A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents
Abstract
:1. Introduction
2. Sources of Heavy Metal Pollution in the Environment
3. Toxicity of Heavy Metals to Life Forms
4. Bioremediation of Heavy Metals by Microorganisms
5. Mechanisms of Heavy Metal Uptake by Microorganisms
6. Biosorption Capacity of Various Microbial Biosorbents
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gaur, N.; Flora, G.; Yadav, M.; Tiwari, A. A review with recent advancements on bioremediation-based abolition of heavy metals. Environ. Sci. Process. Impacts 2014, 16, 180–193. [Google Scholar] [CrossRef] [PubMed]
- Dixit, R.; Malaviya, D.; Pandiyan, K.; Singh, U.B.; Sahu, A.; Shukla, R.; Singh, B.P.; Rai, J.P.; Sharma, P.K.; Lade, H. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability 2015, 7, 2189–2212. [Google Scholar] [CrossRef]
- Tak, H.I.; Ahmad, F.; Babalola, O.O. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. In Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 2013; pp. 33–52. [Google Scholar]
- Chaturvedi, A.D.; Pal, D.; Penta, S.; Kumar, A. Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem. World J. Microbiol. Biotechnol. 2015, 31, 1595–1603. [Google Scholar] [CrossRef] [PubMed]
- Nagajyoti, P.; Lee, K.; Sreekanth, T. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Mani, D.; Kumar, C. Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. Int. J. Environ. Sci. Technol. 2014, 11, 843–872. [Google Scholar] [CrossRef]
- Abbas, S.H.; Ismail, I.M.; Mostafa, T.M.; Sulaymon, A.H. Biosorption of heavy metals: A review. J. Chem. Sci. Technol. 2014, 3, 74–102. [Google Scholar]
- Akcil, A.; Erust, C.; Ozdemiroglu, S.; Fonti, V.; Beolchini, F. A review of approaches and techniques used in aquatic contaminated sediments: Metal removal and stabilization by chemical and biotechnological processes. J. Clean. Prod. 2015, 86, 24–36. [Google Scholar] [CrossRef]
- Ndeddy Aka, R.J.; Babalola, O.O. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea. Int. J. Phytoremed. 2016, 18, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Olaniran, A.O.; Balgobind, A.; Pillay, B. Bioavailability of heavy metals in soil: Impact on microbial biodegradation of organic compounds and possible improvement strategies. Int. J. Mol. Sci. 2013, 14, 10197–10228. [Google Scholar] [CrossRef] [PubMed]
- Su, C. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environ. Skept. Crit. 2014, 3, 24–38. [Google Scholar]
- Brar, S.K.; Verma, M.; Surampalli, R.; Misra, K.; Tyagi, R.; Meunier, N.; Blais, J. Bioremediation of hazardous wastes—A review. Pract. Period. Hazard. Toxic Radioact. Waste Manag. 2006, 10, 59–72. [Google Scholar] [CrossRef]
- Wei, W.; Liu, X.; Sun, P.; Wang, X.; Zhu, H.; Hong, M.; Mao, Z.-W.; Zhao, J. Simple whole-cell biodetection and bioremediation of heavy metals based on an engineered lead-specific operon. Environ. Sci. Technol. 2014, 48, 3363–3371. [Google Scholar] [CrossRef] [PubMed]
