Walk Score, Transportation Mode Choice, and Walking Among French Adults: A GPS, Accelerometer, and Mobility Survey Study
Abstract
:1. Introduction
2. Methods
2.1. Study Population and Geospatial Data
2.1.1. Study Population
2.1.2. Collection and Processing of GPS and Accelerometer Data
2.1.3. GPS-Based Mobility Survey
2.2. Transportation Mode Choice and Walking
2.2.1. Walking
2.2.2. Other Transportation Modes
2.3. Individual/Neighborhood Variables
2.4. Neighborhood Walkability: Walk Score
2.5. Statistical Analysis
2.5.1. Analytic Sample
2.5.2. Regression Analyses
3. Results
4. Discussion
4.1. Future Research
4.2. Study Limitations
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dishman, R.; Heath, G.; Lee, I.-M. Physical Activity Epidemiology; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- HHS; CDC; NCCDPHP. Physical Activity and Health: A Report of the Surgeon General; 9781428927940; United States Department of Health and Human Services: New York, NY, USA, 1996.
- Lee, I.M. Epidemiologic Methods in Physical Activity Studies; OUP USA: New York, NY, USA, 2009. [Google Scholar]
- World Health Organization. Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- European Union Working Group on Sport and Health Group. EU Physical Activity Guidelines: Recommended Policy Actions in Support of Health-Enhancing Physical Activity. Available online: http://ec.europa.eu/sport/library/policy_documents/eu-physical-activity-guidelines-2008_en.pdf (accessed on 10 June 2016).
- Bertrais, S.; Preziosi, P.; Mennen, L.; Galan, P.; Hercberg, S.; Oppert, J.M. Sociodemographic and geographic correlates of meeting current recommendations for physical activity in middle-aged French adults: The supplementation en vitamines et mineraux antioxydants (suvimax) study. Am. J. Public Health 2004, 94, 1560–1566. [Google Scholar] [CrossRef] [PubMed]
- Cradock, A.L.C.; Ducnan, D.T. The role of the built environment in supporting health behavior change. In The Handbook of Health Behavior Change, 4th ed.; Riekert, K.A., Ockene, J.K., Pbert, L., Eds.; Springer Publishing Company: New York, NY, USA, 2013; pp. 437–462. [Google Scholar]
- Duncan, D.T. What’s your Walk Score®?: Web-based neighborhood walkability assessment for health promotion and disease prevention. Am. J. Prev. Med. 2013, 45, 244–245. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.A.; Moore, K.A.; Evenson, K.R.; Rodriguez, D.A.; Diez Roux, A.V. Walk score(r) and transit score(r) and walking in the multi-ethnic study of atherosclerosis. Am. J. Prev. Med. 2013, 45, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.C.; Pantin, H.; Lombard, J.; Toro, M.; Huang, S.; Plater-Zyberk, E.; Perrino, T.; Perez-Gomez, G.; Barrera-Allen, L.; Szapocznik, J. Walk Score®: Associations with purposive walking in recent Cuban immigrants. Am. J. Prev. Med. 2013, 45, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Tuckel, P.; Milczarski, W. Walk score(tm), perceived neighborhood walkability, and walking in the U.S. Am. J. Health Behav. 2015, 39, 242–256. [Google Scholar] [CrossRef] [PubMed]
- Cole, R.; Dunn, P.; Hunter, I.; Owen, N.; Sugiyama, T. Walk Score and australian adults’ home-based walking for transport. Health Place 2015, 35, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Hajna, S.; Ross, N.A.; Joseph, L.; Harper, S.; Dasgupta, K. Neighbourhood walkability, daily steps and utilitarian walking in Canadian adults. BMJ Open 2015, 5, e008964. [Google Scholar] [CrossRef] [PubMed]
