Coarse Fraction Particle Matter and Exhaled Nitric Oxide in Non-Asthmatic Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Exposure
2.3. FENO Measurements
2.4. Statistical Methods
3. Results
3.1. Descriptive Statistics
3.2. Analysis Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
FENO | Fraction of exhaled nitric oxide |
NO | Nitrogen oxide |
NO2 | Nitrogen dioxide |
NOx | Nitrogen oxides |
O3 | Ozone |
PM | Particle matter |
ppb | Parts per billion |
SD | Standard deviation |
Th2 | T-helper cell type 2 |
References
- Meister, K.; Forsberg, B. Short-term associations between coarse PM levels and emergency department visits for asthma in Stockholm. Epidemiology 2009, 20, S114. [Google Scholar] [CrossRef]
- Meister, K.; Johansson, C.; Forsberg, B. Estimated short-term effects of coarse particles on daily mortality in Stockholm, Sweden. Environ. Health Perspect. 2012, 120, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Brunekreef, B.; Forsberg, B. Epidemiological evidence of effects of coarse airborne particles on health. Eur. Resp. J. 2005, 26, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Adar, S.D.; Filigrana, P.A.; Clements, N.; Peel, J.L. Ambient coarse particulate matter and human health: A systematic review and meta-analysis. Curr. Envirion. Health Rpt. 2014, 8, 258–274. [Google Scholar] [CrossRef] [PubMed]
- Ricciardolo, F.L.M. Revisiting the role of exhaled nitric oxide in asthma. Curr. Opin. Pulm. Med. 2014, 20, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Bastain, T.M.; Islam, T.; Berhane, K.T.; McConnell, R.S.; Rappaport, E.B.; Salam, M.T.; Linn, W.S.; Avol, E.L.; Zhang, Y.; Gilliland, F.D. Exhaled nitric oxide, susceptibility and new-onset asthma in the children’s health study. Eur. Respir. J. 2012, 37, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Olin, A.-C.; Rosengren, A.; Thelle, D.S.; Lissner, L.; Torén, K. Increased fraction of exhaled nitric oxide predicts new-onset wheeze in a general population. Am. J. Respir. Crit. Care Med. 2010, 181, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Konstantinou, G.N.; Xepapadaki, P.; Manousakis, E.; Makrinioti, H.; Kouloufakou-Gratsia, K.; Saxoni-Papageorgiou, P.; Papadopoulos, N.G. Assessment of airflow limitation, airway inflammation, and symptoms during virus-induced wheezing episodes in 4- to 6-year-old children. J. Allergy Clin. Immunol. 2013, 131, 87–93. [Google Scholar] [CrossRef] [PubMed]
- De Prins, S.; Dons, E.; Van Poppel, M.; Int Panis, L.; Van de Mieroop, E.; Nelen, V.; Cox, B.; Nawrot, T.S.; Teughels, C.; Shoeters, G.; et al. Airway oxidative stress and inflammation markers in exhaled breath from children are linked with exposure to black carbon. Environ. Int. 2014, 73, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Flamant-Hulin, M.; Caillaud, D.; Sacco, P.; Penard-Morand, C.; Annesi-Maesano, I. Air pollution and increased levels of fractional exhaled nitric oxide in children with no history of airway damage. J. Toxicol. Environ. Health Part A 2010, 73, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Barraza-Villarreal, A.; Sunyer, J.; Hernandez-Cadena, L.; Escamilla-Nuñez, M.C.; Sienra-Monge, J.J.; Ramírez-Aguilar, M.; Cortez-Lugo, M.; Diaz-Sanchez, D.; Olin, A-C.; Romieu, I. Air pollution, airway inflammation, and lung function in a cohort study of Mexico City schoolchildren. Environ. Health Perspect. 