- Fulekar, M.; Singh, A.; Bhaduri, A.M. Genetic engineering strategies for enhancing phytoremediation of heavy metals. Afr. J. Biotechnol. 2009, 8, 529–535. [Google Scholar]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef] [PubMed]
- D’amore, J.; Al-Abed, S.; Scheckel, K.; Ryan, J. Methods for speciation of metals in soils. J. Environ. Qual. 2005, 34, 1707–1745. [Google Scholar] [CrossRef] [PubMed]
- Adler, R.A.; Claassen, M.; Godfrey, L.; Turton, A.R. Water, mining and waste: An historical and economic perspective on conflict management in South Africa. Econom. Peace Secur. J. 2007, 2, 32–41. [Google Scholar] [CrossRef]
- Blais, J.; Djedidi, Z.; Cheikh, R.B.; Tyagi, R.; Mercier, G. Metals precipitation from effluents: Review. Pract. Period. Hazard. Toxic Radioact. Waste Manag. 2008, 12, 135–149. [Google Scholar] [CrossRef]
- An, Y.-J.; Kim, M. Effect of antimony on the microbial growth and the activities of soil enzymes. Chemosphere 2009, 74, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Wahab, S.; Marikar, F. The environmental impact of gold mines: Pollution by heavy metals. Open Eng. 2012, 2, 304–313. [Google Scholar] [CrossRef]
- Finnegan, P.; Chen, W. Arsenic toxicity: The effects on plant metabolism. Front. Physiol. 2012, 3, 182. [Google Scholar] [CrossRef] [PubMed]
- Bissen, M.; Frimmel, F.H. Arsenic—A review. Part I: Occurrence, toxicity, speciation, mobility. Acta Hydrochim. Hydrobiol. 2003, 31, 9–18. [Google Scholar] [CrossRef]
- Gordon, T.; Bowser, D. Beryllium: Genotoxicity and carcinogenicity. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2003, 533, 99–105. [Google Scholar] [CrossRef]
- Fashola, M.; Ngole-Jeme, V.; Babalola, O. Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance. Int. J. Environ. Res. Public Health 2016, 13, 1047. [Google Scholar] [CrossRef] [PubMed]
- Chibuike, G.; Obiora, S. Heavy metal polluted soils: Effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014, 2014, 1–12. [Google Scholar] [CrossRef]
- Sebogodi, K.M.; Babalola, O.O. Identification of soil bacteria from mining environments in Rustenburg, South Africa. Life Sci. J. 2011, 8, 25–32. [Google Scholar]
- Sankarammal, M.; Thatheyus, A.; Ramya, D. Bioremoval of cadmium using pseudomonas fluorescens. Open J. Water Pollut. Treat. 2014, 1, 92–100. [Google Scholar] [CrossRef]
- Barakat, M. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef]
- Mohanty, M.; Pattnaik, M.M.; Mishra, A.K.; Patra, H.K. Bio-concentration of chromium—An in situ phytoremediation study at South Kaliapani chromite mining area of Orissa, India. Environ. Monit. Assess. 2012, 184, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, C.; Campos-García, J.; Devars, S.; Gutiérrez-Corona, F.; Loza-Tavera, H.; Torres-Guzmán, J.C.; Moreno-Sánchez, R. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev. 2001, 25, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Salem, H.M.; Eweida, E.A.; Farag, A. Heavy metals in drinking water & their environment impact on human health. In Proceedings of the International Conference for Environmental Hazards Mitigation ICEHM 2000, Cairo University, Giza, Egypt, 9–12 September 2000; pp. 542–556.
