Association of Waist Circumference Gain and Incident Prediabetes Defined by Fasting Glucose: A Seven-Year Longitudinal Study in Beijing, China
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Subjects
2.2. Measurement of Biochemical and Clinical Variables
2.3. Statistical Analyses
3. Results
3.1. Characteristics of Study Participants
3.2. Association between WC Gain and Risk of Prediabetes
3.3. Association between WC Gain and Prediabetes by Transition in Abdominal Obesity Status
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- International Diabetes Federatio. IDF Diabetes Atlas; International Diabetes Federation: Brussels, Belgium, 2015. [Google Scholar]
- Xu, Y.; Wang, L.; He, J.; Bi, Y.; Li, M.; Wang, T.; Wang, L.; Jiang, Y.; Dai, M.; Lu, J.; et al. Prevalence and control of diabetes in chinese adults. JAMA 2013, 310, 948–959. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gao, P.; Zhang, M.; Huang, Z.; Zhang, D.; Deng, Q.; Li, Y.; Zhao, Z.; Qin, X.; Jin, D.; et al. Prevalence and ethnic pattern of diabetes and prediabetes in china in 2013. JAMA 2017, 317, 2515–2523. [Google Scholar] [CrossRef] [PubMed]
- Tabak, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimaki, M. Prediabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2290. [Google Scholar] [CrossRef]
- Li, G.; Zhang, P.; Wang, J.; Gregg, E.W.; Yang, W.; Gong, Q.; Li, H.; Li, H.; Jiang, Y.; An, Y.; et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing diabetes prevention study: A 20-year follow-up study. Lancet 2008, 371, 1783–1789. [Google Scholar] [CrossRef]
- Mbanya, V.N.; Kengne, A.P.; Mbanya, J.C.; Akhtar, H. Body mass index, waist circumference, hip circumference, waist-hip-ratio and waist-height-ratio: Which is the better discriminator of prevalent screen-detected diabetes in a Cameroonian population? Diabetes Res. Clin. Pract. 2015, 108, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Nathan, M.D.; Barrett-Connor, E.; Crandall, J.P.; Edelstein, S.L.; Goldberg, R.B.; Horton, E.S.; Knowler, W.C.; Mather, K.J.; Orchard, T.J.; Pi-Sunyer, X.; et al. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: The diabetes prevention program outcomes study. Lancet Diabetes Endocrinol. 2015, 3, 866–875. [Google Scholar]
- Vlaar, E.M.A.; Nierkens, V.; Nicolaou, M.; Middelkoop, B.J.C.; Busschers, W.B.; Stronks, K.; van Valkengoed, I.G.M. Effectiveness of a targeted lifestyle intervention in primary care on diet and physical activity among south asians at risk for diabetes: 2-year results of a randomised controlled trial in the netherlands. BMJ Open 2017, 7, e012221. [Google Scholar] [CrossRef] [PubMed]
- Florez, H.; Temprosa, M.G.; Orchard, T.J.; Mather, K.J.; Marcovina, S.M.; Barrett-Connor, E.; Horton, E.; Saudek, C.; Pi-Sunyer, X.F.; Ratner, R.E.; et al. Metabolic syndrome components and their response to lifestyle and metformin interventions are associated with differences in diabetes risk in persons with impaired glucose tolerance. Diabetes Obes. Metab. 2014, 16, 326–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aroda, V.R.; Knowler, W.C.; Crandall, J.P.; Perreault, L.; Edelstein, S.L.; Jeffries, S.L.; Molitch, M.E.; Pi-Sunyer, X.; Darwin, C.; Heckman-Stoddard, B.M.; et al. Metformin for diabetes prevention: Insights gained from the diabetes prevention program/diabetes prevention program outcomes study. Diabetologia 2017, 60, 1601–1611. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.A.; Lim, S.Y.; Kim, K.R.; Lee, E.Y.; Kang, B.; Choi, Y.H.; Yoon, K.H.; Ahn, Y.B.; Lee, J.H.; Ko, S.H. Community-based randomized controlled trial of diabetes prevention study for high-risk individuals of type 2 diabetes: Lifestyle intervention using web-based system. BMC Public Health 2017, 17, 387. [Google Scholar] [CrossRef] [PubMed]
- Tuomilehto, J.; Lindstrom, J.; Eriksson, J.G.; Valle, T.T.; Hamalainen, H.; Ilanne-Parikka, P.; Keinanen-Kiukaanniemi, S.; Laakso, M.; Louheranta, A.; Rastas, M.; et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 2001, 344, 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Forouhi, N.G.; Luan, J.; Hennings, S.; Wareham, N.J. Incidence of type 2 diabetes in England and its association with baseline impaired fasting glucose: The ely study 1990–2000. Diabet. Med. 2007, 24, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Echouffo-Tcheugui, J.B.; Narayan, K.M.; Weisman, D.; Golden, S.H.; Jaar, B.G. Association between prediabetes and risk of chronic kidney disease: A systematic review and meta-analysis. Diabet. Med. 2016, 33, 1615–1624. [Google Scholar] [CrossRef] [PubMed]
