Climatic Variables and Malaria Morbidity in Mutale Local Municipality, South Africa: A 19-Year Data Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Population
2.2. Datasets
2.3. Ethical Statement
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization. Country Report; Progress and Impact Series, 2013; Focus on South Africa; National Department of Health: Pretoria, South Africa, 2014.
- World Health Organization. The Africa Malaria Report, 2013; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Statistics South Africa. Mid-Year Estimates, South African Statistics, 1 Vol. Pretoria; Statistics South Africa: Pretoria, South Africa, 2013.
- Machault, V.; Vignolles, C.; Borchi, F.; Vounatsou, P.; Pages, F.; Briolant, S.; Rogier, C. The use of remotely sensed environmental data in the study of malaria. Geospat. Health 2011, 5, 151–168. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Mangal, A.; Panesar, S.; Yadav, G.; Talwar, R.; Raut, D.; Singh, S. Forecasting malaria cases using climatic factors in Delhi, India: A time series analysis. Malar. Res. Treat. 2014, 1, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ferrão, J.L.; Mendes, J.M.; Painho, M. Modelling the influence of climate on malaria occurrence in Chimoio Municipality, Mozambique. Parasit. Vectors 2017, 10, 260. [Google Scholar] [CrossRef] [PubMed]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Dahe, Q.; Dasgupta, P.; Dubash, N.K.; et al. Synthesis Report. Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; pp. 151–165. [Google Scholar]
- Pascual, M.; Ahumadata, J.; Chaves, L.F.; Rodo, X.; Bouma, M. Malaria resurgence in the East African highlands: Temperature trends revisited. Proc. Natl. Acad. Sci. USA 2006, 103, 15. [Google Scholar] [CrossRef] [PubMed]
- Alemu, A.; Gemeda, A.; Wondewossen, T.; Lemu, G. Climatic variables and malaria transmission dynamics in Jimma town, South West Ethiopia. Parasit. Vectors 2011, 4, 30. [Google Scholar] [CrossRef] [PubMed]
- Sena, L.; Deressa, W.; Ali, A. Correlation of Climate Variability and Malaria: A Retrospective Comparative Study, Southwest Ethiopia. Ethiop. J. Health Sci. 2015, 25, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Teklehaimanot, H.D.; Lipsitch, M.; Teklehaimanot, A.; Schwartz, J. Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia I. Patterns of lagged weather effects reflect biological mechanisms. Malar. J. 2004, 3, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, D.J.; Bhatt, S.; Mappin, B.; Van Boeckel, T.P.; Smith, D.L.; Hay, S.I.; Gething, P.W. Air temperature suitability for Plasmodium falciparum malaria transmission in Africa 2000–2012: A high-resolution spatiotemporal Prediction. Malar. J. 2014, 13, 171. [Google Scholar] [CrossRef] [PubMed]
- Bomblies, A. Modeling the role of rainfall patterns in seasonal malaria transmission. Clim. Chang. 2012, 112, 673–685. [Google Scholar] [CrossRef]
- Kleinschmidt, I.; Sharp, B.L.; Clarke, G.P.; Curtis, B.; Fraser, C. Use of generalized linear mixed models in the spatial analysis of small-area malaria incidence rates in Kwazulu Natal, South Africa. Am. J. Epidemiol. 2001, 153, 1213–1221. [Google Scholar] [CrossRef] [PubMed]
- Ngomane, L.; Jager, C. Changes in malaria morbidity and mortality in Mpumalanga Province, South Africa (2001–2009): A retrospective study. Malar. J. 2012, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Silal, S.P.; Barnes, K.I.; Kok, G.; Mabuza, A. Little F: Exploring the seasonality of reported treated malaria cases in Mpumalanga, South Africa. PLoS ONE 2013, 8, e76640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeola, A.M.; Botai, O.J.; Olwoch, J.M.; deW Rautenbach, C.J.; Adisa, O.M.; Taiwo, O.J.; Kalumba, A.M. Environmental factors and population at risk of malaria in Nkomazi municipality, South Africa. Trop. Med. Int. Health 2016, 21, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Adeola, A.M.; Olwoch, J.M.; Botai, O.J.; deW Rautenbach, C.J.; Kalumba, A.M.; Tsela, P.L.; Adisa, O.M.; Nsubuga, F.W.N. Landsat satellite derived environmental metric for mapping mosquitoes breeding habitats in the Nkomazi municipality, Mpumalanga Province, South Africa. S. Afr. Geogr. J. 2015, 99, 14–28. [Google Scholar] [CrossRef]
- Komen, K.; Olwoch, J.; Rautenbach, H.; Botai, J.; Adebayo, A. Long-Run Relative Importance of Temperature as the Main Driver to Malaria Transmission in Limpopo Province, South Africa: A Simple Econometric Approach. EcoHealth 2015, 12, 131. [Google Scholar] [CrossRef] [PubMed]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of Köppen Geiger Climate Classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- R Core Team, R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: https://www.R-project.org/ (accessed on 26 October 2017).