2008, 116, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Berhane, K.; Zhang, Y.; Salam, M.T.; Eckel, S.P.; Linn, W.S.; Rappaport, E.B.; Bastain, T.M.; Lurmann, F.; Gilliland, F.D. Longitudinal effects of air pollution on exhaled nitric oxide: The children’s health study. Occup. Environ. Med. 2014, 71, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Steerenberg, P.A.; Bischoff, E.W.M.A.; de Klerk, A.; Verlaan, A.P.J.; Jongbloets, L.M.N.; van Loveren, H.; Opperhuizen, A.; Brunekreef, B.; van Amsterdam, J.G.C. Acute effect of air pollution on respiratory complaints, exhaled NO and biomarkers in nasal lavages of allergic children during the pollen season. Int. Arch. Allergy Immunol. 2003, 131, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Flexeder, C.; Fuertes, E.; Cyrys, J.; Bauer, C-P.; Koletzko, S.; Hoffmann, B.; von Berg, A.; Heinrich, J. Effects of air pollution on exhaled nitric oxide in children: Results from the GINIplus and LISAplus studies. Int. J. Hyg. Environ. Health 2014, 217, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Graveland, H.; Van Roosbroeck, S.A.H.; Rensen, W.M.; Brunekreef, B.; Gehring, U. Air pollution and exhaled nitric oxide in Dutch schoolchildren. Occup. Environ. Med. 2011, 68, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Steerenberg, P.A.; Nierkens, S.; Fischer, P.H.; Loveren, H.V.; Opperhuizen, A.; Vos, J.G.; van Amsterdam, J.G.C. Traffic-related air pollution affects peak expiratory flow, exhaled nitric oxide, and inflammatory nasal markers. Arch. Environ. Health 2001, 56, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Sarnat, S.E.; Raysoni, A.U.; Li, W.-W.; Holguin, F.; Johnson, B.A.; Luevano, S.F.; Garcia, J.H.; Sarnat, J.A. Air pollution and acute respiratory response in a panel of asthmatic children along the U.S.–Mexico border. Environ. Health Perspect. 2011, 120, 437–444. [Google Scholar] [CrossRef] [PubMed]
- MacIntyre, E.A.; Gehring, U.; Mölter, A.; Fuertes, E.; Klümper, C.; Krämer, U.; Quass, U.; Hoffmann, B.; Gascon, M.; Brunekreef, B.; et al. Air pollution and respiratory infections during early childhood: An analysis of 10 European birth cohorts within the ESCAPE project. Environ. Health Perspect. 2014, 122, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Gehring, U.; Gruzieva, O.; Agius, R.M.; Beelen, R.; Custovic, A.; Cyrys, J.; Eeftens, M.; Flexeder, C.; Fuertes, E.; Heinrich, J.; et al. Air pollution exposure and lung function in children: The ESCAPE project. Environ. Health Perspect. 2013, 121, 1357–1364. [Google Scholar] [CrossRef] [PubMed]
- Essat, M.; Harnan, S.; Gomersall, T.; Tappenden, P.; Wong, R.; Pavord, I.; Lawson, R.; Everad, M.L. Fractional exhaled nitric oxide for the management of asthma in adults: A systematic review. Eur. Respir. J. 2016, 47, 751–768. [Google Scholar] [CrossRef] [PubMed]