- Stino, A.M.; Smith, A.G. Peripheral neuropathy in prediabetes and the metabolic syndrome. J. Diabetes Investig. 2017, 8, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Yazgan, S.; Arpaci, D.; Celik, H.U.; Dogan, M.; Isik, I. Macular choroidal thickness may be the earliest determiner to detect the onset of diabetic retinopathy in patients with prediabetes: A prospective and comparative study. Curr. Eye Res. 2017, 42, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Marto, J.P.; Saraiva, M.; Ladeira, F.; Sa, F.; Calado, S.; Viana-Baptista, M. Prediabetes is associated with unfavorable outcome in young adult patients with ischemic stroke. J. Stroke Cerebrovasc. Dis. 2017. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Pan, A.; Wang, Y.; Yang, Y.; Xu, J.; Zhang, Y.; Liu, D.; Wang, Q.; Shen, H.; Zhang, Y.; et al. Prevalence of overweight and obesity in 15.8 million men aged 15–49 years in rural china from 2010 to 2014. Sci. Rep. 2017, 7, 5012. [Google Scholar] [CrossRef] [PubMed]
- Xi, B.; Liang, Y.; He, T.; Reilly, K.H.; Hu, Y.; Wang, Q.; Yan, Y.; Mi, J. Secular trends in the prevalence of general and abdominal obesity among Chinese adults, 1993–2009. Obes. Rev. 2012, 13, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Keihani, S.; Hosseinpanah, F.; Barzin, M.; Serahati, S.; Doustmohamadian, S.; Azizi, F. Abdominal obesity phenotypes and risk of cardiovascular disease in a decade of follow-up: The Tehran lipid and glucose study. Atherosclerosis 2015, 238, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Bigaard, J.; Frederiksen, K.; Tjonneland, A.; Thomsen, B.L.; Overvad, K.; Heitmann, B.L.; Sorensen, T.I. Waist circumference and body composition in relation to all-cause mortality in middle-aged men and women. Int. J. Obes. 2005, 29, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, S.; Hawken, S.; Ounpuu, S.; Bautista, L.; Franzosi, M.G.; Commerford, P.; Lang, C.C.; Rumboldt, Z.; Onen, C.L.; Lisheng, L.; et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: A case-control study. Lancet 2005, 366, 1640–1649. [Google Scholar] [CrossRef]
- Alam, D.S.; Talukder, S.H.; Chowdhury, M.A.; Siddiquee, A.T.; Ahmed, S.; Pervin, S.; Khan, S.; Hasan, K.; Koehlmoos, T.L.; Niessen, L.W. Overweight and abdominal obesity as determinants of undiagnosed diabetes and pre-diabetes in bangladesh. BMC Obes. 2016, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- Hajian-Tilaki, K.; Heidari, B. Is waist circumference a better predictor of diabetes than body mass index or waist-to-height ratio in Iranian adults? Int. J. Prev. Med. 2015, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.C.; Choe, S.; Torabi, M.R. Is waist circumference ≥102/88 cm better than body mass index ≥30 to predict hypertension and diabetes development regardless of gender, age group, and race/ethnicity? Meta-analysis. Prev. Med. 2017, 97, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Battie, C.A.; Borja-Hart, N.; Ancheta, I.B.; Flores, R.; Rao, G.; Palaniappan, L. Comparison of body mass index, waist circumference, and waist to height ratio in the prediction of hypertension and diabetes mellitus: Filipino-american women cardiovascular study. Prev. Med. Rep. 2016, 4, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Tatsumi, Y.; Watanabe, M.; Nakai, M.; Kokubo, Y.; Higashiyama, A.; Nishimura, K.; Kobayashi, T.; Takegami, M.; Nakao, Y.M.; Watanabe, T.; et al. Changes in waist circumference and the incidence of type 2 diabetes in community-dwelling men and women: The suita study. J. Epidemiol. 2015, 25, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Kashiwagi, R.; Iwahashi, H.; Yamada, Y.; Sakaue, T.; Okita, T.; Kawachi, Y.; Iwamoto, R.; Saisho, K.; Tamba, S.; Yamamoto, K.; et al. Effective waist circumference reduction rate necessary to avoid the development of type 2 diabetes in Japanese men with abdominal obesity. Endocr. J. 2017. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Zimmet, P.; Shaw, J. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Diagnosis and classification of diabetes mellitus. Diabetes Care 2010, 33 (Suppl. S1), S62–S69.
