Evaluation of Traffic Density Parameters as an Indicator of Vehicle Emission-Related Near-Road Air Pollution: A Case Study with NEXUS Measurement Data on Black Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement Sites and Black Carbon Data Collection
2.2. Traffic Density Metrics
2.3. Statistical Analyses
3. Results
3.1. Change in Black Carbon Concentrations during a Day
3.2. Statistics of BC Concentrations in the Two Monitoring Seasons
3.3. Correlation between Black Carbon Concentrations and Different Traffic Density Indices
3.4. Season-Separated Correlation Analysis between Black Carbon Concentrations and Traffic Density Indices
3.5. General Linear Model Analysis on the Relationship between Black Carbon Concentrations and Traffic Metrics
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kim, J.J.; Smorodinsky, S.; Lipsett, M.; Singer, B.C.; Hodgson, A.T.; Ostro, B. Traffic-related air pollution near busy roads: The east bay children’s respiratory health study. Am. J. Respir. Crit. Care Med. 2004, 170, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Zanobetti, A.; Schwartz, J. Air pollution and emergency admissions in Boston, MA. J. Epidemiol. Community Health 2006, 60, 890–895. [Google Scholar] [CrossRef] [PubMed]
- Adar, S.D.; Kaufman, J.D. Cardiovascular disease and air pollutants: Evaluating and improving epidemiological data implicating traffic exposure. Inhal. Toxicol. 2007, 19 (Suppl. 1), 135–149. [Google Scholar] [CrossRef] [PubMed]
- Brauer, M.; Lencar, C.; Tamburic, L.; Koehoorn, M.; Demers, P.; Karr, C. A cohort study of traffic-related air pollution impacts on birth outcomes. Environ. Health Perspect. 2008, 116, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Baja, E.S.; Schwartz, J.D.; Wellenius, G.A.; Coull, B.A.; Zanobetti, A.; Vokonas, P.S.; Suh, H.H. Traffic-related air pollution and QT interval: Modification by diabetes, obesity, and oxidative stress gene polymorphisms in the normative aging study. Environ. Health Perspect. 2010, 118, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Delfino, R.J.; Tjoa, T.; Gillen, D.L.; Staimer, N.; Polidori, A.; Arhami, M.; Jamner, L.; Sioutas, C.; Longhurst, J. Traffic-related air pollution and blood pressure in elderly subjects with coronary artery disease. Epidemiology 2010, 21, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.C.; Mehta, A.J.; Alexeeff, S.E.; Gryparis, A.; Coull, B.; Vokonas, P.; Christiani, D.C.; Schwartz, J. Residential black carbon exposure and circulating markers of systemic inflammation in elderly males: The normative aging study. Environ. Health Perspect. 2012, 120, 674–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Levy, J.I. Factors influencing the spatial extent of mobile source air pollution impacts: A meta-analysis. BMC Public Health 2007, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karner, A.A.; Eisinger, D.S.; Niemeier, D.A. Near-roadway air quality: Synthesizing the findings from real-world data. Environ. Sci. Technol. 2010, 44, 5334–5344. [Google Scholar] [CrossRef] [PubMed]
- Kondo, M.C.; Mizes, C.; Lee, J.; Burstyn, I. Black carbon concentrations in a goods-movement neighborhood of Philadelphia, PA. Environ. Monit. Assess. 2014, 186, 4605–4618. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.H.; Lin, C.C.; Liu, J.J.; Hsieh, C.J. Temporal characteristics of black carbon concentrations and its potential emission sources in a southern Taiwan industrial urban area. Environ. Sci. Pollut. Res. Int. 2014, 21, 3744–3755. [Google Scholar] [CrossRef] [PubMed]
