
- Xu, B.; Wu, Y.; Gong, Y.; Wu, S.R.; Wu, X.R.; Zhu, S.H.; Liu, T. Investigation of volatile organic compounds exposure inside vehicle cabins in China. Atmos. Pollut. Res. 2015, 7, 215–220. [Google Scholar] [CrossRef]
- Geiss, O.; Tirendi, S.; Barrero-Moreno, J.; Kotzias, D. Investigation of volatile organic compounds and phthalates present in the cabin air of used private cars. Environ. Int. 2009, 35, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Matsunaga, I. A case study on identification of airborne organic compounds and time courses of their concentrations in the cabin of a new car for private use. Environ. Int. 2006, 32, 58–79. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.S.; Li, T.T.; Luo, M.; Liu, J.F.; Liu, Z.R.; Bai, Y.H. Air pollution in the microenvironment of parked new cars. Build. Environ. 2008, 43, 315–319. [Google Scholar] [CrossRef]
- Parra, M.; Elustondo, D.; Bermejo, R.; Santamaría, J. Exposure to volatile organic compounds (VOC) in public buses of Pamplona, Northern Spain. Sci. Total Environ. 2008, 404, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Buters, J.T.; Schober, W.; Gutermuth, J.; Jakob, T.; Aguilar-Pimentel, A.; Huss-Marp, J.; Traidl-Hoffmann, C.; Mair, S.; Mair, S.; Mayer, F. Toxicity of parked motor vehicle indoor air. Environ. Sci. Technol. 2007, 41, 2622–2629. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, H.S.; Park, M.R.; Lee, S.W.; Kim, E.H.; Cho, J.B.; Kim, J.; Han, Y.; Jung, K.; Cheong, H.K. Relationship Between Indoor Air Pollutant Levels and Residential Environment in Children With Atopic Dermatitis. Allergy Asthma Immunol. Res. 2014, 6, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Sarigiannis, D.A.; Karakitsios, S.P.; Gotti, A.; Liakos, I.L.; Katsoyiannis, A. Exposure to major volatile organic compounds and carbonyls in European indoor environments and associated health risk. Environ. Int. 2011, 37, 743–765. [Google Scholar] [CrossRef] [PubMed]
- Berend, N. Contribution of air pollution to COPD and small airway dysfunction. Respirology 2016, 21, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.K.; Feng, L.L.; Luo, H.L.; Cheng, H.M. Health risk equations and risk assessment of airborne benzene homologues exposure to drivers and passengers in taxi cabins. Environ. Sci. Pollut. Res. 2016, 23, 4797–4811. [Google Scholar] [CrossRef] [PubMed]
- You, K.W.; Ge, Y.S.; Bin, H.; Ning, Z.W.; Zhao, S.; Zhang, Y.N.; Peng, X. Measurement of in-vehicle volatile organic compounds under static conditions. J. Environ. Sci. 2007, 19, 1208–1213. [Google Scholar] [CrossRef]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.; Anderson, H.R.; Andrews, K.G. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2013, 380, 2224–2260. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs Volumes 1 to 42; IARC: Lyon, France, 1987. [Google Scholar]
- WHO. WHO Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Chen, X.K.; Zhang, G.Q.; Zhang, Q.; Chen, H. Mass concentrations of BTEX inside air environment of buses in Changsha, China. Build. Environ. 2011, 46, 421–427. [Google Scholar] [CrossRef]
- Li, S.; Chen, S.G.; Zhu, L.Z.; Chen, X.S.; Yao, C.Y.; Shen, X.Y. Concentrations and risk assessment of selected monoaromatic hydrocarbons in buses and bus stations of Hangzhou, China. Sci. Total Environ. 2009, 407, 2004–2011. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.B.; Mu, Y.J. Characteristics of carbonyl compounds in public vehicles of Beijing city: Concentrations, sources, and personal exposures. Atmos. Environ. 2007, 41, 1819–1824. [Google Scholar] [CrossRef]