- Box, G.; Jenkins, G. Time Series Analysis: Forecasting and Control, 4th ed.; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice. Available online: https://www.otexts.org/book/fpp (accessed on 20 July 2017).
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Ljung, G.M.; Box, G.E.P. On a measure of lack of fit in time series models. Biometrika 1978, 65, 297–303. [Google Scholar] [CrossRef]
- Peter, Ď.; Silvia, P. ARIMA vs. ARIMAX which approach is better to analyze and forecast macroeconomic time series? In Proceedings of the 30th International Conference Mathematical Methods in Economics, Karviná, Czech Republic, 11–13 September 2012; pp. 136–140. [Google Scholar]
- Bellprat, O.; Lott, F.C.; Gulizia, C.; Parker, H.R.; Pampuch, L.A.; Pinto, I.; Ciavarella, A.; Stott, P.A. Unusual past dry and wet rainy seasons over Southern Africa and South America from a climate perspective. Weather Clim. Extrem. 2015, 9, 36–46. [Google Scholar] [CrossRef]
- Lindsay, S.W.; Bodker, R.; Malima, R.; Msangeni, H.A.; Kisinza, W. Effect of 1997–98 El Nino on highland malaria in Tanzania. Lancet 2000, 355, 989–990. [Google Scholar] [CrossRef]
- Grieco, J.P.; Rejmánková, E.; Achee, N.L.; Klein, C.N.; Andre, R.; Roberts, D. Habitat suitability for three species of Anopheles mosquitoes: Larval growth and survival in reciprocal placement experiments. J. Vector Ecol. 2007, 32, 176–187. [Google Scholar] [CrossRef]
- Vittor, A.Y.; Pan, W.; Gilman, R.H.; Tielsch, J.; Glass, G.; Shields, T.; Sánchez-Lozano, W.; Pinedo, V.V.; Salas-Cobos, E.; Flores, S.; et al. Linking deforestation to malaria in the Amazon: Characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi. Am. J. Trop. Med. Hyg. 2009, 81, 5–12. [Google Scholar] [PubMed]
- Hunter, P.R. Climate change and waterborne and vector-borne disease. J. Appl. Microbiol. 2003, 94, 37S–46S. [Google Scholar] [CrossRef] [PubMed]
- Krefis, A.C.; Schwarz, G.N.; Krüger, A.; Fobil, J.; Nkrumah, B.; Acquah, S.; Loag, W.; Sarpong, N.; Adu-Sarkodie, Y.; Ranft, U.; et al. Modeling the relationship between precipitation and malaria incidence in children from a holoendemic area in Ghana. Am. J. Trop. Med. Hyg. 2011, 84, 2. [Google Scholar] [CrossRef] [PubMed]
- Ferrão, J.L.; Mendes, J.M.; Painho, M.; Joao, S.Z. Spatio-temporal variation and socio-demographic characters of malaria in Chimoio municipality, Mozambique. Malar. J. 2016, 15, 329. [Google Scholar] [CrossRef] [PubMed]
- Mabaso, M.L.H.; Vounatsou, P.; Midzi, S.; Da Silva, J.; Smith, T. Spatio-temporal analysis of the role of climate in inter-annual variation of malaria incidence in Zimbabwe. Int. J. Health Geogr. 2006, 5, 20. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Filpipe, A.; Otero, A.; van Herp, M.; Aguire, A. Forecasting malaria incidence based on monthly case reports and environmental factors in Karuzi, Burundi. Malar. J. 2007, 6, 1. [Google Scholar]
- Malaria Early Warning System: Concepts, Indicators and Partners. In A framework for Field Research in Africa; World Health Organization: Geneva, Switzerland, 2001.