- Zhao, Y.; Zhang, M.; Luo, X.; Wang, C.; Li, L.; Zhang, L.; Wang, B.; Ren, Y.; Zhou, J.; Han, C.; et al. Association of 6-year waist circumference gain and incident hypertension. Heart 2017, 103, 1347–1352. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.R.; Deddens, J.A. A comparison of two methods for estimating prevalence ratios. BMC Med. Res. Methodol. 2008, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, J.; Liu, M.M.; Wang, D.; Liu, Y.Q.; Zhao, Y.; Huang, M.M.; Liu, Y.; Sun, J.; Dong, G.H. Epidemiology of general obesity, abdominal obesity and related risk factors in urban adults from 33 communities of northeast china: The chpsne study. BMC Public Health 2012, 12, 967. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, L.A.; Marucci Mde, F.; Lebrao, M.L.; Duarte, Y.A. Association between waist circumference (WC) values and hypertension, heart disease (HD) and diabetes, reported by the elderly—Sabe survey: Health, wellness and aging, 2000 and 2006. Arch. Gerontol. Geriatr. 2014, 59, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Steven, S.; Hollingsworth, K.G.; Al-Mrabeh, A.; Avery, L.; Aribisala, B.; Caslake, M.; Taylor, R. Very low-calorie diet and 6 months of weight stability in type 2 diabetes: Pathophysiological changes in responders and nonresponders. Diabetes Care 2016, 39, 808–815. [Google Scholar] [CrossRef] [PubMed]
Gender | Baseline Characteristic | Percent WC Gain (%) | p-Value | |||
---|---|---|---|---|---|---|
≤−2.5 | −2.5 to 2.5 | 2.5 to 5 | >5 | |||
Men | n | 697 | 1103 | 595 | 1511 | |
Age (years) | 45 (34–55) | 43 (33–52) * | 40 (30–52) * | 34 (27–46) * | <0.0001 | |
WC (cm) | 90 (83–97) | 88 (83–92) * | 85 (80–90) * | 80 (75–87) * | <0.0001 | |
SBP (mmHg) | 120 (110–130) | 120 (110–130) * | 120 (110–128) * | 120 (110–124) * | <0.0001 | |
DBP (mmHg) | 80 (72–84) | 80 (70–84) * | 80 (70–82) * | 80 (70–80) * | <0.0001 | |
FPG (mmol/L) | 5.22 (5.00–5.42) | 5.22 (4.99–5.41) | 5.21 (4.98–5.40) | 5.20 (4.99–5.39) | 0.1563 | |
TC (mmol/L) | 4.98 (4.41–5.53) | 4.90 (4.36–5.49) * | 4.80 (4.25–5.38) | 4.64 (4.11–5.24) * | <0.0001 | |
TG (mmol/L) | 1.41 (0.96–2.07) | 1.35 (0.91–2.06) * | 1.23 (0.86–1.88) | 1.08 (0.76–1.66) * | <0.0001 | |
HDLC (mmol/L) | 1.19 (1.03–1.37) | 1.18 (1.01–1.36) * | 1.18 (1.04–1.36) | 1.22 (1.06–1.40) * | 0.0005 | |
College or higher education (n, %) | 681 (97.70) | 1076 (97.55) | 577 (96.97) | 1480 (97.95) | 0.6108 | |
Physical activity (n, %) | 0.0198 | |||||
less than once every week | 99 (63.06) | 137 (51.70) | 77 (49.68) | 176 (45.6) | ||
