Integrating Norm Activation Model and Theory of Planned Behavior to Understand Sustainable Transport Behavior: Evidence from China
Abstract
:1. Introduction
1.1. Sustainable Transport System and Car Transport Reduction
Transport Demand Management
1.2. Theoretical Foundations
1.3. Research Model and Hypothesis Development
2. Materials and Methods
2.1. Measures
2.1.1. Measures of NAM Constructs: AC, AR and PN
2.1.2. Measures of TPB Constructs: Attitude, SN and PBC, Intention
2.2. Procedures and Respondents
2.3. Analytical Methods
3. Results
3.1. Reliability and Validity of Measurement Model
3.2. Test of Common Method Biases
3.3. Structural Model and Mediation Tests
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Roland Berger Study. Impact of China on Central European Automotive Industry. Available online: https://www.rolandberger.com/media/pdf/Roland_Berger_China_impact_on_European_automotive_industry_E_20120430.pdf (accessed on 14 October 2017).
- National Bureau of Statistic of China. Available online: http://data.stats.gov.cn/easyquery.htm?cn=C01 (accessed on 5 May 2016).
- Li, P.; Jones, S. Vehicle restrictions and CO2 emissions in Beijing—A simple projection using available data. Transp. Res. Part D 2015, 41, 467–476. [Google Scholar] [CrossRef]
- World Health Organization. Air Pollution. Available online: http://www.who.int/sustainable-development/transport/health-risks/air-pollution/en/ (accessed on 17 November 2017).
- Eriksson, L.; Garvill, J.; Nordlund, A.M. Acceptability of transport demand management measures: The importance of problem awareness, personal norm, freedom, and fairness. J. Environ. Psychol. 2006, 26, 15–26. [Google Scholar] [CrossRef]
- Bamberg, S.; Schmidt, P. Incentives, morality, or habit? Predicting students’ car use for university routes with the models of Ajzen, Schwartz, and Triandis. Environ. Behav. 2003, 35, 264–285. [Google Scholar] [CrossRef]
- De Luis, M.M.; Cruz, A.J.; Arcia, A.V.; Márquez, C.Y. Green information technology influence on car owners’ behavior: Considerations for their operative support in collaborative eLearning and social networks. Comput. Hum. Behav. 2015, 31, 792–802. [Google Scholar] [CrossRef]
- Ellison, R.B.; Ellison, A.B.; Greaves, S.P.; Sampaio, B. Electronic ticketing systems as a mechanism for travel behavior change? Evidence from Sydney’s Opal card. Transp. Res. Part A 2017, 99, 80–93. [Google Scholar]
- Eriksson, L.; Garvill, J.; Nordlund, A.M. Interrupting habitual car use: The importance of car habit strength and moral motivation for personal car use reduction. Transp. Res. Part F 2008, 11, 10–23. [Google Scholar] [CrossRef]
- Gardner, B.; Abraham, C. Psychological correlates of car use: A meta-analysis. Transp. Res. Part F 2008, 11, 300–311. [Google Scholar] [CrossRef]
- Heath, Y.; Gifford, R. Extending the theory of planned behavior: Predicting the use of public transportation. J. Appl. Soc. Psychol. 2002, 32, 2154–2189. [Google Scholar] [CrossRef]
- Hsieh, H.; Kanda, Y.; Fujii, S. Reducing car use by volitional strategy of action and coping planning enhancement. Transp. Res. Part F 2017, 47, 163–175. [Google Scholar] [CrossRef]
- Lanzini, P.; Khan, S.A. Shedding light on the psychological and behavioral determinants of travel mode choice: A meta-analysis. Transp. Res. Part F 2017, 48, 13–27. [Google Scholar] [CrossRef]
- Lauper, E.; Moser, S.; Fischer, M.; Matthies, E.; Kaufmann-Hayoz, R. Psychological predictors of eco-driving: A longitudinal study. Transp. Res. Part F 2015, 33, 27–37. [Google Scholar] [CrossRef]
- Lind, H.B.; Nordfjærn, T.; Jørgensen, S.H.; Rundmo, T. The value-belief-norm theory, personal norms and sustainable transport mode choice in urban areas. J. Environ. Psychol. 2015, 44, 119–125. [Google Scholar] [CrossRef]