Climatic Variables | Lag Time | R | p-Value |
---|---|---|---|
Rainfall | 0 month | −0.29 | <0.001 |
1 month | −0.27 | <0.001 | |
2 months | 0.53 | <0.001 | |
3 months | 0.49 | <0.001 | |
Tmax | 0 month | 0.24 | 0.109 |
1 month | 0.42 | <0.001 | |
2 months | 0.41 | <0.001 | |
3 months | −0.34 | >0.012 | |
Tmin | 0 month | 0.25 | 0.058 |
1 month | 0.41 | <0.001 | |
2 months | 0.57 | <0.001 | |
3 months | 0.54 | <0.001 | |
Tavg | 0 month | 0.52 | <0.001 |
1 month | 0.45 | <0.001 | |
2 months | 0.42 | <0.004 | |
3 months | 0.09 | >0.191 | |
RH | 0 month | 0.28 | <0.001 |
1 month | 0.37 | <0.001 | |
2 months | 0.39 | <0.001 | |
3 months | 0.10 | >0.011 |
Model Type | AIC Values |
---|---|
(2,1,2) (1,1,1)12 | 516.65 |
(1,1,0) (2,1,1)12 | 560.24 |
(1,1,1) (0,1,1)12 | 605.36 |
(2,1,0) (2,1,0)12 | 546.17 |
(2,1,1) (2,1,0)12 | 517.83 |
(2,1,0) (2,1,0)12 | 547.63 |
Year | Malaria Cases | Months | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan. | Feb. | Mar. | Apr. | May. | Jun. | Jul. | Aug. | Sept. | Oct. | Nov. | Dec. | Total | ||
2015 | Observed | 91 | 181 | 215 | 117 | 14 | 3 | 1 | 3 | 18 | 30 | 5 | 17 | 695 |
Predicted | 79 | 189 | 224 | 126 | 21 | 2 | 1 | 2 | 29 | 21 | 3 | 11 | 708 | |
2016 | Observed | 24 | 37 | 16 | 15 | 10 | 1 | 2 | 4 | 9 | 12 | 4 | 31 | 165 |
Predicted | 16 | 48 | 17 | 14 | 6 | 1 | 2 | 3 | 4 | 5 | 3 | 29 | 148 | |
2017 | Observed | 98 | 105 | 182 | 247 | 6 | - | - | - | - | - | - | - | 638 |
Predicted | 95 | 102 | 144 | 198 | 29 | 31 | 20 | 22 | 18 | 7 | 6 | 31 | 703 |
Model Type | Predicting without Climatic Variables | Predicting with Climatic Variables | ||||
---|---|---|---|---|---|---|
SARIMA (2,1,2) (1,1,1)12 | MAPE | RMSE | Adjusted R2 | MAPE | RMSE | Adjusted R2 |
26.674 | 18.562 | 0.512 | 22.430 | 15.684 | 0.715 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeola, A.M.; Botai, J.O.; Rautenbach, H.; Adisa, O.M.; Ncongwane, K.P.; Botai, C.M.; Adebayo-Ojo, T.C. Climatic Variables and Malaria Morbidity in Mutale Local Municipality, South Africa: A 19-Year Data Analysis. Int. J. Environ. Res. Public Health 2017, 14, 1360. https://doi.org/10.3390/ijerph14111360
Adeola AM, Botai JO, Rautenbach H, Adisa OM, Ncongwane KP, Botai CM, Adebayo-Ojo TC. Climatic Variables and Malaria Morbidity in Mutale Local Municipality, South Africa: A 19-Year Data Analysis. International Journal of Environmental Research and Public Health. 2017; 14(11):1360. https://doi.org/10.3390/ijerph14111360
Chicago/Turabian StyleAdeola, Abiodun M., Joel O. Botai, Hannes Rautenbach, Omolola M. Adisa, Katlego P. Ncongwane, Christina M. Botai, and Temitope C. Adebayo-Ojo. 2017. "Climatic Variables and Malaria Morbidity in Mutale Local Municipality, South Africa: A 19-Year Data Analysis" International Journal of Environmental Research and Public Health 14, no. 11: 1360. https://doi.org/10.3390/ijerph14111360
APA StyleAdeola, A. M., Botai, J. O., Rautenbach, H., Adisa, O. M., Ncongwane, K. P., Botai, C. M., & Adebayo-Ojo, T. C. (2017). Climatic Variables and Malaria Morbidity in Mutale Local Municipality, South Africa: A 19-Year Data Analysis. International Journal of Environmental Research and Public Health, 14(11), 1360. https://doi.org/10.3390/ijerph14111360