more than once every week | 580 (83.21) | 922 (83.59) | 491 (82.52) | 1246 (82.46) | ||
more than once every day | 18 (11.46) | 44 (16.6) | 27 (17.42) | 89 (23.06) | ||
Smoking status (n, %) | 42 (6.03) | 84 (7.62) | 55 (9.24) | 121 (8.01) | 0.1768 | |
Drinking status (n, %) | 96 (13.77) | 179 (16.23) | 109 (18.32) | 224 (14.82) | 0.1052 | |
Family history of type 2 diabetes (n, %) | 32 (4.59) | 58 (5.26) | 34 (5.71) | 75 (4.96) | 0.8127 | |
Women | n | 585 | 792 | 608 | 2060 | |
Age (years) | 40 (31–51) | 41 (32–50) * | 38 (31–46) | 33 (28–43) * | <0.0001 | |
WC (cm) | 76 (71–80) | 73 (68–80) * | 70 (66–76) | 67 (63–73) * | <0.0001 | |
SBP (mmHg) | 110 (100–120) | 110 (100–120) * | 106 (100–113) | 106 (100–110) * | <0.0001 | |
DBP (mmHg) | 70 (70–80) | 70 (70–80) * | 70 (66–76) | 70 (66–74) * | <0.0001 | |
FPG (mmol/L) | 5.06 (4.85–5.28) | 5.12 (4.90–5.32) * | 5.11 (4.90–5.32) | 5.06 (4.85–5.28) * | 0.0003 | |
TC (mmol/L) | 4.79 (4.18–5.50) | 4.79 (4.24–5.46) * | 4.63 (4.12–5.23) | 4.51 (4.00–5.16) * | <0.0001 | |
TG (mmol/L) | 0.94 (0.64–1.38) | 0.89 (0.60–1.30) * | 0.84 (0.60–1.22) | 0.76 (0.56–1.10) * | <0.0001 | |
HDLC (mmol/L) | 1.45 (1.27–1.69) | 1.45 (1.25–1.68) | 1.45 (1.26–1.65) | 1.47 (1.29–1.69) | 0.1456 | |
College or higher education (n, %) | 577 (98.63) | 775 (97.85) | 596 (98.03) | 2013 (97.72) | 0.5886 | |
Physical activity (n, %) | 0.4131 | |||||
less than once every week | 107 (74.83) | 145 (77.13) | 131 (71.20) | 438 (71.34) | ||
more than once every week | 468 (80.00) | 637 (80.43) | 462 (75.99) | 1577 (76.55) | ||
more than once every day | 10 (6.99) | 10 (5.32) | 15 (8.15) | 45 (7.33) | ||
Smoking status (n, %) | 4 (0.68) | 6 (0.76) | 1 (0.16) | 9 (0.44) | 0.3878 | |
Drinking status (n, %) | 26 (4.44) | 29 (3.66) | 31 (5.10) | 81 (3.93) | 0.5260 | |
Family history of type 2 diabetes (n, %) | 39 (6.67) | 40 (5.05) | 42 (6.91) | 127 (6.17) | 0.4681 | |
Total | n | 1282 | 1895 | 1203 | 3571 | |
Age (years) | 43 (32–53) | 42 (33–51) * | 39 (30–49) | 34 (28–44) * | <0.0001 | |
WC (cm) | 83 (76–92) | 83 (74–89) * | 78 (69–85) | 73 (66–80) * | <0.0001 | |
SBP (mmHg) | 116 (108–126) | 118 (110–126) * | 110 (100–120) | 110 (100–120) * | <0.0001 | |
DBP (mmHg) | 76 (70–80) | 76 (70–80) * | 72 (70–80) | 70 (70–80) * | <0.0001 | |
FPG (mmol/L) | 5.15 (4.93–5.37) | 5.18 (4.95–5.38) * | 5.16 (4.93–5.36) | 5.12 (4.9–5.33) * | <0.0001 | |
TC (mmol/L) | 4.91 (4.31–5.51) | 4.85 (4.3–5.48) * | 4.7 (4.2–5.32) | 4.57 (4.04–5.21) * | <0.0001 | |