- Riley, D.L.; Mark, A.E.; Kristjansson, E.; Sawada, M.C.; Reid, R.D. Neighbourhood walkability and physical activity among family members of people with heart disease who participated in a randomized controlled trial of a behavioural risk reduction intervention. Health Place 2013, 21, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, P.Y.; Baker, M.A.; Cha, S.; Targonski, P.V. A cross-sectional survey of the relationship between walking, biking, and the built environment for adults aged over 70 years. Risk Manag. Healthc. Policy 2012, 5, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Vargo, J.; Stone, B.; Glanz, K. Google walkability: A new tool for local planning and public health research? J. Phys. Act. Health 2012, 9, 689–697. [Google Scholar] [PubMed]
- Kelley, E.A.; Kandula, N.R.; Kanaya, A.M.; Yen, I.H. Neighborhood walkability and walking for transport among South Asians in the Masala study. J. Phys. Act. Health 2015, 13, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Sriram, U.; LaCroix, A.Z.; Barrington, W.E.; Corbie-Smith, G.; Garcia, L.; Going, S.B.; LaMonte, M.J.; Manson, J.E.; Sealy-Jefferson, S.; Stefanick, M.L. Neighborhood walkability and adiposity in the women’s health initiative cohort. Am. J. Prev. Med. 2016. [Google Scholar] [CrossRef] [PubMed]
- Towne, S.D., Jr.; Won, J.; Lee, S.; Ory, M.G.; Forjuoh, S.N.; Wang, S.; Lee, C. Using Walk Score™ and neighborhood perceptions to assess walking among middle-aged and older adults. J. Community Health 2016. [Google Scholar] [CrossRef] [PubMed]
- Winters, M.; Barnes, R.; Venners, S.; Ste-Marie, N.; McKay, H.; Sims-Gould, J.; Ashe, M. Older adults’ outdoor walking and the built environment: Does income matter? BMC Public Health 2015, 15, 1. [Google Scholar] [CrossRef] [PubMed]
- Duncan, D.T.; Kawachi, I.; Subramanian, S.V.; Aldstadt, J.; Melly, S.J.; Williams, D.R. Examination of how neighborhood definition influences measurements of youths’ access to tobacco retailers: A methodological note on spatial misclassification. Am. J. Epidemiol. 2014, 179, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Kwan, M.-P. The uncertain geographic context problem. Ann. Assoc. Am. Geogr. 2012, 102, 958–968. [Google Scholar] [CrossRef]
- Kwan, M.-P. How GIS can help address the uncertain geographic context problem in social science research. Ann. GIS 2012, 18, 245–255. [Google Scholar] [CrossRef]
- Chaix, B.; Merlo, J.; Evans, D.; Leal, C.; Havard, S. Neighbourhoods in eco-epidemiologic research: Delimiting personal exposure areas. A response to Riva, Gauvin, Apparicio and Brodeur. Soc. Sci. Med. 2009, 69, 1306–1310. [Google Scholar] [CrossRef] [PubMed]
- Chaix, B.; Meline, J.; Duncan, S.; Merrien, C.; Karusisi, N.; Perchoux, C.; Lewin, A.; Labadi, K.; Kestens, Y. Gps tracking in neighborhood and health studies: A step forward for environmental exposure assessment, a step backward for causal inference? Health Place 2013, 21, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Carlson, J.A.; Saelens, B.E.; Kerr, J.; Schipperijn, J.; Conway, T.L.; Frank, L.D.; Chapman, J.E.; Glanz, K.; Cain, K.L.; Sallis, J.F. Association between neighborhood walkability and GPS-measured walking, bicycling and vehicle time in adolescents. Health Place 2015, 32, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rundle, A.G.; Sheehan, D.M.; Quinn, J.W.; Bartley, K.; Eisenhower, D.; Bader, M.M.; Lovasi, G.S.; Neckerman, K.M. Using GPS data to study neighborhood walkability and physical activity. Am. J. Prev. Med. 2015, 50, e65–e72. [Google Scholar] [CrossRef] [PubMed]
