Integrated Management of Residential Indoor Air Quality: A Call for Stakeholders in a Changing Climate
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Concept 1: Reducing Contaminants at the Source
3.1.1. Reducing Contaminants through Coercive Measures
3.1.2. Reducing Contaminants through Incentive Measures
3.1.3. Reducing Contaminants through Voluntary Measures
3.2. Concept 2: Improving Ventilation in Buildings
3.2.1. Improving Ventilation through Recent Coercive Measures: Centralized Mechanical Ventilation in New Dwellings
3.2.2. Improving Ventilation through Voluntary Measures: Natural Ventilation
3.2.3. Improving Ventilation through Voluntary Measures: Optimizing Mechanical Ventilation
3.3. Concept 3: Complementary Measures to Maintain Indoor Air Quality and Comfort
3.3.1. Maintaining Indoor Air Quality through Air Cleaning Devices
3.3.2. Maintaining Indoor Air Quality and Comfort through Air Conditioning
4. The Nexus: Managing IAQ through an Integrated Approach in a Changing Climate
5. Recommendations for Stakeholders
- State/Provincial/regional authorities: Since IAQ can be indirectly affected by outdoor air quality, urban development plans should consider the health impacts of the environmental measures implemented. For example, the reduction of atmospheric pollution and urban heat islands can be achieved by providing means of active transportation, establishing a mandatory canopy index, or efficiently managing stormwater. In addition to the mandatory installation of centralized mechanical ventilation systems in new buildings, the relevant authorities should consider requiring inspection and maintenance plans for these systems, and for the building envelope when granting construction permits in their territory. The adoption of regulations or even a renovation code incorporating the most pertinent measures should also be considered.
- State/Provincial/regional authorities: Governmental authorities should also promote the selection of adaptation measures offering multiple co-benefits in their decisions and policies in order to maximize their impact. For example, improving insulation and airtightness can reduce the building’s energy demand and prevent infiltration of contaminants from outside or from the soil (e.g., fine particles, nitrogen dioxide, carbon monoxide, ozone, moisture, and radon). Measures contributing to the reduction of GHG emissions (e.g., construction and renovation of more sustainable buildings that consume less energy) are also preferred, since these gases are one of the main causes of CC.
- Managers of public housing and buildings: The design, construction, and renovation of buildings hosting vulnerable and sensitive individuals, such as hospitals, daycares, senior residences, and subsidized housing, should be carried out using an integrated approach, i.e., by considering all of the measures that can promote IAQ and comfort and that take adaptation to CC into account.
- Public health authorities: An integrated management approach should be adopted in health establishments and in building renovation and construction processes (e.g., for hospitals) to account for CC and IAQ concerns. Public health authorities should also advocate to stakeholders for the inclusion of these issues in all types of buildings, in a health protection perspective.
- Public health authorities: Public health authorities should also inform and educate the general population about the appropriate behaviors to adopt for improving and maintaining IAQ in their homes in the context of CC [30,36]. Efficient and energy-saving measures should also be promoted to protect the most vulnerable populations, as well as to support social equity and accessibility.
- Construction and renovation industry: Buildings should be designed or renovated to take into account their impacts on health and comfort, and should address the impacts of CC. Passive measures, such as solar-shading devices, should be favored to maintain a comfortable indoor environment and reduce the need for energy that is associated with air conditioning and heat adaptation measures [4].