- Suglia, S.F.; Gryparis, A.; Wright, R.O.; Schwartz, J.; Wright, R.J. Association of black carbon with cognition among children in a prospective birth cohort study. Am. J. Epidemiol. 2008, 167, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Suglia, S.F.; Gryparis, A.; Schwartz, J.; Wright, R.J. Association between traffic-related black carbon exposure and lung function among urban women. Environ. Health Perspect. 2008, 116, 1333–1337. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.H.; Bellinger, D.C.; Coull, B.A.; Anderson, S.; Barber, R.; Wright, R.O.; Wright, R.J. Associations between traffic-related black carbon exposure and attention in a prospective birth cohort of urban children. Environ. Health Perspect. 2013, 121, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Janssen, N.A.; Hoek, G.; Simic-Lawson, M.; Fischer, P.; van Bree, L.; ten Brink, H.; Keuken, M.; Atkinson, R.W.; Anderson, H.R.; Brunekreef, B.; et al. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5. Environ. Health Perspect. 2011, 119, 1691–1699. [Google Scholar] [CrossRef] [PubMed]
- Vanderstraeten, P.; Forton, M.; Brasseur, O.; Offer, Z.Y. Black carbon instead of particle mass concentration as an indicator for the traffic related particles in the Brussels capital region. J. Environ. Protect. 2011, 2, 525–532. [Google Scholar] [CrossRef]
- Roorda-Knape, M.C.; Janssen, N.A.H.; de Hartog, J.; van Vliet, P.H.N.; Harssema, H.; Brunekreef, B. Air pollution from traffic in city districts near major motorways. Atmos. Environ. 1998, 32, 1921–1930. [Google Scholar] [CrossRef]
- Zhu, Y.; Hinds, W.C.; Kim, S.; Sioutas, C. Concentration and size distribution of ultrafine particles near a major highway. J. Air. Waste Manag. Assoc. 2002, 52, 1032–1042. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.M.; Chillrud, S.N.; Correa, J.C.; Feinberg, M.; Hazi, Y.; Kc, D.; Prakash, S.; Ross, J.M.; Levy, D.; Kinney, P.L. Spatial and temporal variations in traffic-related particulate matter at New York City high schools. Atmos. Environ. 2009, 43, 4975–4981. [Google Scholar] [CrossRef] [PubMed]
- Richmond-Bryant, J.; Saganich, C.; Bukiewicz, L.; Kalin, R. Associations of PM2.5 and black carbon concentrations with traffic, idling, background pollution, and meteorology during school dismissals. Sci. Total Environ. 2009, 407, 3357–3364. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, T.; Bucheli, T.D. Is black carbon a better predictor of polycyclic aromatic hydrocarbon distribution in soils than total organic carbon? Environ. Pollut. 2011, 159, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xia, X.; Zhai, Y.; Wang, R.; Liu, T.; Zhang, S. Black carbon (BC) in urban and surrounding rural soils of Beijing, China: Spatial distribution and relationship with polycyclic aromatic hydrocarbons (PAHS). Chemosphere 2013, 82, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Andersson, A.; Lee, M.; Kirillova, E.N.; Xiao, Q.; Krusa, M.; Shi, M.; Hu, K.; Lu, Z.; Streets, D.G.; et al. Source forensics of black carbon aerosols from China. Environ. Sci. Technol. 2013, 47, 9102–9108. [Google Scholar] [CrossRef] [PubMed]