- Bjermer, L.; Alving, K.; Diamant, Z.; Magnussen, H.; Pavord, I.; Piacentini, G.; Price, D.; Roche, N.; Sastre, J.; Thomas, M.; Usmani, O. Current evidence and future research needs for FENO measurement in respiratory diseases. Respir. Med. 2014, 108, 830–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, T.G.; Kesavalu, B.; Bernstein, C.K.; Ryan, P.H.; Bernstein, J.A.; Zimmermann, N.; Lummus, Z.; Villareal, M.S.; Smith, A.M.; Lenz, P.H.; et al. Chronic traffic pollution exposure is associated with eosinophilic, but not neutrophilic inflammation in older adult asthmatics. J. Asthma 2013, 50, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Eckel, S.P.; Berhane, K.; Salam, M.T.; Rappaport, E.B.; Linn, W.S.; Bastain, T.M.; Zhang, H.; Lurmann, F.; Avol, E.L.; Gilliland, F.D. Residential traffic-related pollution exposures and exhaled nitric oxide in the children’s health study. Environ. Health Perspect. 2011, 119, 1472–1477. [Google Scholar] [CrossRef] [PubMed]
- Nickmilder, M.; de Burbure, C.; Sylviane, C.; Xavier, D.; Alfred, B.; Alain, D. Increase of exhaled nitric oxide in children exposed to low levels of ambient ozone. J. Toxicol. Environ. Health Part A 2007, 70, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Nickmilder, M.; Carbonnelle, S.; de Burbure, C.; Bernard, A. Relationship between ambient ozone and exhaled nitric oxide in children. JAMA 2003, 19, 2546–2547. [Google Scholar] [CrossRef] [PubMed]
- Ferm, M.; Sjöberg, K. Concentrations and emission factors for PM2.5 and PM10 from road traffic in Sweden. Atmos. Environ. 2015, 119, 211–219. [Google Scholar] [CrossRef]
- Puustinen, A.; Hämeri, K.; Pekkanen, J.; Kulmala, M.; de Hartog, J.; Meliefste, K.; ten Brink, H.; Kasouyanni, K.; Karakatsani, A.; Kotronarou, A.; et al. Spatial variation of particle number and mass over four European cities. Atmos. Environ. 2007, 41, 6622–6636. [Google Scholar] [CrossRef]
- Janssen, N.A.; Hoek, G.; Harssema, H.; Brunekreef, B. Childhood exposure to PM10: Relation between personal, classroom, and outdoor concentrations. Occup. Environ. Med. 1997, 54, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Buonanno, G.; Fuoco, F.C.; Morawska, L.; Stabile, L. Airborne particle concentrations at schools measured at different spatial scales. Atmos. Environ. 2013, 67, 38–45. [Google Scholar] [CrossRef]
- Giroux, M.; Brémont, F.; Ferrières, J.; Dumas, J.C. Exhaled NO in asthmatic children in unpolluted and urban environments. Environ. Int. 2001, 27, 335–340. [Google Scholar] [CrossRef]
- Modig, L.; Dahgam, S.; Olsson, D.; Nyberg, F.; Wass, K.; Forsberg, B.; Olin, A.-C. Short-term exposure to ozone and levels of exhaled nitric oxide. Epidemiology 2014, 25, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Poon, R.; Chen, L.; Frescura, A.-M.; Montuschi, P.; Ciabattoni, G.; Wheeler, A.; Dales, R. Acute effects of air pollution on pulmonary function, airway inflammation, and oxidative stress in asthmatic children. Environ. Health Perspect. 2009, 117, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Barath, S.; Mills, N.L.; Ädelroth, E.; Olin, A.-C.; Blomberg, A. Diesel exhaust but not ozone increases fraction of exhaled nitric oxide in a randomized controlled experimental exposure study of healthy human subjects. Environ. Health 2013, 12, 36. [Google Scholar] [CrossRef] [PubMed]