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Institute of Medicine; Board on Population Health and Public Health Practice; Committee on the Effect of Climate Change on Indoor Air Quality and Public Health. Climate Change, the Indoor Environment, and Health; National Academies Press: Washington, DC, USA, 2011; ISBN 978-0-309-20941-0. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Ouranos. Ouranos towards Adaptation: Synthesis on Climate Change Knowledge in Québec; Ouranos: Montréal, QC, Canada, 2015. [Google Scholar]
- Vardoulakis, S.; Dimitroulopoulou, C.; Thornes, J.; Lai, K.-M.; Taylor, J.; Myers, I.; Heaviside, C.; Mavrogianni, A.; Shrubsole, C.; Chalabi, Z.; et al. Impact of climate change on the domestic indoor environment and associated health risks in the UK. Environ. Int. 2015, 85, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Kinney, P.L. Climate Change, Air Quality, and Human Health. Am. J. Prev. Med. 2008, 35, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Nazaroff, W.W. Climate change, building energy use, and indoor environmental quality. Indoor Air 2008, 18, 259–260. [Google Scholar] [CrossRef] [PubMed]
- Nazaroff, W.W. Exploring the consequences of climate change for indoor air quality. Environ. Res. Lett. 2013, 8. [Google Scholar] [CrossRef]
- Spengler, J.D. Climate change, indoor environments, and health: Editorial. Indoor Air 2012, 22, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Poulin, P.; Levasseur, M.-E.; Huppé, V.; Leclerc, J.-M. Mesures D’adaptation Pour une Saine Qualité de L’air Intérieur Dans un Contexte de Changements Climatiques: Revue de la Littérature; INSPQ: Québec, QC, Canada, 2016. (In French) [Google Scholar]
- Anses. Qualité de l’air intérieur, établissement de valeurs réglementaires et surveillance. Available online: https://www.anses.fr/fr/content/qualit%C3%A9-de-l%E2%80%99air-int%C3%A9rieur-%C3%A9tablissement-de-valeurs-r%C3%A9glementaires-et-surveillance (accessed on 25 October 2017).
- Bai, Z.; Jia, C.; Zhu, T.; Zhang, J. Indoor air quality related standards in China. In Proceedings of the Indoor Air 2002—9th International Conference on Indoor Air Quality and Climate, Monterey, CA, USA, 30 June–5 July 2002; pp. 1012–1017. [Google Scholar]
- Kolarik, B.; Gunnarsen, L.; Logadottir, A.; Funch, L.W. Concentrations of formaldehyde in new Danish residential buildings in relation to WHO recommendations and CEN requirements. Indoor Built Environ. 2011, 21, 552–561. [Google Scholar] [CrossRef]
- Lim, S.; Lee, K.; Seo, S.; Jang, S. Impact of regulation on indoor volatile organic compounds in new unoccupied apartment in Korea. Atmos. Environ. 2011, 45, 1994–2000. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.-A.; An, J.-Y.; Kim, H.-J.; Kim, S.D.; Park, J.C. TVOC and formaldehyde emission behaviors from flooring materials bonded with environmental-friendly MF/PVAc hybrid resins. Indoor Air 2007, 17, 404–415. [Google Scholar] [CrossRef] [PubMed]
- Kagawa, J. Indoor Air Quality Standards and Regulations in Japan. Indoor Built Environ. 1993, 2, 223–231. [Google Scholar] [CrossRef]
- Charles, K.; Magee, R.J.; Won, D.; Lusztyk, E. Indoor Air Quality Guidelines and Standards; National Research Council Canada: Ottawa, ON, Canada, 2005; 44p. [Google Scholar]
- Health Canada. Residential Indoor Air Quality Guideline: Formaldehyde. Available online: https://www.canada.ca/en/health-canada/services/publications/healthy-living/residential-indoor-air-quality-guideline-formaldehyde.html (accessed on 25 October 2017).
- Santamouris, M.; Sfakianaki, A.; Pavlou, K. On the efficiency of night ventilation techniques applied to residential buildings. Energy Build. 2010, 42, 1309–1313. [Google Scholar] [CrossRef]
- Giguère, M. Mesures de Lutte Aux Îlots de Chaleur Urbains: Revue de Littérature; Institut National de Santé Publique du Québec: Montréal, QC, Canada, 2009; ISBN 9782550568056. (In French) [Google Scholar]
- Pinkerton, K.E.; Rom, W.N.; Carlsten, C.; Jaakkola, J.J.K.; Bayram, H.; Sigsgaard, T.; Elci, M.A.; Costa, D.L. Climate Change and Global Public Health. Embase Turk Toraks Dergisi 2013, 14, 115–122. [Google Scholar] [CrossRef]
- Xu, L.; Ojima, T. Field experiments on natural energy utilization in a residential house with a double skin façade system. Build. Environ. 2007, 42, 2014–2023. [Google Scholar] [CrossRef]
- Yau, Y.H.; Hasbi, S. A review of climate change impacts on commercial buildings and their technical services in the tropics. Renew. Sustain. Energy Rev. 2013, 18, 430–441. [Google Scholar] [CrossRef]
- De Wilde, P.; Coley, D. The implications of a changing climate for buildings. Build. Environ. 2012, 55, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Caldas, E.; Trudeau, W.L.; Ledford, D.K. Environmental control of indoor biologic agents. J. Allergy Clin. Immunol. 1994, 94, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Canada Green Building Council LEED®. Available online: http://www.cagbc.org/CAGBC/LEED/About_LEED/CAGBC/Programs/LEED/_LEED.aspx?hkey=01b3d086-d0a4-42cf-9e61-7830d801c019 (accessed on 15 February 2017).