- Almanza, E.; Jerrett, M.; Dunton, G.; Seto, E.; Pentz, M.A. A study of community design, greenness, and physical activity in children using satellite, GPS and accelerometer data. Health Place 2012, 18, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Lachowycz, K.; Jones, A.P.; Page, A.S.; Wheeler, B.W.; Cooper, A.R. What can global positioning systems tell us about the contribution of different types of urban greenspace to children’s physical activity? Health Place 2012, 18, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Chaix, B.; Kestens, Y.; Duncan, D.T.; Brondeel, R.; Meline, J.; el Aarbaoui, T.; Pannier, B.; Merlo, J. A GPS-based methodology to analyze environment–health associations at the trip level: Case-crossover analyses of built environment effects on walking. Am. J. Epidemiol. 2016, in press. [Google Scholar]
- Chaix, B.; Kestens, Y.; Bean, K.; Leal, C.; Karusisi, N.; Meghiref, K.; Burban, J.; Fon Sing, M.; Perchoux, C.; Thomas, F.; et al. Cohort profile: Residential and non-residential environments, individual activity spaces and cardiovascular risk factors and diseases—The record cohort study. Int. J. Epidemiol. 2012, 41, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- Chaix, B.; Kestens, Y.; Perchoux, C.; Karusisi, N.; Merlo, J.; Labadi, K. An interactive mapping tool to assess individual mobility patterns in neighborhood studies. Am. J. Prev. Med. 2012, 43, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Chaix, B.; Kestens, Y.; Duncan, S.; Merrien, C.; Thierry, B.; Pannier, B.; Brondeel, R.; Lewin, A.; Karusisi, N.; Perchoux, C.; et al. Active transportation and public transportation use to achieve physical activity recommendations? A combined GPS, accelerometer, and mobility survey study. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 124. [Google Scholar] [CrossRef] [PubMed]
- Thierry, B.; Chaix, B.; Kestens, Y. Detecting activity locations from raw GPS data: A novel kernel-based algorithm. Int. J. Health Geogr. 2013, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Chaix, B.; Bean, K.; Leal, C.; Thomas, F.; Havard, S.; Evans, D.; Jégo, B.; Pannier, B. Individual/neighborhood social factors and blood pressure in the record cohort study which risk factors explain the associations? Hypertension 2010, 55, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Chaix, B.; Jouven, X.; Thomas, F.; Leal, C.; Billaudeau, N.; Bean, K.; Kestens, Y.; Jëgo, B.; Pannier, B.; Danchin, N. Why socially deprived populations have a faster resting heart rate: Impact of behaviour, life course anthropometry, and biology—The record cohort study. Soc. Sci. Med. 2011, 73, 1543–1550. [Google Scholar] [CrossRef] [PubMed]
- Leal, C.; Bean, K.; Thomas, F.; Chaix, B. Are associations between neighborhood socioeconomic characteristics and body mass index or waist circumference based on model extrapolations? Epidemiology 2011, 22, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Karusisi, N.; Thomas, F.; Meline, J.; Brondeel, R.; Chaix, B. Environmental conditions around itineraries to destinations as correlates of walking for transportation among adults: The record cohort study. PLoS ONE 2014, 9, e88929. [Google Scholar] [CrossRef] [PubMed]
- Carr, L.J.; Dunsiger, S.I.; Marcus, B.H. Walk Score as a global estimate of neighborhood walkability. Am. J. Prev. Med. 2010, 39, 460–463. [Google Scholar] [CrossRef] [PubMed]
- Carr, L.J.; Dunsiger, S.I.; Marcus, B.H. Validation of walk score for estimating access to walkable amenities. Br. J. Sports Med. 2011, 45, 1144–1148. [Google Scholar] [CrossRef] [PubMed]
- Duncan, D.T.; Aldstadt, J.; Whalen, J.; Melly, S. Validation of walk scores and transit scores for estimating neighborhood walkability and transit availability: A small-area analysis. GeoJournal 2013, 78, 407–416. [Google Scholar] [CrossRef]