- Lois, D.; Moriano, J.A.; Rondinella, G. Cycle commuting intention: A model based on theory of planned behavior and social identity. Transp. Res. Part F 2015, 32, 101–113. [Google Scholar] [CrossRef]
- Nordlund, A.M.; Garvill, J. Effects of values, problem awareness, and personal norm on willingness to reduce personal car use. J. Environ. Psychol. 2003, 23, 339–347. [Google Scholar] [CrossRef]
- Schoenau, M.; Müller, M. What affects our urban travel behavior? A GPS-based evaluation of internal and external determinants of sustainable mobility in Stuttgart (Germany). Transp. Res. Part F 2017, 48, 61–73. [Google Scholar] [CrossRef]
- Geng, J.; Long, R.; Chen, H. Impact of information intervention on travel mode choice of urban residents with different goal frames: A controlled trial in Xuzhou, China. Transp. Res. Part A 2016, 91, 34–47. [Google Scholar] [CrossRef]
- Mao, Z.; Ettema, D.; Dijst, M. Commuting trip satisfaction in Beijing: Exploring the influence of multimodal behavior and modal flexibility. Transp. Res. Part A 2016, 94, 592–603. [Google Scholar] [CrossRef]
- Doran, R.; Larsen, S. The relative importance of social and personal norms in explaining intentions to choose eco-friendly travel options. Int. J. Tour. Res. 2016, 18, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Van Wee, B. The unsustainability of car use. In Handbook of Sustainable Transport; Gärling, T., Ettema, D., Friman, M., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 69–83. [Google Scholar]
- Osbaldiston, R.; Schott, J.P. Environmental sustainability and behavioral science: Meta-analysis of pro-environmental behavior experiments. Environ. Behav. 2011, 44, 257–299. [Google Scholar] [CrossRef]
- Dan Stalebrink, O.J.; Gifford, J.L. Transportation demand management. In Handbook of Transport Systems and Traffic Control; Button, K.J., Hensher, D.A., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2001; Volume 3, pp. 199–208. ISBN 9780080435954. [Google Scholar]
- ECMT. Assessment and Decision Making for Sustainable Transport. OECD: Paris, France. Available online: http://www.itf-oecd.org/sites/default/files/docs/04assessment.pdf (accessed on 6 May 2016).
- Black, J.S.; Stern, P.C.; Elworth, J.T. Personal and contextual influences on household energy adaptations. J. Appl. Psychol. 1985, 70, 3–21. [Google Scholar] [CrossRef]
- Hymel, K.M.; Small, K.A.; Van Dender, K. Induced demand and rebound effects in road transport. Transp. Res. Part B 2010, 44, 1220–1241. [Google Scholar] [CrossRef]
- Steg, L.; Vlek, C. The role of problem awareness in willingness-to-change car use and in evaluating relevant policy measures. In Traffic and Transport Psychology; Rothengatter, T., Carbonell Vaya, E., Eds.; Pergamon Press: Oxford, UK, 1997; pp. 465–475. [Google Scholar]
- Vlek, C.; Michon, J.A. Why we should and how we could decrease the use of motor vehicles in the near future. IATSS Res. 1992, 15, 82–93. [Google Scholar]
- Gärling, T.; Fujii, S. Transport behavior modification: Theories, methods, and programs. In The Expanding Sphere of Transport Behavior Research; Kitamura, R., Yoshii, T., Yamamoto, T., Eds.; Emerald Publishing: Bingley, UK, 2009; pp. 97–128. [Google Scholar]
- Gärling, T.; Schuitema, G. Transport demand management targeting reduced private car use: Effectiveness, public acceptability and political feasibility. J. Soc. Issues 2007, 63, 139–153. [Google Scholar] [CrossRef]
- Fujii, S.; Bamberg, S.; Friman, M.; Gärling, T. Are effects of transport feedback programs correctly assessed? Transportmetrica 2009, 5, 43–57. [Google Scholar] [CrossRef]
- Pojani, D.; Stead, D. Sustainable urban transport in the developing world: Beyond megacities. Sustainability 2015, 7, 7784–7805. [Google Scholar] [CrossRef]