- International Living Future Institute Living Building Challenge. Available online: https://living-future.org/lbc/ (accessed on 15 February 2017).
- Yu, C.W.F.; Kim, J.T. Material emissions and indoor simulation. Indoor Built Environ. 2013, 22, 21–29. [Google Scholar] [CrossRef]
- Azuma, K.; Funaki, R.; Hasegawa, A.; Shinohara, N.; Yamaguchi, M.; Fujita, K.-O.; Kikuchi, Y.; Tanabe, S.-I. Integrating Requirements for the Delivery of Information Relating to Construction-Product Compositions. Indoor Built Environ. 2012, 23, 653–664. [Google Scholar] [CrossRef]
- Loftness, V.; Hakkinen, B.; Adan, O.; Nevalainen, A. Elements that Contribute to Healthy Building Design. Environ. Health Perspect. 2007, 115, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Bluyssen, P.M.; de Richemont, S.; Crump, D.; Maupetit, F.; Witterseh, T.; Gajdos, P. Actions to reduce the impact of construction products on indoor air: Outcomes of the European project on HealthyAir. Indoor Built Environ. 2010, 19, 327–339. [Google Scholar] [CrossRef] [Green Version]
- Canada Mortgage and Housing Corporation (CMHC). Efficacité des Déshumidificateurs à Contrôler L’humidité Dans les Maisons; Société Candienne D’hypothèques et de Logement: Ottawa, ON, Canada, 2009; 6p. (In French) [Google Scholar]
- Barnes, C.S.; Alexis, N.E.; Bernstein, J.A.; Cohn, J.R.; Demain, J.G.; Horner, E.; Levetin, E.; Nel, A.; Phipatanakul, W. Climate Change and Our Environment: The Effect on Respiratory and Allergic Disease. J. Allergy Clin. Immunol. Pract. 2013, 1, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Brown, V.M.; Crump, D.R.; Harrison, P.T. Assessing and controlling risks from the emission of organic chemicals from construction products into indoor environments. Environ. Sci. Process. Impacts 2013, 15, 2164–2177. [Google Scholar] [CrossRef] [PubMed]
- Gouvernment of Québec. Règlement Modifiant le Code de Construction Pour Favoriser L’efficacité Énergétique; Gazette Officielle du Québec: Ville de Québec, QC, Canada, 2012; Volume 33, pp. 4185–4210. (In French)
- Vorwald, R. New Energy Technologies for High-performance Buildings. Energy Eng. 2011, 108, 17–24. [Google Scholar] [CrossRef]
- Yu, C.W.F.; Kim, J.T. Low-Carbon Housings and Indoor Air Quality. Indoor Built Environ. 2012, 21, 5–15. [Google Scholar] [CrossRef]
- Seppänen, O.A.; Fisk, W.J. Summary of human responses to ventilation. Indoor Air 2004, 14 (Suppl. 7), 102–118. [Google Scholar] [CrossRef]
- Brelih, N.; Seppanen, O. Ventilation rates and IAQ in european standards and national regulations. In Proceedings of the 32nd AIVC Conference and 1st TightVent Conference, Brussels, Belgium, 11–13 October 2011. [Google Scholar]
- Lajoie, P.; Leclerc, J.-M.; Schnebelen, M. Ventilation of Residential Buildings: Impacts on the Occupants’ Respiratory Health; Institut National de Santé Publique du Québec: Québec, QC, Canada, 2007. [Google Scholar]
- American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). Ventilation and Acceptable Indoor Air Quality in Residential Buildings; ANSI/ASHRAE Standard 62.2-2016; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2016. [Google Scholar]
- National Research Council (NRC). National Building Code of Canada 2015; National Research Council Canada: Ottawa, ON, Canada, 2015. [Google Scholar]
- Fisk, W.J.; Rosenfeld, A.H. Estimates of Improved Productivity and Health from Better Indoor Environments. Indoor Air 1997, 7, 158–172. [Google Scholar] [CrossRef]
