The Study of Titanium and Zirconium Ions in Water by MPT-LTQ Mass Spectrometry in Negative Mode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Experimental Conditions
3. Results and Discussion
3.1. The MPT Mass Spectra of Titanium
3.2. The MPT Mass Spectra of Zirconium
3.3. Semi-Quantitative Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Scarano, A.; Piattelli, M.; Caputi, S.; Favero, G.A.; Piattelli, A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: An in vivo human study. J. Periodontol. 2004, 75, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Salihoglu, U.; Boynuegri, D.; Engin, D.; Duman, A.N.; Gokalp, P.; Balos, K. Bacterial adhesion and colonization differences between zirconium oxide and titanium alloys: An in vivo human study. Int. J. Oral Maxillofac. Implants 2010, 26, 191–199. [Google Scholar]
- Wu, A.Y.; Hsu, J.T.; Huang, H.L. An in vitro biomechanical evaluation of a new commercial titanium-zirconium alloy dental implant: A pilot study. Implant Dent. 2014, 23, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Gottlow, J.; Dard, M.; Kjellson, F.; Obrecht, M.; Sennerby, L. Evaluation of a new titanium-zirconium dental implant: A biomechanical and histological comparative study in the mini pig. Clin. Implant Dent. Relat. Res. 2012, 14, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.W.; Cui, S.J. Determination of Total Quantity of Rare Earths, Ca, Mg, Mn and Fe in Rare-earths-magnesium by ICP-AES with Offset Profile Add Lines. Spectrosc. Spectr. Anal. 1999, 19, 373–374. [Google Scholar]
- Ma, X.G.; Zheng, W.Y. Determination of Trace Impurities in High-Purity Zirconium Oxide by ICP-AES. Chin. J. Spectrosc. Lab. 1997, 14, 88–89. [Google Scholar]
- Zhang, B.S. Determination of Nb, Ta, Zr and Hf in Superalloys by ICP-AES. Chin. J. Spectrosc. Lab. 1997, 14, 49–52. [Google Scholar]
- Song, G.L.; Liu, Y.T.; Wang, X.E.; Jia, S.Z.; Li, J.X. Determination of Zirconium by Indirect Atomic Absorption Spectrometry. Chin. Anal. Chem. 2000, 28, 1099–1102. [Google Scholar]
- Yin, D.J. Determination of trace Titanium in ordinary Steel and low Alloy Steel by Spectrophotometric method. Metall. Anal. 1988, 8, 45–46. [Google Scholar]
- Xiang, L.R.; Huang, J.; Liu, S.C. The Research of Titanium by Optically controlled graphite furnace atomic absorption spectrometry. Metall. Anal. 1999, 19, 16–18. [Google Scholar]
- Zhong, M.H. Determination of Trace levels of Zirconium in Aluminum Alloy by Atomic absorption spectrometry. Metall. Anal. 1999, 19, 46–47. [Google Scholar]
- Li, H.M.; Lu, X.Z. A Study of Catalytic Adsorption Polarographic Wave of Zr (Ⅳ) Antipyrine-Nitrosulphophenol M Complex in Nitric Acid Medium. Rock Mineral Anal. 1987, 6, 54–58. [Google Scholar]
- Standard Examination Methods for Drinking Water—MetalParameters. National Standards of the People’s Republic of China. Patent GB 5750.6-2006. Available online: http://www.codeofchina.com/standard/GBT5750.6-2006.html (accessed on 3 September 2017).