- Wang, J.; Feng, X.; Anderson, C.W.; Xing, Y.; Shang, L. Remediation of mercury contaminated sites—A review. J. Hazard. Mater. 2012, 221, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011, 2011, 1–20. [Google Scholar] [CrossRef]
- Mupa, M. Lead content of lichens in metropolitan Harare, Zimbabwe: Air quality and health risk implications. Greener J. Environ. Manag. Public Saf. 2013, 2, 75–82. [Google Scholar]
- Malik, A. Metal bioremediation through growing cells. Environ. Int. 2004, 30, 261–278. [Google Scholar] [CrossRef] [PubMed]
- Germ, M.; Kreft, I.; Stibilj, V.; Urbanc-Berčič, O. Combined effects of selenium and drought on photosynthesis and mitochondrial respiration in potato. Plant Physiol. Biochem. 2007, 45, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, S.; Poulose, E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2012, 2, 1–10. [Google Scholar] [CrossRef]
- Qian, H.; Peng, X.; Han, X.; Ren, J.; Sun, L.; Fu, Z. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J. Environ. Sci. 2013, 25, 1947–1956. [Google Scholar] [CrossRef]
- Babula, P.; Adam, V.; Opatrilova, R.; Zehnalek, J.; Havel, L.; Kizek, R. Uncommon heavy metals, metalloids and their plant toxicity: A review. Environ. Chem. Lett. 2008, 6, 189–213. [Google Scholar] [CrossRef]
- Gumpu, M.B.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. A review on detection of heavy metal ions in water—An electrochemical approach. Sens. Actuators B Chem. 2015, 213, 515–533. [Google Scholar] [CrossRef]
- Rasmussen, L.D.; Sørensen, S.J.; Turner, R.R.; Barkay, T. Application of a mer-lux biosensor for estimating bioavailable mercury in soil. Soil Biol. Biochem. 2000, 32, 639–646. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Maiti, S.K. Phytoremediation of metal mine waste. Appl. Ecol. Environ. Res. 2010, 8, 207–222. [Google Scholar]
- Arjoon, A.; Olaniran, A.; Pillay, B. Co-contamination of water with chlorinated hydrocarbons and heavy metals: Challenges and current bioremediation strategies. Int. J. Environ. Sci. Technol. 2013, 10, 395–412. [Google Scholar] [CrossRef]
- Xie, Y.; Fan, J.; Zhu, W.; Amombo, E.; Lou, Y.; Chen, L.; Fu, J. Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation. Front. Plant Sci. 2016, 7, 775. [Google Scholar] [CrossRef] [PubMed]
- Siddiquee, S.; Rovina, K.; Azad, S.; Naher, L.; Suryani, S. Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: A review. J. Microb. Biochem. Technol. 2015, 7, 384–393. [Google Scholar] [CrossRef]
- Ahluwalia, S.S.; Goyal, D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 2007, 98, 2243–2257. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Kang, H.; Zhang, X.; Shao, H.; Chu, L.; Ruan, C. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities. J. Hazard. Mater. 2010, 174, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gadd, G.M. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr. Opin. Biotechnol. 2000, 11, 271–279. [Google Scholar] [CrossRef]
- Lin, C.C.; Lin, H.L. Remediation of soil contaminated with the heavy metal (Cd2+). J. Hazard. Mater. 2005, 122, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Yun, Y.-S.; Park, J.M. The past, present, and future trends of biosorption. Biotechnol. Bioprocess Eng. 2010, 15, 86–102. [Google Scholar] [CrossRef]
- Sharma, P.K.; Balkwill, D.L.; Frenkel, A.; Vairavamurthy, M.A. A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide. Appl. Environ. Microbiol. 2000, 66, 3083–3087. [Google Scholar] [CrossRef] [PubMed]
- Gavrilescu, M. Removal of heavy metals from the environment by biosorption. Eng. Life Sci. 2004, 4, 219–232. [Google Scholar] [CrossRef]