- Haysom, J.C.; Reardon, J.T. Pourquoi les Maisons ont Besoin de Ventilation Mécanique; Institut de Recherche en Construction, Conseil National de Recherches Canada: Ottawa, ON, Canada, 1998. [Google Scholar]
- Lajoie, P.; Leclerc, J.-M.; Schnebelen, M. La Ventilation des Bâtiments D’habitation: Impacts sur la Santé Respiratoire des Occupants: Avis; Institut National de Santé Publique du Québec: Montréal, QC, Canada, 2006; ISBN 978-2-550-47398-5. [Google Scholar]
- Liu, J.; Ma, F.; Li, Y. The Effect of Anthropogenic Heat on Local Heat Island Intensity and the Performance of Air Conditioning Systems. Adv. Mater. Res. 2011, 250–253, 2975–2978. [Google Scholar] [CrossRef]
- Sundell, J.; Levin, H.; Nazaroff, W.W.; Cain, W.S.; Fisk, W.J.; Grimsrud, D.T.; Gyntelberg, F.; Li, Y.; Persily, A.K.; Pickering, A.C.; et al. Ventilation rates and health: Multidisciplinary review of the scientific literature. Indoor Air 2011, 21, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Myatt, T.A.; Minegishi, T.; Allen, J.G.; MacIntosh, D.L. Control of asthma triggers in indoor air with air cleaners: A modeling analysis. Environ. Health 2008, 7, b54. [Google Scholar] [CrossRef] [PubMed]
- Emenius, G.; Egmar, A.; Wickman, M. Mechanical ventilation protects one-storey single-dwelling houses against increased air humidity, domestic mite allergens and indoor pollutants in a cold climatic region. Clin. Exp. Allergy 1998, 28, 1389–1396. [Google Scholar] [CrossRef] [PubMed]
- Sundell, J.; Wickman, M.; Pershagen, G.; Nordvall, S.L. Ventilation in homes infested by house-dust mites. Allergy 1995, 50, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Panzhauser, E.; Mahdavi, A.; Fail, A. Simulation and Evaluation of Natural Ventilation in Residential Buildings. In Modeling of Indoor Air Quality and Exposure; Nagda, N., Ed.; ASTM International: Philadelphie, PA, USA, 1993; pp. 182–196. ISBN 978-0-8031-1875-1. [Google Scholar]
- Bangalee, M.Z.I.; Lin, S.Y.; Miau, J.J. Wind driven natural ventilation through multiple windows of a building: A computational approach. Energy Build. 2012, 45, 317–325. [Google Scholar] [CrossRef]
- Sharpe, T.; Farren, P.; Howieson, S.; Tuohy, P.; McQuillan, J. Occupant Interactions and Effectiveness of Natural Ventilation Strategies in Contemporary New Housing in Scotland, UK. Int. J. Environ. Res. Public Health 2015, 12, 8480–8497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKone, T.E.; Sherman, M.H. Residential Ventilation Standards Scoping Study; Lawrence Berkeley National Laboratory, University of California: Berkeley, CA, USA, 2003; 44p. [Google Scholar]
- Ward, I.C. The Potential Impact of the New (UK) Building Regulations on the Provision of Natural Ventilation in Dwellings—A Case Study of Low Energy Social Housing. Int. J. Vent. 2008, 7, 77–88. [Google Scholar] [CrossRef]
- Scheepers, P.T.J.; Cremers, R.; van Hout, S.P.R.; Anzion, R.B.M. Influence of a portable air treatment unit on health-related quality indicators of indoor air in a classroom. J. Environ. Monit. 2012, 14, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Balvers, J.; Bogers, R.; Jongeneel, R.; van Kamp, I.; Boerstra, A.; van Dijken, F. Mechanical ventilation in recently built Dutch homes: Technical shortcomings, possibilities for improvement, perceived indoor environment and health effects. Archit. Sci. Rev. 2012, 55, 4–14. [Google Scholar] [CrossRef]