- Kipphardt, H.; Czerwensky, M.; Matschat, R. ICP-MS analysis of high purity molybdenum used as SI-traceable standard of high metrological quality. J. Anal. At. Spectrom. 2005, 20, 28–34. [Google Scholar] [CrossRef]
- Keyes, W.R.; Turnlund, J.R. Determination of molybdenum and enriched Mostable isotope concentrations in human blood plasma by isotope dilution ICP-MS. J. Anal. At. Spectrom. 2002, 17, 1153–1156. [Google Scholar] [CrossRef]
- Townsend, A.T.; Miller, K.A.; McLean, S.; Aldous, S. The determination of copper, zinc, cadmium and lead in urine by high resolution ICP-MS. J. Anal. At. Spectrom. 1998, 13, 1213–1219. [Google Scholar] [CrossRef]
- Jiang, T.; Xiong, X.H.; Wang, S.X.; Luo, Y.L.; Fei, Q.; Yu, A.M. Direct Mass Spectrometric Analysis of Zinc and Cadmium in Water by Microwave Plasma Torch Coupled with a Linear Ion Trap Mass Spectrometer. Int. J. Mass Spectrom. 2016, 399–400, 33–39. [Google Scholar] [CrossRef]
- Xiong, X.H.; Jiang, T.; Zhou, R.Z.; Wang, S.X.; Zou, W.; Zhu, Z.Q. Microwave plasma torch mass spectrometry for the direct detection of copper and molybdenum ions in aqueous liquids. J. Mass Spectrom. 2016, 51, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.Q.; Jiang, T.; Xiong, X.H.; Zou, W. A microwave plasma torch quadrupole mass spectrometer for monitoring trace levels of lead and cadmium in water. Rapid Commun. Mass Spectrom. 2016, 30, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.H.; Jiang, T.; Qi, W.H.; Zuo, J.; Yang, M.L.; Fei, Q.; Xiao, S.J.; Yu, A.M.; Zhu, Z.Q.; Chen, H.W. Some Rare Earth Elements Analysis by Microwave Plasma Torch Coupled with the Linear Ion Trap Mass Spectrometry. Int. J. Anal. Chem. 2015. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.Q.; Zhou, W.; Jin, W.; Zhou, J.G.; Handberg, E.; Zhu, Z.Q.; Chen, H.W.; Jin, Q.H. Direct desorption ionization of analytes by microwave plasma torch for ambient mass spectrometric analysis. J. Mass Spectrom. 2013, 48, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.H.; Wang, F.; Zhu, C.; Chambers, D.M.; Hieftje, G.M. Atomic emission detector for gas chromatography and supercritical fluid chromatography. J. Anal. At. Spectrom. 1990, 5, 487–494. [Google Scholar] [CrossRef]
- Zhan, X.F.; Zhao, Z.J.; Yuan, X.; Wang, Q.H.; Li, D.D.; Xie, H.; Li, X.M.; Zhou, M.G.; Duan, Y.X. Microwave-induced plasma desorption/ionization source for ambient mass spectrometry. Anal. Chem. 2013, 85, 4512–4519. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.X.; Su, Y.X.; Jin, Z. A new, simple, compact GD-MIP tandem ion source for elemental time-of-flight mass spectrometry. J. Anal. At. Spectrom. 2000, 15, 1289–1291. [Google Scholar] [CrossRef]
- Su, Y.X.; Duan, Y.X.; Jin, Z. Development and evaluation of a glow discharge microwave-induced-plasma tandem source for time-of-flight mass spectrometry. Anal. Chem. 2000, 72, 5600–5605. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.Q.; Jin, W.; Zhou, J.G.; Zhang, Y.; Zhu, Z.Q.; Zhou, W.; Jin, Q.H. Rapid Detection of Active Pharmaceutical Ingredients in Drugs by Microwave Plasma Atmospheric Pressure Desorption Ionization Mass Spectrometry. Chem. J. Chin. Univ. 2012, 33, 1938–1944. [Google Scholar]
- Zhou, W.; Xiong, H.L.; Yang, M.L.; Chen, H.W.; Qu, Y.; Fang, X.W. Microwave Plasma Torch Mass Spectrometry for Rapid Differentiation of Natural and Artificial Construction Stones. Rock Mineral Anal. 2014, 33, 782–788. [Google Scholar]