- Duncan, D.T.; Aldstadt, J.; Whalen, J.; Melly, S.J.; Gortmaker, S.L. Validation of walk score for estimating neighborhood walkability: An analysis of four us metropolitan areas. Int. J. Environ. Res. Public Health 2011, 8, 4160–4179. [Google Scholar] [CrossRef] [PubMed]
- Gell, N.M.; Rosenberg, D.E.; Carlson, J.; Kerr, J.; Belza, B. Built environment attributes related to gps measured active trips in mid-life and older adults with mobility disabilities. Disabil. Health J. 2015, 8, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Manaugh, K.; El-Geneidy, A. Validating walkability indices: How do different households respond to the walkability of their neighborhood? Transp. Res. Part D: Transp. Environ. 2011, 16, 309–315. [Google Scholar] [CrossRef]
- Perchoux, C.; Kestens, Y.; Brondeel, R.; Chaix, B. Accounting for the daily locations visited in the study of the built environment correlates of recreational walking (the record cohort study). Prev. Med. 2015, 81, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.A.; Diez Roux, A.V.; Moore, K.A.; Evenson, K.R.; Rodriguez, D.A. Change in walking and body mass index following residential relocation: The multi-ethnic study of atherosclerosis. Am. J. Public Health 2014, 104, e49–e56. [Google Scholar] [CrossRef] [PubMed]
- Freeman, L.; Neckerman, K.; Schwartz-Soicher, O.; Quinn, J.; Richards, C.; Bader, M.D.; Lovasi, G.; Jack, D.; Weiss, C.; Konty, K.; et al. Neighborhood walkability and active travel (walking and cycling) in New York City. J. Urban Health 2013, 90, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Brown, B.B.; Smith, K.R.; Hanson, H.; Fan, J.X.; Kowaleski-Jones, L.; Zick, C.D. Neighborhood design for walking and biking: Physical activity and body mass index. Am. J. Prev. Med. 2013, 44, 231–238. [Google Scholar] [CrossRef] [PubMed]
- James, P.; Hart, J.E.; Arcaya, M.C.; Feskanich, D.; Laden, F.; Subramanian, S. Neighborhood self-selection: The role of pre-move health factors on the built and socioeconomic environment. Int. J. Environ. Res. Public Health 2015, 12, 12489–12504. [Google Scholar] [CrossRef] [PubMed]
- Matthews, S.A.; Yang, T.C.; Hayslett-McCall, K.L.; Ruback, R.B. Built environment and property crime in seattle, 1998–2000: A bayesian analysis. Environ. Plan A 2010, 42, 1403–1420. [Google Scholar] [CrossRef] [PubMed]
- Pitts, S.B.; Carr, L.J.; Brinkley, J.; Byrd, J.L., 3rd; Crawford, T.; Moore, J.B. Associations between neighborhood amenity density and health indicators among rural and urban youth. Am. J. Health Promot. 2013, 28, e40–e43. [Google Scholar] [CrossRef] [PubMed]
- Chaix, B.; Leal, C.; Evans, D. Neighborhood-level confounding in epidemiologic studies: Unavoidable challenges, uncertain solutions. Epidemiology 2010, 21, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Duncan, D.T.; Regan, S.D.; Shelley, D.; Day, K.; Ruff, R.R.; Al-Bayan, M.; Elbel, B. Application of global positioning system methods for the study of obesity and hypertension risk among low-income housing residents in New York City: A spatial feasibility study. Geospat. Health 2014, 9, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Duncan, D.T.; Kapadia, F.; Regan, S.D.; Goedel, W.C.; Levy, M.D.; Barton, S.C.; Friedman, S.R.; Halkitis, P.N. Feasibility and acceptability of global positioning system (GPS) methods to study the spatial contexts of substance use and sexual risk behaviors among young men who have sex with men in New York City: A p18 cohort sub-study. PLoS ONE 2016, 11, e0147520. [Google Scholar] [CrossRef] [PubMed]
- Limtanakool, N.; Dijst, M.; Schwanen, T. The influence of socioeconomic characteristics, land use and travel time considerations on mode choice for medium-and longer-distance trips. J. Transp. Geogr. 2006, 14, 327–341. [Google Scholar] [CrossRef]