- Hatzopoulou, M.; Weichenthal, S.; Dugum, H.; Pickett, G.; Miranda-Moreno, L.; Kulka, R.; Andersen, R.; Goldberg, M. The impact of traffic volume, composition, and road geometry on personal air pollution exposures among cyclists in Montreal, Canada. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Dons, E.; Temmerman, P.; Van Poppel, M.; Bellemans, T.; Wets, G.; Int Panis, L. Street characteristics and traffic factors determining road users’ exposure to black carbon. Sci. Total Environ. 2013, 447, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Bapna, M.; Sunder Raman, R.; Ramachandran, S.; Rajesh, T.A. Airborne black carbon concentrations over an urban region in western India-temporal variability, effects of meteorology, and source regions. Environ. Sci. Pollut. Res. Int. 2013, 20, 1617–1631. [Google Scholar] [CrossRef] [PubMed]
- Perez, N.; Pey, J.; Cusack, M.; Reche, C.; Querol, X.; Alastuey, A.; Viana, M. Variability of particle number, black carbon, and PM10, PM2.5 and PM1 levels and speciation: Influence of road traffic emissions on urban air quality. Aerosol. Sci. Technol. 2010, 44, 487–499. [Google Scholar] [CrossRef]
- Gunier, R.B.; Hertz, A.; von Behren, J.; Reynolds, P. Traffic density in California: Socioeconomic and ethic differences among potentially exposed children. J. Expo. Sci. Environ. Epidemiol. 2003, 13, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Tian, N.; Xue, J.P.; Barzyk, T.M. Evaluating socioeconomic and racial differences in traffic-related metrics in the united states using a GIS approach. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Vette, A.; Burke, J.; Norris, G.; Landis, M.; Batterman, S.; Breen, M.; Isakov, V.; Lewis, T.; Gilmour, M.I.; Kamal, A.; et al. The near-road exposures and effects of urban air pollutants study (NEXUS): Study design and methods. Sci. Total Environ. 2013, 448, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Isakov, V.; Arunachalam, S.; Batterman, S.; Bereznicki, S.; Burke, J.; Dionisio, K.; Garcia, V.; Heist, D.; Perry, S.; Snyder, M.; et al. Air quality modeling in support of the near-road exposures and effects of urban air pollutants study (NEXUS). Int. J. Environ. Res. Public Health 2014, 11, 8777–8793. [Google Scholar] [CrossRef] [PubMed]
- Hagler, G.S.; Yelverton, T.L.; Vedantham, R.; Hansen, A.D.; Turner, J.R. Post-processing method to reduce noise while preserving high time resolution in aethalometer real-time black carbon data. Aerosol. Air Qual. Res. 2011, 11, 539–546. [Google Scholar] [CrossRef]
- Baumgartner, J.; Zhang, Y.X.; Schauer, J.J.; Huang, W.; Wang, Y.Q.; Ezzati, M. Highway proximity and black carbon from cookstoves as a risk factor for higher blood pressure in rural China. Proc. Natl. Acad. Sci. USA 2014, 111, 13229–13234. [Google Scholar] [CrossRef] [PubMed]
- Wilker, E.H.; Mittleman, M.A.; Coull, B.A.; Gryparis, A.; Bots, M.L.; Schwartz, J.; Sparrow, D. Long-term exposure to black carbon and carotid intima-media thickness: The normative aging study. Environ. Health Perspect. 2013, 121, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Beelen, R.; de Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to assess spatial vatiation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- Beelen, R.; Hoek, G.; Vienneau, D.; Eeftens, M.; Dimakopoulou, K.; Pedeli, X.; Tsai, M.-Y.; Künzli, N.; Schikowski, T.; Marcon, A.; et al. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe—The ESCAPE project. Atmos. Environ. 2013, 72, 10–23. [Google Scholar] [CrossRef]
- Dreher, D.B.; Harley, R.A. A fuel-based inventory for heavy-duty diesel truck emissions. J. Air Waste Manag. Assoc. 1998, 48, 352–358. [Google Scholar] [CrossRef]