- Kubesch, N.J.; de Nazelle, A.; Westerdahl, D.; Martinez, D.; Carrasco-Turigas, G.; Bouso, L.; Guerra, S.; Nieuwenhuijsen, M.J. Respiratory and inflammatory responses to short-term exposure to traffic-related air pollution with and without moderate physical activity. Occup. Environ. Med. 2015, 72, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, R.; Sarnat, S.E.; Raysoni, A.U.; Li, W.-W.; Johnson, B.A.; Stock, T.H.; Holguin, F.; Sosa, T.; Sarnat, J.A. Associations between source-indicative pollution metrics and increases in pulmonary inflammation and reduced lung function in a panel of asthmatic children. Air Qual. Atmos. Health 2012, 6, 487–499. [Google Scholar] [CrossRef]
- Koenig, J.Q.; Mar, T.F.; Allen, R.W.; Jansen, K.; Lumley, T.; Sullivan, J.H.; Trenga, C.A.; Larson, T.V.; Liu, L.-J.S. Pulmonary effects of indoor- and outdoor-generated particles in children with asthma. Environ. Health Perspect. 2005, 113, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Fischer, P.; Steerenberg, P.; Snelder, J.; van Loveren, H.; van Amsterdam, J.G.C. Association between exhaled nitric oxide, ambient air pollution and respiratory health in school children. Int. Arch. Occup. Environ. Health 2002, 75, 348–353. [Google Scholar] [PubMed]
- Holguin, F.; Flores, S.; Ross, Z.; Cortez, M.; Molina, M.; Molina, L.; Rincon, C.; Jerrett, M.; Berhane, K.; Granados, A.; Romieu, I. Traffic-related exposures, airway function, inflammation, and respiratory symptoms in children. Am. J. Respir. Crit. Care Med. 2007, 176, 1236–1242. [Google Scholar] [CrossRef] [PubMed]
- Dales, R.; Wheeler, A.; Mahmud, M.; Frescura, A.M.; Smith-Doiron, M.; Nethery, E.; Liu, L. The influence of living near roadways on spirometry and exhaled nitric oxide in elementary schoolchildren. Environ. Health Perspect. 2008, 116, 1423–1427. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.T.; Byun, H.M.; Lurmann, F.; Breton, C.V.; Wang, X.; Eckel, S. P.; Gilliland, F.D. Genetic and epigenetic variations in inducible nitric oxide synthase promoter, particulate pollution, and exhaled nitric oxide levels in children. J. Allergy Clin. Immunol. 2012, 129, 232–239. [Google Scholar] [CrossRef] [PubMed]
FENO50 (ppb) | N Subjects | Mean | SD | Min./Max. |
---|---|---|---|---|
All | 95 | 13.3 | 10.7 | 3.0/71.0 |
Male | 49 | 15.4 | 13.0 | 3.0/71.0 |
Female | 46 | 11.2 | 7.3 | 3.0/66.0 |
Exposure | N | Mean | SD | IQR | Min./Max. |
---|---|---|---|---|---|
PM2.5 | 60 | 5.6 | 2.6 | 2.6 | 2.3/16.7 |
PMcoarse | 49 | 16.1 | 9.8 | 9.6 | 4.1/42.3 |
NO2 | 61 | 17.0 | 7.3 | 12.8 | 4.7/31.3 |
NOx | 61 | 82.1 | 41.5 | 77.6 | 13.3/165.3 |
NO | 61 | 65.0 | 34.8 | 65.6 | 8.7/138.4 |
O3 | 59 | 75.0 | 12.3 | 17.0 | 51.3/106.3 |
Exposure | Ozone | PM2.5 | PMcoarse | NOx | NO2 | NO | Temp. |
---|---|---|---|---|---|---|---|
Ozone | 1 | ||||||
PM2.5 | 0.415 * | 1 | |||||
PMcoarse | −0.139 | 0.008 | 1 | ||||
NOx | −0.041 | 0.257 | 0.150 | 1 | |||
NO2 | 0.158 | 0.363 * | 0.126 | 0.938 ** | 1 | ||
NO | −0.083 | 0.232 | 0.153 | 0.997 ** | 0.909 ** | 1 | |