Walk Score | Overall Number of Trips | Number of Trips Starting and/or Ending at the Residence |
---|---|---|
Average residential Walk Score | Mean (interdecile range) | Mean (interdecile range) |
Very/Car-Dependent-Somewhat Walkable | 27.0 (26) | 17.8 (14) |
Very Walkable | 32.2 (33) | 20.9 (20) |
Walker’s Paradise | 31.0 (29) | 21.1 (20) |
p for trend | <0.23 * | <0.07 * |
Walk Score | Transportation Mode Choice (n = 6969) % (n) | ||||
---|---|---|---|---|---|
Walk Score Trip Origin | Walking (Assessed in the Survey) | Bike | Public Transportation | Personal Motorized Vehicle | Number of Steps in the Trip per 10 min (n = 6313) Mean (±SD) (P25–P75) |
Very/Car-Dependent-Somewhat Walkable | 16.0% (131) | 2.8% (23) | 6.1% (50) | 67.6% (554) | 221.4 ± 304.2 (30; 243.8) |
Very Walkable | 35.8% (724) | 3.1% (61) | 9.5% (193) | 49.8% (1008) | 350.7 ± 392.0 (41.0; 551.1) |
Walker’s Paradise | 52.9% (2182) | 3.4% (138) | 19.2% (790) | 23.4% (967) | 415.0 ± 378.7 (83.2; 691.5) |
p for trend | <0.0001 * | <0.17 * | <0.0001 * | <0.0001 * | <0.0001 ** |
Walk Score Trip Destination | Walking (Assessed in the Survey) | Bike | Public Transportation | Personal Motorized Vehicle | Number of Steps in the Trip per 10 min |
Very/Car-Dependent-Somewhat Walkable | 16.0% (131) | 3.5% (25) | 6.6% (54) | 67.4% (552) | 235.4 ± 313.8 (35; 268.0) |
Very Walkable | 35.8% (725) | 2.9% (59) | 9.2% (187) | 50.0% (1013) | 347.9 ± 391.3 (39.7; 565.5) |
Walker’s Paradise | 52.9% (2181) | 3.4% (138) | 19.2% (792) | 23.4% (964) | 413.3 ± 378.7 (81.1; 691.8) |
p for trend | <0.0001 * | <0.23 * | <0.0001 * | <0.0001 * | <0.0001 ** |
Walk Score | Walking in the Trip (Assessed from the Survey) | Number of Steps per 10 min | ||
---|---|---|---|---|
OR (95% CI); N = 6969 | β (95% CI); n = 6313 | |||
Walk Score-Trip Origin | ||||
(vs. Very/Car-Dependent/Somewhat Walkable) | ||||
Very Walkable | 2.36 | 1.84 to 3.02 | +79 | +46 to +112 |
Walker’s Paradise | 3.48 | 2.72 to 4.44 | +91 | +58 to +124 |
Walk Score-Trip Destination | ||||
(vs. Very/Car-Dependent/Somewhat Walkable) | ||||
Very Walkable | 2.36 | 1.85 to 3.03 | +56 | +23 to +89 |
Walker’s Paradise | 3.48 | 2.73 to 4.44 | +68 | +35 to +101 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duncan, D.T.; Méline, J.; Kestens, Y.; Day, K.; Elbel, B.; Trasande, L.; Chaix, B. Walk Score, Transportation Mode Choice, and Walking Among French Adults: A GPS, Accelerometer, and Mobility Survey Study. Int. J. Environ. Res. Public Health 2016, 13, 611. https://doi.org/10.3390/ijerph13060611
Duncan DT, Méline J, Kestens Y, Day K, Elbel B, Trasande L, Chaix B. Walk Score, Transportation Mode Choice, and Walking Among French Adults: A GPS, Accelerometer, and Mobility Survey Study. International Journal of Environmental Research and Public Health. 2016; 13(6):611. https://doi.org/10.3390/ijerph13060611
Chicago/Turabian StyleDuncan, Dustin T., Julie Méline, Yan Kestens, Kristen Day, Brian Elbel, Leonardo Trasande, and Basile Chaix. 2016. "Walk Score, Transportation Mode Choice, and Walking Among French Adults: A GPS, Accelerometer, and Mobility Survey Study" International Journal of Environmental Research and Public Health 13, no. 6: 611. https://doi.org/10.3390/ijerph13060611
APA StyleDuncan, D. T., Méline, J., Kestens, Y., Day, K., Elbel, B., Trasande, L., & Chaix, B. (2016). Walk Score, Transportation Mode Choice, and Walking Among French Adults: A GPS, Accelerometer, and Mobility Survey Study. International Journal of Environmental Research and Public Health, 13(6), 611. https://doi.org/10.3390/ijerph13060611