- Gadd, G.M. Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. J. Chem. Technol. Biotechnol. 2009, 84, 13–28. [Google Scholar] [CrossRef]
- Romera, E.; González, F.; Ballester, A.; Blázquez, M.; Munoz, J. Comparative study of biosorption of heavy metals using different types of algae. Bioresour. Technol. 2007, 98, 3344–3353. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Chen, M.-L.; Wang, J.-H. Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. TrAC Trends Anal. Chem. 2015, 66, 90–102. [Google Scholar] [CrossRef]
- Fomina, M.; Gadd, G.M. Biosorption: Current perspectives on concept, definition and application. Bioresour. Technol. 2014, 160, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Mosa, K.A.; Saadoun, I.; Kumar, K.; Helmy, M.; Dhankher, O.P. Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front. Plant Sci. 2016, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Lesmana, S.O.; Febriana, N.; Soetaredjo, F.E.; Sunarso, J.; Ismadji, S. Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem. Eng. J. 2009, 44, 19–41. [Google Scholar] [CrossRef]
- Gupta, V.K.; Nayak, A.; Agarwal, S. Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environ. Eng. Res. 2015, 20, 1–18. [Google Scholar] [CrossRef]
- Mishra, A.; Malik, A. Recent advances in microbial metal bioaccumulation. Crit. Rev. Environ. Sci. Technol. 2013, 43, 1162–1222. [Google Scholar] [CrossRef]
- Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013, 11, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Agrawal, S.; Mondal, M. A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ. Sci. Pollut. Res. 2015, 22, 15386–15415. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.; Pant, K.K.; Khare, S.K. Studies on mercury bioremediation by alginate immobilized mercury tolerant Bacillus cereus cells. Int. Biodeterior. Biodegrad. 2012, 71, 1–8. [Google Scholar] [CrossRef]
- Puyen, Z.M.; Villagrasa, E.; Maldonado, J.; Diestra, E.; Esteve, I.; Solé, A. Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus de2008. Bioresour. Technol. 2012, 126, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.H.; Choi, J.-H.; Joo, J.O.; Kim, Y.-K.; Choi, J.-W.; Oh, B.-K. Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater. J. Microbiol. Biotechnol. 2015, 25, 1542–1546. [Google Scholar] [CrossRef] [PubMed]
- Dursun, A.; Uslu, G.; Cuci, Y.; Aksu, Z. Bioaccumulation of copper(II), lead(II) and chromium(VI) by growing Aspergillus niger. Process Biochem. 2003, 38, 1647–1651. [Google Scholar] [CrossRef]
- Akar, T.; Tunali, S.; Kiran, I. Botrytis cinerea as a new fungal biosorbent for removal of Pb(II) from aqueous solutions. Biochem. Eng. J. 2005, 25, 227–235. [Google Scholar] [CrossRef]
- Fu, Y.Q.; Li, S.; Zhu, H.Y.; Jiang, R.; Yin, L.F. Biosorption of copper(II) from aqueous solution by mycelial pellets of Rhizopus oryzae. Afr. J. Biotechnol. 2012, 11, 1403–1411. [Google Scholar]
- Sharma, S.; Adholeya, A. Detoxification and accumulation of chromium from tannery effluent and spent chrome effluent by Paecilomyces lilacinus fungi. Int. Biodeterior. Biodegrad. 2011, 65, 309–317. [Google Scholar] [CrossRef]
- Srivastava, S.; Thakur, I.S. Isolation and process parameter optimization of Aspergillus sp. For removal of chromium from tannery effluent. Bioresour. Technol. 2006, 97, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, G.; Santos, S.; Boaventura, R.; Botelho, C. Biosorption of antimony by brown algae S. muticum and A. nodosum. Environ. Eng. Manag. J. 2015, 14, 455–463. [Google Scholar]
- Zouboulis, A.; Loukidou, M.; Matis, K. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem. 2004, 39, 909–916. [Google Scholar] [CrossRef]