Temp. | 0.423 ** | 0.414 * | −0.117 | −0.228 | −0.143 | −0.242 | 1 |
Expsoure | NOx | NO2 | NO | PMcoarse | PM2.5 | O3 |
---|---|---|---|---|---|---|
24 h average | 2.8 (−1.1, 6.8) | 0.1 (−3.7, 4.1) | 0.3 (−0.4, 6.6) | 6.3 (−0.5, 13.5) | 0.5 (−1.5, 2.6) | −3.7 (−8.3, 1.2) |
48 h average | 2.4 (−1.6, 6.6) | 1.4 (−2.3, 5.3) | 3.0 (−1.7, 7.8) | −1.8 (−6.7, 3.2) | 1.4 (−0.8, 3.5) | 0.1 (−3.4, 3.7) |
72 h average | 2.0 (−0.9, 5.0) | 2.0 (−1.5, 5.5) | 2.4 (−1.1, 6.2) | −2.0 (−6.1, 2.3) | 0.9 (−1.2, 3.1) | 0.1 (−3.8, 4.1) |
Models | ||||||
---|---|---|---|---|---|---|
NOx, PMcoarse, O3 | NOx, PM2.5, O3 | NO2, PMcoarse, O3 | NO2, PM2.5, O3 | NO, PMcoarse, O3 | NO, PM2.5, O3 | |
Exposure time | NOx | NOx | NO2 | NO2 | NO | NO |
24 h average | 3.8 (−1.1, 8.9) | 2.9 (−1.9, 8.1) | 1.9 (−3.7, 7.8) | 1.1 (−3.9, 6.4) | 3.6 (−0.6, 7.9) | 2.9 (−1.3, 7.4) |
48 h average | 4.4 (−1.1, 9.8) | 2.1 (−4.8, 9.4) | 2.9 (−4.2, 11.0) | 2.3 (−6.0, 11) | 5.0 (−0.9, 11) | 2.0 (−5.2, 9.7) |
72 h average | 4.2 (−0.2, 8.8) | 3.1 (−1.5, 8.0) | 7.3 (0.6, 14.6) * | 9.1 (−0.5, 20) | 4.5 (−0.6, 10.0) | 2.9 (−2.0, 8.2) |
PMCoarse | PM2.5 | PMCoarse | PM2.5 | PMCoarse | PM2.5 | |
24 h average | 7.0 (0.1, 14.3) * | 1.0 (−1.9, 4.0) | 7.3 (0.4, 14.9) * | 1.8 (−0.9, 4.5) | 6.9 (0.0, 14) * | 0.9 (−2.1, 3.9) |
48 h average | −0.7 (−5.7, 4.6) | 1.6 (−2.2, 5.5) | −0.7 (−5.8, 4.7) | 1.8 (−1.7, 5.4) | −0.8 (−5.8, 4.5) | 1.7 (−2.1, 5.6) |
72 h average | −0.4 (−5.5, 5.0) | 0.1 (−3.3, 3.5) | −2.2 (−6.8, 2.7) | −1.3 (−5.1, 2.7) | −0.2 (−5.4, 5.4) | 0.4 (−2.8, 3.7) |
O3 | O3 | O3 | O3 | O3 | O3 | |
24 h average | −6.5 (−12.2, 0.7) * | −6.0 (−10.7, 0.3) * | −7.3 (−13.2, 1.2) * | −6.7 (−11.6, 0.7) * | −6.0 (−12.0, 0.2) * | −5.5 (−11, 0.4) |
48 h average | 0.6 (−4.6, 6.1) | −2.8 (−7.4, 2.0) | 0.1 (−7.3, 8.0) | −3.7 (−9.8, 2.9) | 1.2 (−3.7, 6.4) | −2.5 (−7.0, 2.2) |
72 h average | −1.6 (−7.0, 4.1) | −2.6 (−6.6, 2.7) | −6.6 (−13.7, 1.3) | −6.7 (−14.0, 0.6) | −0.5 (−5.9, 5.1) | −2.0 (−6.9, 3.2) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlsen, H.K.; Boman, P.; Björ, B.; Olin, A.-C.; Forsberg, B. Coarse Fraction Particle Matter and Exhaled Nitric Oxide in Non-Asthmatic Children. Int. J. Environ. Res. Public Health 2016, 13, 621. https://doi.org/10.3390/ijerph13060621
Carlsen HK, Boman P, Björ B, Olin A-C, Forsberg B. Coarse Fraction Particle Matter and Exhaled Nitric Oxide in Non-Asthmatic Children. International Journal of Environmental Research and Public Health. 2016; 13(6):621. https://doi.org/10.3390/ijerph13060621
Chicago/Turabian StyleCarlsen, Hanne Krage, Peter Boman, Bodil Björ, Anna-Carin Olin, and Bertil Forsberg. 2016. "Coarse Fraction Particle Matter and Exhaled Nitric Oxide in Non-Asthmatic Children" International Journal of Environmental Research and Public Health 13, no. 6: 621. https://doi.org/10.3390/ijerph13060621
APA StyleCarlsen, H. K., Boman, P., Björ, B., Olin, A. -C., & Forsberg, B. (2016). Coarse Fraction Particle Matter and Exhaled Nitric Oxide in Non-Asthmatic Children. International Journal of Environmental Research and Public Health, 13(6), 621. https://doi.org/10.3390/ijerph13060621