- Huppé, V.; Leclerc, J.-M.; Legris, M.; Marchand, G. Outil D’aide à L’interprétation de Rapports D’investigation de la Contamination Fongique; INSPQ: Québec, QC, Canada, 2016; p. 115. (In French) [Google Scholar]
- Ilacqua, V.; Dawson, J.; Breen, M.; Singer, S.; Berg, A. Effects of climate change on residential infiltration and air pollution exposure. J. Expo. Sci. Environ. Epidemiol. 2015, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sherman, M.H.; Matson, N.E. Reducing Indoor Residential Exposures to Outdoor Pollutants; Awrence Berkeley National Laboratory: Berkeley, CA, USA, 2003; 30p. [Google Scholar]
- Laverge, J.; Van Den Bossche, N.; Heijmans, N.; Janssens, A. Energy saving potential and repercussions on indoor air quality of demand controlled residential ventilation strategies. Build. Environ. 2011, 46, 1497–1503. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Lee, S.; Kim, M.; Shi, H.; Kim, J.T.; Yoo, C. Finding the optimal set points of a thermal and ventilation control system under changing outdoor weather conditions. Indoor Built Environ. 2014, 23, 118–132. [Google Scholar] [CrossRef]
- Schell, M.; Inthout, D. Demand control ventilation using CO2. ASHRAE J. 2001, 43, 18. [Google Scholar]
- Woloszyn, M.; Kalamees, T.; Olivier Abadie, M.; Steeman, M.; Sasic Kalagasidis, A. The effect of combining a relative-humidity-sensitive ventilation system with the moisture-buffering capacity of materials on indoor climate and energy efficiency of buildings. Build. Environ. 2009, 44, 515–524. [Google Scholar] [CrossRef]
- Leroux, R. La «Maison Intelligente» Accessible à Tous. Available online: https://www.protegez-vous.ca/Technologie/la-domotique/domotique-apple-et-google-changent-la-donne (accessed on 27 February 2017).
- Wurtz, F. Le Bâtiment Intelligent, clé de la Transition Énergétique. Available online: https://lejournal.cnrs.fr/billets/le-batiment-intelligent-cle-de-la-transition-energetique (accessed on 27 February 2017).
- American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). ASHRAE Position Document on Filtration and Air Cleaning; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2015. [Google Scholar]
- Barn, P. Épurateurs D’air Domestiques et Amélioration de la Qualité de L’air Intérieur et de la Santé : Revue des Données Probantes. Available online: http://www.ccnse.ca/sites/default/files/Epurateurs_air_domestiques_oct_2010.pdf (accessed on 25 October 2017).
- Fisk, W.J. Health benefits of particle filtration. Indoor Air 2013, 23, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.A. Primary and secondary consequences of indoor air cleaners. Indoor Air 2016, 26, 88–96. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (US EPA). Guide to Air Cleaners in the Home; US EPA: Washington, DC, USA, 2008; 12p.
- United States Environmental Protection Agency (US EPA). Residential Air Cleaners; US EPA: Washington, DC, USA, 2009; p. 33.
- Joffe, M.A. Chemical Filtration of Indoor Air: An Application Primer. ASHRAE J. 1996, 38, 2. [Google Scholar]
- Nelson, H.S.; Hirsch, S.R.; Ohman, J.L.; Platts-Mills, T.A.E.; Reed, C.E.; Solomon, W.R. Recommendations for the use of residential air-cleaning devices in the treatment of allergic respiratory diseases—Forty-fifth Annual Meeting. J. Allergy Clin. Immunol. 1988, 82, 661–669. [Google Scholar] [CrossRef]
- Health Canada Ozone. Available online: http://www.hc-sc.gc.ca/ewh-semt/air/in/poll/ozone/index-eng.php (accessed on 20 July 2017).