Season | Traffic Volume * | N | Mean | SD | P5 | P25 | P50 | P75 | P95 |
---|---|---|---|---|---|---|---|---|---|
Fall | Low | 1657 | 0.45 | 0.44 | 0.07 | 0.17 | 0.31 | 0.60 | 1.22 |
Medium | 3200 | 0.64 | 0.63 | 0.07 | 0.19 | 0.49 | 0.93 | 1.72 | |
High | 1317 | 0.94 | 0.92 | 0.10 | 0.29 | 0.65 | 1.31 | 2.71 | |
Spring | Low | 1147 | 0.35 | 0.28 | 0.08 | 0.18 | 0.29 | 0.42 | 0.84 |
Medium | 2181 | 0.44 | 0.36 | 0.09 | 0.21 | 0.35 | 0.56 | 1.10 | |
High | 889 | 0.59 | 0.50 | 0.10 | 0.23 | 0.45 | 0.80 | 1.55 |
Traffic Parameter | Distance (m) from the Center of the Concentric Circles | Average | |||||
---|---|---|---|---|---|---|---|
50 | 100 | 150 | 200 | 250 | 300 | ||
Nearest distance to a major road | −0.31 | ||||||
Total length of a major road | 0.30 | 0.32 | 0.28 | 0.23 | 0.20 | 0.15 | 0.25 |
Major road density | 0.33 | 0.33 | 0.28 | 0.24 | 0.21 | 0.17 | 0.26 |
All-traffic density | 0.25 | 0.26 | 0.21 | 0.16 | 0.12 | 0.09 | 0.18 |
Heavy traffic density | 0.41 * | 0.49 ** | 0.49 * | 0.50 * | 0.49 ** | 0.47 * | 0.48 |
Season | Distance (m) from the Center of the Concentric Circles | ||||||
---|---|---|---|---|---|---|---|
50 | 100 | 150 | 200 | 250 | 300 | ||
Major road density | |||||||
Fall | 0.37 | 0.39 * | 0.37 | 0.33 | 0.31 | 0.27 | 0.34 |
Spring | 0.27 | 0.20 | 0.08 | −0.01 | −0.08 | −0.15 | 0.05 |
All-traffic density | |||||||
Fall | 0.29 | 0.31 | 0.28 | 0.25 | 0.22 | 0.19 | 0.25 |
Spring | 0.23 | 0.16 | 0.02 | −0.08 | −0.16 | −0.22 | −0.01 |
Heavy traffic density | |||||||
Fall | 0.47 ** | 0.54 ** | 0.55 ** | 0.55 ** | 0.55 ** | 0.54 ** | 0.53 |
Spring | 0.24 | 0.21 | 0.14 | 0.07 | 0.00 | −0.05 | 0.10 |
Variable | Degree of Freedom | Type III SS | F-Value | Statistical Significance |
---|---|---|---|---|
Season | 1 | 1.39 | 34.49 | ** |
Traffic volume | 2 | 3.20 | 39.71 | ** |
Heavy traffic density within a distance range (m) | ||||
0~50 | 1 | 0.67 | 16.57 | ** |
51~100 | 1 | 0.36 | 8.98 | ** |
101~200 | 1 | 0.47 | 11.76 | ** |
201~300 | 1 | 0.22 | 5.48 | * |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.V.; Chen, F.-L.; Xue, J. Evaluation of Traffic Density Parameters as an Indicator of Vehicle Emission-Related Near-Road Air Pollution: A Case Study with NEXUS Measurement Data on Black Carbon. Int. J. Environ. Res. Public Health 2017, 14, 1581. https://doi.org/10.3390/ijerph14121581
Liu SV, Chen F-L, Xue J. Evaluation of Traffic Density Parameters as an Indicator of Vehicle Emission-Related Near-Road Air Pollution: A Case Study with NEXUS Measurement Data on Black Carbon. International Journal of Environmental Research and Public Health. 2017; 14(12):1581. https://doi.org/10.3390/ijerph14121581
Chicago/Turabian StyleLiu, Shi V., Fu-Lin Chen, and Jianping Xue. 2017. "Evaluation of Traffic Density Parameters as an Indicator of Vehicle Emission-Related Near-Road Air Pollution: A Case Study with NEXUS Measurement Data on Black Carbon" International Journal of Environmental Research and Public Health 14, no. 12: 1581. https://doi.org/10.3390/ijerph14121581
APA StyleLiu, S. V., Chen, F. -L., & Xue, J. (2017). Evaluation of Traffic Density Parameters as an Indicator of Vehicle Emission-Related Near-Road Air Pollution: A Case Study with NEXUS Measurement Data on Black Carbon. International Journal of Environmental Research and Public Health, 14(12), 1581. https://doi.org/10.3390/ijerph14121581