- Xiong, X.H.; Zhang, Y.; Zhou, R.Z.; Wang, S.X.; Jiang, T.; Zeng, B.; Qi, W.H.; Zhu, Z.Q. Detection of Common Transition Metal in Water by Microwave Plasma Torch Mass Spectra in Negative Ion Mode. Chem. J. Chin. Univ. 2016, 37, 867–872. [Google Scholar]
- Jiang, T.; Liu, Q.J.; Yi, L.F.; Qi, W.H.; Zeng, B.; Zhou, Y.M.; Zhu, Z.Q.; Chen, H.W. Directdetection of cadmium in aqueous solution using microwave plasma torch coupled with quadrupole mass spectrometry. J. Instrum. Anal. 2016, 35, 79–84. [Google Scholar]
- Jing, T.; Xiong, X.H.; Zhou, W.; Yang, M.L. Direct Detection of Lead in Aqueous Solution Using Two kinds of Microwave Plasma Torch Coupled with Mass Spectrometry. J. Instrum. Anal. 2016, 35, 648–653. [Google Scholar]
- Chu, C.; Zhang, Y.; Wang, S.X.; Zhou, R.Z.; Jiang, T.; Zhu, Z.Q.; Lu, A.M. Direct Determination of Rare Earth Elements in RARE Ores Using Microwave Plasma Torch Coupled with Quadrupole Mass Spectrometry. Rock Mineral Anal. 2016, 35, 468–474. [Google Scholar]
- Barnes, J.H.; Grøn, O.A.; Hieftje, G.M. Characterization of an argon microwaveplasma torch coupled to a Mattauch–Herzog geometry mass spectrometer. J. Anal. At. Spectrom. 2002, 17, 1132–1136. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, H.; Yu, A.M.; Jin, Q.H. Microwave plasma torch analytical atomic spectrometry. Microchem. J. 2000, 66, 147–170. [Google Scholar] [CrossRef]
- Ouyang, Y.Z.; Zhang, X.L.; Han, J.; Guo, X.L.; Zhu, Z.Q.; Chen, H.W.; Luo, L.P. Thermal dissociation atmospheric chemical ionization ion trap mass spectrometry with a miniature source for selective trace detection of dimethoate in fruit juices. Analyst 2013, 138, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Water Quality-Determination of 32 Elements-Inductively Coupled Plasma Optical Emission Spectrometry. Patent HJ 776-2015. Available online: http://www.freestd.us/soft4/4653256.htm (accessed on 3 September 2017).
Metal Element | Linear Fitting Equation | Related R2 | Linear Range (μg/L) | LOD (Limit of Detection) (μg/L) |
---|---|---|---|---|
Ti | y = 9.53158x + 58.2165 | 0.98983 | 10–500 | 10 |
Zr | y = 0.134x + 0.105 | 0.996 | 20–100 | 20 |
Element | ICP-MS | ICP-AES [35] | Polarographic Catalytic Wave | Spectrophotometry | This Work |
---|---|---|---|---|---|
Ti | 0.46 | 20 | 4 | 20 | 10 |
Zr | 0.04 | 10 | <10 | 18 | 20 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Zheng, M.; Liu, Q.; Yang, M.Z.C.; Zhang, Y.; Zhu, Z. The Study of Titanium and Zirconium Ions in Water by MPT-LTQ Mass Spectrometry in Negative Mode. Int. J. Environ. Res. Public Health 2017, 14, 1129. https://doi.org/10.3390/ijerph14101129
Yang J, Zheng M, Liu Q, Yang MZC, Zhang Y, Zhu Z. The Study of Titanium and Zirconium Ions in Water by MPT-LTQ Mass Spectrometry in Negative Mode. International Journal of Environmental Research and Public Health. 2017; 14(10):1129. https://doi.org/10.3390/ijerph14101129
Chicago/Turabian StyleYang, Junqing, Mei Zheng, Qiuju Liu, Meiling Zhu Chushan Yang, Yan Zhang, and Zhiqiang Zhu. 2017. "The Study of Titanium and Zirconium Ions in Water by MPT-LTQ Mass Spectrometry in Negative Mode" International Journal of Environmental Research and Public Health 14, no. 10: 1129. https://doi.org/10.3390/ijerph14101129
APA StyleYang, J., Zheng, M., Liu, Q., Yang, M. Z. C., Zhang, Y., & Zhu, Z. (2017). The Study of Titanium and Zirconium Ions in Water by MPT-LTQ Mass Spectrometry in Negative Mode. International Journal of Environmental Research and Public Health, 14(10), 1129. https://doi.org/10.3390/ijerph14101129