- Kang, C.-H.; Oh, S.J.; Shin, Y.; Han, S.-H.; Nam, I.-H.; So, J.-S. Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in South Korea. Ecol. Eng. 2015, 74, 402–407. [Google Scholar] [CrossRef]
- Haq, F.; Butt, M.; Ali, H.; Chaudhary, H.J. Biosorption of cadmium and chromium from water by endophytic Kocuria rhizophila: Equilibrium and kinetic studies. Desalination Water Treat. 2015, 2015, 1–13. [Google Scholar]
- Kang, S.; Lee, J.; Kim, K. Metal removal from wastewater by bacterial sorption: Kinetics and competition studies. Environ. Technol. 2005, 26, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, M.; Freitas, H. Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 2008, 71, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Teclu, D.; Tivchev, G.; Laing, M.; Wallis, M. Bioremoval of arsenic species from contaminated waters by sulphate-reducing bacteria. Water Res. 2008, 42, 4885–4893. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.; Edyvean, R. Biosorption of lead, copper and zinc ions on loofa sponge immobilized biomass of Phanerochaete chrysosporium. Miner. Eng. 2004, 17, 217–223. [Google Scholar] [CrossRef]
- Das, D.; Das, N.; Mathew, L. Kinetics, equilibrium and thermodynamic studies on biosorption of AG(I) from aqueous solution by macrofungus Pleurotus platypus. J. Hazard. Mater. 2010, 1, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Yalçın, S.; Sezer, S.; Apak, R. Characterization and lead(II), cadmium(II), nickel(II) biosorption of dried marine brown macro algae Cystoseira barbata. Environ. Sci. Pollut. Res. 2012, 19, 3118–3125. [Google Scholar] [CrossRef] [PubMed]
- Hansen, H.K.; Ribeiro, A.; Mateus, E. Biosorption of arsenic(V) with Lessonia nigrescens. Miner. Eng. 2006, 19, 486–490. [Google Scholar] [CrossRef]
- Gupta, V.; Rastogi, A. Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies. J. Hazard. Mater. 2008, 152, 407–414. [Google Scholar] [CrossRef] [PubMed]
Metal | Source | Effects on Human | Efeects on Plants | Effects on Microrganisms | Reference |
---|---|---|---|---|---|
Antimony | Coal combustion, mining, smelting, soil erosion, volcanic eruption | Cancer, cardiovascular diseases, conjunctivitis, dermatitis, liver diseases, nasal ulceration, respiratory diseases | Decreases synthesis of some metabolites, growth inhibition, inhibit chlorophyll synthesis | Inhibit enzyme activities, reduced growth rate | [18,19] |
Arsenic | Atmospheric deposition, mining, pesticides, rock sedimentation, smelting | Brain damage, cardiovascular and respiratory disorder, conjunctivitis, dermatitis, skin cancer | Damage cell membrane, inhibition of growth, inhibits roots extension and proliferation, interferes with critical metabolic processes, loss of fertility, yield and fruit production, oxidative stress, physiological disorders | Deactivation of enzymes | [20,21,22] |
Beryllium | Coal and oil combustion, volcanic dust | Allergic reactions, berylliosis, cancer, heart diseases, lung diseases | Inhibits seed germination | Chromosomal aberration, mutation | [18,23] |
Cadmium | Fertilizer, mining, pesticide, plastic, refining, welding | Bone disease, coughing, emphysema, headache, hypertension, itai-itai, kidney diseases, lung and prostate cancer, lymphocytosis, microcytic hypochromic anemia, testicular atrophy, vomiting | Chlorosis, decrease in plant nutrient content, growth inhibition, reduced seed germination | Damage nucleic acid, denature protein, inhibit cell division and transcription, inhibits carbon and nitrogen mineralization | [5,24,25,26,27] |