- Brodzik, K.; Faber, J.; Łomankiewicz, D.; Gołda-Kopek, A. In-vehicle VOCs composition of unconditioned, newly produced cars. J. Environ. Sci. 2014, 26, 1052–1061. [Google Scholar] [CrossRef]
- Faber, J.; Brodzik, K.; Gołda-Kopek, A.; Łomankiewicz, D. Benzene, toluene and xylenes levels in new and used vehicles of the same model. J. Environ. Sci. 2013, 25, 2324–2330. [Google Scholar] [CrossRef]
- Hsu, D.J.; Huang, H.L. Concentrations of volatile organic compounds, carbon monoxide, carbon dioxide and particulate matter in buses on highways in Taiwan. Atmos. Environ. 2009, 43, 5723–5730. [Google Scholar] [CrossRef]
- Chien, Y.C. Variations in amounts and potential sources of volatile organic chemicals in new cars. Sci. Total Environ. 2007, 382, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.Y.; Yang, T.; Tan, J.W.; Li, L.; Ge, Y.S. Characterization of VOC Emission from Materials in Vehicular Environment at Varied Temperatures: Correlation Development and Validation. PLoS ONE 2015, 10, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Faber, J.; Brodzik, K.; Łomankiewicz, D.; Gołda-Kopek, A.; Nowak, J.; Świątek, A. Temperature influence on air quality inside cabin of conditioned car. Siln. Spalinowe 2012, 51, 49–56. [Google Scholar]
- McLaren, C.; Null, J.; Quinn, J. Heat stress from enclosed vehicles: Moderate ambient temperatures cause significant temperature rise in enclosed vehicles. Pediatrics 2005, 116, e109–e112. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.Y.; Lau, W.L.; Wang, X.M.; Tang, J.H. Preliminary measurements of aromatic VOCs in public transportation modes in Guangzhou, China. Environ. Int. 2003, 29, 429–435. [Google Scholar] [CrossRef]
CCs | Concentration (μg/m3) | VOCs | Concentration (μg/m3) |
---|---|---|---|
Formaldehyde | 0.52 ± 0.04 | Benzene | 0.30 ± 0.02 |
Acetaldehyde | 9.07 ± 0.75 | Toluene | 15.62 ± 1.31 |
Acrolein/Acetone | 6.24 ± 0.59 | n-Butyl Acetate | 2.77 ± 0.11 |
Valeraldehyde | 0.11 ± 0.01 | Ethylbenzene | 37.00 ± 3.68 |
p-Tolualdehyde | 3.90 ± 0.23 | Xylene | 28.70 ± 1.94 |
Hexaldehyde/2,5-Dimethylbenzaldehyde | 0.91 ± 0.06 | Styrene | 0.27 ± 0.01 |
n-Undecane | 2.64 ± 0.25 |
CCs | LOD (μg/mL) | VOCs | LOD (ng) |
---|---|---|---|
Formaldehyde | 0.0010 | Benzene | 0.00025 |
Acetaldehyde | 0.0010 | Toluene | 0.00025 |
Acrolein/Acetone | 0.0010 | n-Butyl Acetate | 0.01000 |
Propionaldehyde | 0.0010 | Ethylbenzene | 0.00025 |
Crotonaldehyde | 0.0010 | Xylene | 0.00025 |
Butyraldehyde | 0.0025 | Styrene | 0.00250 |
Benzaldehyde | 0.0025 | n-Undecane | 0.00025 |
Isovaleraldehyde | 0.0050 | ||
Valeraldehyde | 0.1000 | ||
o-Tolualdehyde | 0.0050 | ||
m-Tolualdehyde | 0.0050 | ||
p-Tolualdehyde | 0.0050 | ||
Hexaldehyde/2,5-Dimethylbenzaldehyde | 0.0050 |
CCs | Regression Equation | R2 | VOCs | Regression Equation | R2 |
---|---|---|---|---|---|
Formaldehyde | y = 298,120x + 3889 | 0.9966 | Benzene | y = 473,090x + 2,115,074 | 0.9990 |
Acetaldehyde | y = 232,917x + 1986 | 0.9971 | Toluene | y = 422,121x + 361,113 | 0.9991 |
Acrolein/Acetone | y = 328,913x + 3667 | 0.9990 | n-Butyl Acetate | y = 60,706x + 3877 | 0.9991 |
Propionaldehyde | y = 246,737x − 116 | 0.9993 | Ethylbenzene | y = 459,295x + 112,314 | 0.9992 |
Crotonaldehyde | y = 133,256x + 1547 | 0.9945 | Xylene | y = 727,292x + 171,984 | 0.9993 |
Butyraldehyde | y = 148,648x − 691 | 0.9934 | Styrene | y = 353,599x + 36,444 | 0.9991 |