- Hodgson, A.T.; Destaillats, H.; Sullivan, D.P.; Fisk, W.J. Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications. Indoor Air 2007, 17, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Observatoire de la Qualité de L’air Intérieur (OQAI). L’épuration par Photocatalyse—Opportunité ou Menace Pour la Qualité de L’air Intérieur; Bulletin de l’OQAI; Observatoire de la Qualité de L’air Intérieur: Paris, France, 2012; 12p. (In French) [Google Scholar]
- Yu, Q.L.; Brouwers, H.J.H. Indoor air purification using heterogeneous photocatalytic oxidation. Part I: Experimental study. Appl. Catal. B Environ. 2009, 92, 454–461. [Google Scholar] [CrossRef]
- O’Connor, M.; Kosatsky, T. Systematic Review: How Efficacious and How Practical Are Personal Health Protection Measures Recommended to Reduce Morbidity and Mortality during Heat Episodes; National Collaborating Centre for Environmental Health: Vancouver, BC, Canada, 2008; 79p. [Google Scholar]
- Kovats, R.S.; Hajat, S. Heat stress and public health: A critical review. Annu. Rev. Public Health 2008, 29, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Hanna, E.G.; Tait, P.W. Limitations to Thermoregulation and Acclimatization Challenge Human Adaptation to Global Warming. Int. J. Environ. Res. Public Health 2015, 12, 8034–8074. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.W.; Gertler, P.J. Contribution of air conditioning adoption to future energy use under global warming. Proc. Natl. Acad. Sci. USA 2015, 112, 5962–5967. [Google Scholar] [CrossRef] [PubMed]
- Farbotko, C.; Waitt, G. Residential air-conditioning and climate change: Voices of the vulnerable. Health Promot. J. Austr. 2011, 22, S13–S16. [Google Scholar] [PubMed]
- Isaac, M.; van Vuuren, D.P. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 2009, 37, 507–521. [Google Scholar] [CrossRef]
- Kjellstrom, T.; McMichael, A.J. Climate change threats to population health and well-being: The imperative of protective solutions that will last. Glob. Health Action 2013, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, K.; Kjellstrom, T. Sustainability Challenges from Climate Change and Air Conditioning Use in Urban Areas. Sustainability 2013, 5, 3116–3128. [Google Scholar] [CrossRef]
- Lundgren, L.; Jonsson, A. Assessment of Social Vulnerability: A Literature Review of Vulnerability Related to Climate Change and Natural Hazards; Centre for Climate Science and Policy Research, Linköping University Electronic Press: Linköping, Sweden, 2012. [Google Scholar]
- Austin, S.E.; Ford, J.D.; Berrang-Ford, L.; Araos, M.; Parker, S.; Fleury, M.D. Public Health Adaptation to Climate Change in Canadian Jurisdictions. Int. J. Environ. Res. Public Health 2015, 12, 623–651. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levasseur, M.-E.; Poulin, P.; Campagna, C.; Leclerc, J.-M. Integrated Management of Residential Indoor Air Quality: A Call for Stakeholders in a Changing Climate. Int. J. Environ. Res. Public Health 2017, 14, 1455. https://doi.org/10.3390/ijerph14121455
Levasseur M-E, Poulin P, Campagna C, Leclerc J-M. Integrated Management of Residential Indoor Air Quality: A Call for Stakeholders in a Changing Climate. International Journal of Environmental Research and Public Health. 2017; 14(12):1455. https://doi.org/10.3390/ijerph14121455
Chicago/Turabian StyleLevasseur, Marie-Eve, Patrick Poulin, Céline Campagna, and Jean-Marc Leclerc. 2017. "Integrated Management of Residential Indoor Air Quality: A Call for Stakeholders in a Changing Climate" International Journal of Environmental Research and Public Health 14, no. 12: 1455. https://doi.org/10.3390/ijerph14121455
APA StyleLevasseur, M. -E., Poulin, P., Campagna, C., & Leclerc, J. -M. (2017). Integrated Management of Residential Indoor Air Quality: A Call for Stakeholders in a Changing Climate. International Journal of Environmental Research and Public Health, 14(12), 1455. https://doi.org/10.3390/ijerph14121455