TG (mmol/L) | 1.16 (0.76–1.78) | 1.16 (0.77–1.76) * | 1.01 (0.68–1.56) | 0.88 (0.62–1.33) * | <0.0001 | |
HDLC (mmol/L) | 1.3 (1.10–1.53) | 1.28 (1.09–1.5) | 1.31 (1.13–1.54) | 1.36 (1.17–1.59) | <0.0001 | |
College or higher education (n, %) | 1258 (98.13) | 1851 (97.68) | 1173 (97.51) | 3493 (97.82) | 0.7425 | |
Physical activity (n, %) | 0.5005 | |||||
less than once every week | 206 (16.07) | 282 (14.88) | 208 (17.29) | 614 (17.19) | ||
more than once every week | 1048 (81.75) | 1559 (82.27) | 953 (79.22) | 2823 (79.05) | ||
more than once every day | 28 (2.18) | 54 (2.85) | 42 (3.49) | 134 (3.75) | ||
Smoking status (n, %) | 46 (3.59) | 90 (4.75) | 56 (4.66) | 130 (3.64) | 0.1237 | |
Drinking status (n, %) | 122 (9.52) | 208 (10.98) | 140 (11.64) | 305 (8.54) | 0.0027 | |
Family history of type 2 diabetes (n, %) | 71 (5.54) | 98 (5.17) | 76 (6.32) | 202 (5.66) | 0.6048 |
Gender | Percent WC Gain (%) | Total | Prediabetes (n, %) | RR (95% CI) | ||
---|---|---|---|---|---|---|
Model 1 * | Model 2 † | Model 3 ‡ | ||||
Men | Non-abdominal obesity at baseline | |||||
≤−2.5 | 347 | 39 (11.24) | 1.00 | 1.00 | 1.00 | |
−2.5 to 2.5 | 665 | 81 (12.18) | 1.16 (0.81–1.67) | 1.17 (0.81–1.67) | 1.14 (0.77–1.70) | |
2.5 to 5 | 442 | 62 (14.03) | 1.35 (0.93–1.98) | 1.35 (0.93–1.97) | 1.29 (0.85–1.94) | |
>5 | 1250 | 178 (14.24) | 1.52 (1.08–2.13) | 1.54 (1.10–2.16) | 1.57 (1.10–2.24) | |
p for trend | 0.0041 | 0.0025 | 0.0020 | |||
Abdominal obesity at baseline | ||||||
≤−2.5 | 350 | 64 (18.29) | 1.00 | 1.00 | 1.00 | |
−2.5 to 2.5 | 438 | 89 (20.32) | 1.11 (0.83–1.48) | 1.11 (0.83–1.48) | 1.14 (0.82–1.57) | |
2.5 to 5 | 153 | 36 (23.53) | 1.30 (0.90–1.86) | 1.30 (0.90–1.86) | 1.34 (0.89–2.02) | |
>5 | 261 | 72 (27.59) | 1.54 (1.15–2.07) | 1.54 (1.15–2.07) | 1.66 (1.20–2.30) | |
p for trend | 0.0032 | 0.0028 | 0.0016 | |||
Women | Non-abdominal obesity at baseline | |||||
≤−2.5 | 404 | 26 (6.44) | 1.00 | 1.00 | 1.00 | |
−2.5 to 2.5 | 578 | 38 (6.57) | 1.06 (0.66–1.70) | 1.05 (0.65–1.70) | 1.03 (0.62–1.71) | |
2.5 to 5 | 522 | 35 (6.70) | 1.15 (0.71–1.88) | 1.15 (0.71–1.86) | 0.98 (0.58–1.64) | |
>5 | 1919 | 180 (9.38) | 1.79 (1.20–2.65) | 1.78 (1.20–2.65) | 1.74 (1.14–2.64) | |
p for trend | <0.0001 | <0.0001 | <0.0001 | |||
Abdominal obesity at baseline | ||||||
≤−2.5 | 181 | 20 (11.05) | 1.00 | 1.00 | 1.00 | |
−2.5 to 2.5 | 214 | 57 (26.64) | 2.39 (1.50–3.83) | 2.46 (1.54–3.95) | 2.26 (1.34–3.83) | |
2.5 to 5 | 86 | 15 (17.44) | 1.58 (0.85–2.93) | 1.64 (0.88–3.04) | 1.40 (0.70–2.81) | |