Chromium | Dyeing, electroplating, paints production, steel fabrication, tanning, textile | Bronchopneumonia, chronic bronchitis, diarrhea, emphysema, headache, irritation of the skin, itching of respiratory tract, liver diseases, lung cancer, nausea, renal failure, reproductive toxicity, vomiting | Chlorosis, delayed, senescence, wilting, biochemical lesions, reduced biosynthesis germination, stunted growth, oxidative stress | Elongation of lag phase, growth inhibition, inhibition of oxygen uptake | [28,29,30] |
Copper | Copper polishing, mining, paint, plating, printing operations | Abdominal pain, anemia, diarrhea, headache, liver and kidney damage, metabolic disorders, nausea, vomiting | Chlorosis, oxidative stress, retard growth | Disrupt cellular function, inhibit enzyme activities | [2,5,24,31] |
Mercury | Batteries, coal combustion, geothermal activities, mining, paint industries, paper industry, volcanic eruption, weathering of rocks | Ataxia, attention deficit, blindness, deafness, decrease rate of fertility, dementia, dizziness, dysphasia, gastrointestinal irritation, gingivitis, kidney problem, loss of memory, pulmonary edema, reduced immunity, sclerosis | Affects antioxidative system, affects photosynthesis, enhance lipid peroxidation, induced genotoxic effect, inhibit plant growth, yield, nutrient uptake and homeostasis, oxidative stress | Decrease population size, denature protein, disrupt cell membrane, inhibits enzyme function | [24,32,33] |
Lead | Coal combustion, electroplating, manufacturing of batteries, mining, paint, pigments | Anorexia, chronic nephropathy, damage to neurons, high blood pressure, hyperactivity, insomnia, learning deficits, reduced fertility, renal system damage, risk factor for Alzheimer’s disease, shortened attention span | Affects photosynthesis and growth, chlorosis, inhibit enzyme activities and seed germination, oxidative stress | Denatures nucleic acid and protein, inhibits enzymes activities and transcription | [5,24,34,35] |
Nickel | Electroplating, non-ferrous metal, paints, porcelain enameling | Cardiovascular diseases, chest pain, dermatitis, dizziness, dry cough and shortness of breath, headache, kidney diseases, lung and nasal cancer, nausea | Decrease chlorophyll content, inhibit enzyme activities and growth, reduced nutrient uptake | Disrupt cell membrane, inhibit enzyme activities, oxidative stress | [24,25,36] |
Selenium | Coal combustion, mining | Dysfunction of the endocrine system, gastrointestinal disturbances, impairment of natural killer cells activity, liver damage | Alteration of protein properties, reduction of plant biomass | Inhibits growth rate | [2,37] |
Silver | Battery manufacture, mining, photographic processing, smelting | Argyria and argyrosis, bronchitis, cytopathological effects in fibroblast and keratinocytes, emphysema, knotting of cartilage, mental fatigue, nose, throat and chest irritation, rheumatism | Affects homeostasis, decrease chlorophyll content, inhibits growth | Cell lysis, inhibit cell transduction and growth | [38,39] |
Thallium | Cement production, combustion of fossil fuels, metal smelting, oil refining | Alopecia, ataxia, burning feet syndrome, coma, convulsions, delirium, fatigue, gastroenteritis, hair fall, hallucinations, headache, hypotension, insomnia, nausea, tachycardia, vomiting | Inhibits enzyme activities, reduced growth | Damages DNA, inhibits enzyme activities and growth | [18,40] |