Benzaldehyde | y = 99,102x + 1051 | 0.9951 | n-Undecane | y = 177,874x + 103,003 | 0.9998 |
Isovaleraldehyde | y = 99,675x + 500 | 0.9968 | |||
Valeraldehyde | y = 95,598x − 274 | 0.9965 | |||
o-Tolualdehyde | y = 65,648x + 1133 | 0.9980 | |||
m-Tolualdehyde | y = 79,633x + 259 | 0.9971 | |||
p-Tolualdehyde | y = 72,383x + 812 | 0.9981 | |||
Hexaldehyde/2,5-Dimethylbenzaldehyde | y = 165,117x + 1160 | 0.9906 |
CCs | 0.15 μg | 0.5 μg | 1.5 μg | |||
---|---|---|---|---|---|---|
Recovery (%) | RSD (%) | Recovery (%) | RSD (%) | Recovery (%) | RSD (%) | |
Formaldehyde | 108.21 | 4.61 | 114.23 | 6.77 | 116.75 | 9.96 |
Acetaldehyde | 102.78 | 10.79 | 104.79 | 6.75 | 105.87 | 5.33 |
Acrolein/Acetone | 98.37 | 7.58 | 96.82 | 9.76 | 117.91 | 3.45 |
Propionaldehyde | 107.63 | 7.89 | 103.05 | 6.99 | 114.09 | 4.98 |
Crotonaldehyde | 89.63 | 9.03 | 100.70 | 6.57 | 105.67 | 4.11 |
Butyraldehyde | 91.14 | 9.22 | 98.91 | 8.94 | 99.95 | 5.91 |
Benzaldehyde | 92.73 | 9.20 | 97.54 | 7.76 | 99.74 | 4.41 |
Isovaleraldehyde | 98.46 | 5.99 | 118.53 | 7.72 | 114.01 | 3.42 |
Valeraldehyde | 106.02 | 6.35 | 109.50 | 7.11 | 125.16 | 8.71 |
o-Tolualdehyde | 89.75 | 4.90 | 83.30 | 2.12 | 91.31 | 5.52 |
m-Tolualdehyde | 95.09 | 9.85 | 84.72 | 12.03 | 98.47 | 8.15 |
p-Tolualdehyde | 82.41 | 10.94 | 81.43 | 8.34 | 90.37 | 2.60 |
Hexaldehyde/2,5-Dimethylbenzaldehyde | 104.15 | 10.10 | 101.58 | 10.01 | 106.45 | 5.75 |
VOCs | 0.5 ng | 5 ng | 20 ng | |||
---|---|---|---|---|---|---|
Recovery (%) | RSD (%) | Recovery (%) | RSD (%) | Recovery (%) | RSD (%) | |
Benzene | 98.25 | 3.62 | 101.99 | 1.27 | 106.18 | 0.85 |
Toluene | 105.43 | 3.04 | 96.74 | 1.21 | 99.53 | 2.77 |
n-Butyl Acetate | 103.74 | 4.41 | 96.48 | 2.48 | 100.02 | 0.79 |
Ethylbenzene | 111.22 | 3.61 | 97.07 | 2.42 | 98.59 | 1.54 |
Xylene | 109.27 | 1.18 | 97.54 | 2.95 | 98.40 | 1.26 |
Styrene | 106.31 | 2.68 | 96.48 | 2.74 | 96.64 | 1.88 |
n-Undecane | 103.07 | 3.50 | 97.13 | 1.06 | 98.11 | 0.94 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.-Y.; Lin, Y.; Zhang, H.; Ding, D.; Sun, X.; Huang, Q.; Lin, L.; Chen, Y.-J.; Chi, Y.-L.; Dong, S. Evaluation of Volatile Organic Compounds and Carbonyl Compounds Present in the Cabins of Newly Produced, Medium- and Large-Size Coaches in China. Int. J. Environ. Res. Public Health 2016, 13, 596. https://doi.org/10.3390/ijerph13060596
Lu Y-Y, Lin Y, Zhang H, Ding D, Sun X, Huang Q, Lin L, Chen Y-J, Chi Y-L, Dong S. Evaluation of Volatile Organic Compounds and Carbonyl Compounds Present in the Cabins of Newly Produced, Medium- and Large-Size Coaches in China. International Journal of Environmental Research and Public Health. 2016; 13(6):596. https://doi.org/10.3390/ijerph13060596
Chicago/Turabian StyleLu, Yan-Yang, Yi Lin, Han Zhang, Dongxiao Ding, Xia Sun, Qiansheng Huang, Lifeng Lin, Ya-Jie Chen, Yu-Lang Chi, and Sijun Dong. 2016. "Evaluation of Volatile Organic Compounds and Carbonyl Compounds Present in the Cabins of Newly Produced, Medium- and Large-Size Coaches in China" International Journal of Environmental Research and Public Health 13, no. 6: 596. https://doi.org/10.3390/ijerph13060596
APA StyleLu, Y. -Y., Lin, Y., Zhang, H., Ding, D., Sun, X., Huang, Q., Lin, L., Chen, Y. -J., Chi, Y. -L., & Dong, S. (2016). Evaluation of Volatile Organic Compounds and Carbonyl Compounds Present in the Cabins of Newly Produced, Medium- and Large-Size Coaches in China. International Journal of Environmental Research and Public Health, 13(6), 596. https://doi.org/10.3390/ijerph13060596