>5 | 141 | 42 (29.79) | 2.71 (1.67–4.39) | 2.78 (1.72–4.49) | 2.47 (1.43–4.28) | |
p for trend | 0.0002 | 0.0151 | 0.0051 |
Gender | Abdominal Obesity at Baseline | Abdominal Obesity at Follow-Up | Total | Prediabetes (n, %) | RR (95% CI) | ||
---|---|---|---|---|---|---|---|
Model 1 * | Model 2 † | Model 3 ‡ | |||||
Men | No | No | 2122 | 257 (12.11) | 1.00 | 1.00 | 1.00 |
Yes | No | 186 | 34 (18.28) | 1.40 (1.01–1.94) | 1.38 (1.00–1.90) | 1.03 (0.69–1.53) | |
No | Yes | 582 | 103 (17.70) | 1.46 (1.19–1.80) | 1.46 (1.19–1.80) | 1.36 (1.09–1.69) | |
Yes | Yes | 1016 | 227 (22.34) | 1.73 (1.47–2.04) | 1.72 (1.46–2.03) | 1.35 (1.11–1.63) | |
Women | No | No | 2857 | 197 (6.90) | 1.00 | 1.00 | 1.00 |
Yes | No | 125 | 15 (12.00) | 1.35 (0.82–2.22) | 1.34 (0.81–2.20) | 1.07 (0.60–1.89) | |
No | Yes | 566 | 82 (14.49) | 1.90 (1.49–2.43) | 1.89 (1.48–2.42) | 1.60 (1.23–2.08) | |
Yes | Yes | 497 | 119 (23.94) | 2.51 (1.96–3.21) | 2.50 (1.95–3.19) | 1.85 (1.42–2.41) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, L.-X.; Yang, K.; Huang, F.-F.; Liu, X.-T.; Li, X.; Luo, Y.-X.; Wu, L.-J.; Guo, X.-H. Association of Waist Circumference Gain and Incident Prediabetes Defined by Fasting Glucose: A Seven-Year Longitudinal Study in Beijing, China. Int. J. Environ. Res. Public Health 2017, 14, 1208. https://doi.org/10.3390/ijerph14101208
Tao L-X, Yang K, Huang F-F, Liu X-T, Li X, Luo Y-X, Wu L-J, Guo X-H. Association of Waist Circumference Gain and Incident Prediabetes Defined by Fasting Glucose: A Seven-Year Longitudinal Study in Beijing, China. International Journal of Environmental Research and Public Health. 2017; 14(10):1208. https://doi.org/10.3390/ijerph14101208
Chicago/Turabian StyleTao, Li-Xin, Kun Yang, Fang-Fang Huang, Xiang-Tong Liu, Xia Li, Yan-Xia Luo, Li-Juan Wu, and Xiu-Hua Guo. 2017. "Association of Waist Circumference Gain and Incident Prediabetes Defined by Fasting Glucose: A Seven-Year Longitudinal Study in Beijing, China" International Journal of Environmental Research and Public Health 14, no. 10: 1208. https://doi.org/10.3390/ijerph14101208
APA StyleTao, L. -X., Yang, K., Huang, F. -F., Liu, X. -T., Li, X., Luo, Y. -X., Wu, L. -J., & Guo, X. -H. (2017). Association of Waist Circumference Gain and Incident Prediabetes Defined by Fasting Glucose: A Seven-Year Longitudinal Study in Beijing, China. International Journal of Environmental Research and Public Health, 14(10), 1208. https://doi.org/10.3390/ijerph14101208