Zinc | Brass manufacturing, mining, oil refinery, plumbing | Ataxia, depression, gastrointestinal irritation, hematuria, icterus, impotence, kidney and liver failure, lethargy, macular degeneration, metal fume fever, prostate cancer, seizures, vomiting | Affects photosynthesis, inhibits growth rate, reduced chlorophyll content, germination rate and plant biomass | Death, decrease in biomass, inhibits growth | [25,41] |
Microbial Group | Microbial Biosorbent | Metal | pH | Temperature (°C) | Time (h) | Initial Metal Ion Concentration (mg/L) | Sorption Capacity (mg/g) | Reference |
---|---|---|---|---|---|---|---|---|
Bacteria | Bacillus cereus (Immobilize on alginate) | Hg | 7 | 30 | 72 | 10 | 104.1 | [65] |
B. laterosporus | Cd | 7 | 25 | 2 | 1000 | 159.5 | [74] | |
Cr(VI) | 2.5 | 72.6 | ||||||
B. licheniformis | Cd | 7 | 25 | 2 | 1000 | 142.7 | ||
Cr(VI) | 2.5 | 62 | ||||||
Desulfovibrio desulfuricans (immobilize on zeolite) | Cu | 7.8 | 37 | 168 | 100 | 98.2 | [67] | |
Ni | 100 | 90.1 | ||||||
Cr(VI) | 100 | 99.8 | ||||||
Enterobacter cloacae | Pb | - | 30 | 48 | 7.2 | 2.3 | [75] | |
Kocuria rhizophila | Cd | 8 | 35 | 1 | 150 | 9.07 | [76] | |
Cr | 4 | 150 | 14.4 | |||||
Micrococcus luteus | Cu | 7 | 27 | 12 | 80.24 | 408 | [66] | |
Pb | 272.39 | 1965 | ||||||
Pseudomonas aeruginosa | Co | 5.2 | 25 | 10 | 58.93 | 8.92 | [77] | |
Ni | 5.5 | 58.69 | 8.26 | |||||
Cr(III) | 3.4 | 52 | 6.42 | |||||
P. jessenii | Ni | - | 25 | 6 | 275 | 1.36 | [78] | |
Cu | 300 | 10.22 | ||||||
Zn | 400 | 4.39 | ||||||
Pseudomonas sp. | Ni | 25 | 6 | 275 | 2.79 | |||
Cu | 300 | 5.52 | ||||||
Zn | 275 | 3.66 | ||||||
Sulphate-reducing bacteria | As(III) | 6.9 | - | 24 | 1 | 0.07 | [79] | |
As(V) | 0.11 | |||||||
Fungi | Aspergillus niger | Cu | 5 | 30 | 1 | 100 | 15.6 | [68] |
Pb | 4.5 | 100 | 34.4 | |||||
Cr(VI) | 3.5 | 50 | 6.6 | |||||
Botrytis cinereal | Pb | 4 | 25 | 1.5 | 350 | 107.1 | [69] | |
Phanerochaete chrysosporium (immobilized on loofa sponge) | Pb | 6 | 20 | 1 | 100 | 88.16 | [80] | |
Cu | 100 | 68.73 | ||||||
Zn | 100 | 39.62 | ||||||
Pleurotus platypus | Ag | 6 | 20 | 2 | 200 | 46.7 | [81] | |
Rhizopus oryzae | Cu | 4 | 35 | 2 | 100 | 34 | [70] | |
Algae | Asparagopsis armata | Cd | 6 | - | 2 | 135 | 32.3 | [55] |
Ni | 6 | 141 | 17.7 | |||||
Zn | 6 | 182 | 21.6 | |||||
Cu | 5 | 134.4 | 21.3 | |||||
Pb | 4 | 124 | 63.7 | |||||
Codium vermilara | Cd | 6 | - | 2 | 135 | 21.8 | [55] | |
Ni | 6 | 147 | 13.2 | |||||
Zn | 6 | 182 | 23.8 | |||||
Cu | 5 | 140 | 16.9 | |||||
Pb | 5 | 83 | 63.3 | |||||
Cystoseira barbata | Cd | 4 | 20 | 1 | 117.4 | 37.6 | [82] | |
Ni | 224.8 | 78.7 | ||||||
Pb | 414 | 196.7 | ||||||
Lessonia nigrescens | Ar(V) | 2.5 | 20 | 5 | 200 | 45.2 | [83] | |
Sargassum muticum | Sb | 5 | 23 | 4 | 10 | 5.5 | [73] | |
Spirogyra sp. | Pb | 5 | 25 | 1.6 | 200 | 140 | [84] |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayangbenro, A.S.; Babalola, O.O. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. Int. J. Environ. Res. Public Health 2017, 14, 94. https://doi.org/10.3390/ijerph14010094
Ayangbenro AS, Babalola OO. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. International Journal of Environmental Research and Public Health. 2017; 14(1):94. https://doi.org/10.3390/ijerph14010094
Chicago/Turabian StyleAyangbenro, Ayansina Segun, and Olubukola Oluranti Babalola. 2017. "A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents" International Journal of Environmental Research and Public Health 14, no. 1: 94. https://doi.org/10.3390/ijerph14010094
APA StyleAyangbenro, A. S., & Babalola, O. O. (2017). A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. International Journal of Environmental Research and Public Health, 14(1), 94. https://doi.org/10.3390/ijerph14010094