- Shah, A.; Ahn, B. Intelligent transportation systems: Is it a compatible tool for developing countries? J. Adv. Transp. 2006, 40, 289–294. [Google Scholar]
- Schwartz, S.H. Normative influences on altruism. Adv. Exp. Soc. Psychol. 1977, 10, 221–279. [Google Scholar]
- Stern, P.C. New environmental theories: Toward a coherent theory of environmentally significant behavior. J. Soc. Issues 2000, 56, 407–424. [Google Scholar] [CrossRef]
- Van der Werff, E.; Steg, L. One model to predict them all: Predicting energy behaviors with the norm activation model. Energy Res. Soc. Sci. 2015, 6, 8–14. [Google Scholar] [CrossRef]
- Davis, J.L.; Le, B.; Coy, A.E.; Rickert, J.; Regan, B.; Ridgeway, K. Commitment to the environment: The role of subjective norms in college and community samples. J. Appl. Soc. Psychol. 2015, 45, 568–583. [Google Scholar] [CrossRef]
- Kormos, C.; Gifford, R.; Brown, E. The influence of descriptive social norm information on sustainable transportation behavior: A field experiment. Environ. Behav. 2015, 47, 479–501. [Google Scholar] [CrossRef]
- Jakovcevic, A.; Steg, L. Sustainable transportation in Argentina: Values, beliefs, norms and car use reduction. Transp. Res. Part F 2013, 20, 70–79. [Google Scholar] [CrossRef]
- Abrahamse, W.; Steg, L. Social influence approaches to encourage resource conservation: A meta-analysis. Glob. Environ. Chang. 2013, 23, 1773–1785. [Google Scholar] [CrossRef]
- Eriksson, L.; Nordlund, A.M.; Garvill, J. Expected car use reduction in response to structural transport demand management measures. Transp. Res. Part F 2010, 13, 329–342. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Anable, J. ‘Complacent car addicts’ or ‘aspiring environmentalists’? Identifying transport behavior segments using attitude theory. Transp. Policy 2005, 12, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Nordfjærn, T.; Rundmo, T. Environmental norms, transport priorities and resistance to change associated with acceptance of push measures in transport. Transp. Policy 2015, 44, 1–8. [Google Scholar] [CrossRef]
- Liu, Y.; Hong, Z.; Liu, Y. Do driving restriction policies effectively motivate commuters to use public transportation? Energy Policy 2016, 90, 253–261. [Google Scholar] [CrossRef]
- Donald, I.J.; Cooper, S.R.; Conchie, S.M. An extended theory of planned behavior model of the psychological factors affecting commuters’ transport mode use. J. Environ. Psychol. 2014, 40, 39–48. [Google Scholar] [CrossRef]
- De Groot, J.I.; Steg, L. Morality and prosocial behavior: The role of awareness, responsibility, and norms in the norm activation model. J. Soc. Psychol. 2009, 149, 425–449. [Google Scholar] [CrossRef] [PubMed]
- Steg, L.; Groot, J. Explaining prosocial intentions: Testing causal relationships in the norm activation model. Br. J. Soc. Psychol. 2010, 49, 725–743. [Google Scholar] [CrossRef] [PubMed]
- Bamberg, S.; Möser, G. Twenty years after Hines, Hungerford, and Tomera: A new meta-analysis of psycho-social determinants of pro-environmental behavior. J. Environ. Psychol. 2007, 27, 14–25. [Google Scholar] [CrossRef]
- Wertsch, J.V. Vygotsky and the Social Formation of Mind; Harvard University Press: Boston, MA, USA, 1981. [Google Scholar]
- Siegel, A.E.; Siegel, S. Reference groups, membership groups, and attitude change. J. Abnorm. Soc. Psychol. 1957, 55, 360–364. [Google Scholar] [CrossRef]
- Newcomb, T.M.; Turner, R.H.; Converse, P.E. Social Psychology: The Study of Human Interaction; Holt, Rinehart and Winston: New York, NY, USA, 1965. [Google Scholar]
- Harland, P.; Staats, H.; Wilke, H.A. Explaining proenvironmental intention and behavior by personal norms and the theory of planned behavior. J. Appl. Soc. Psychol. 1999, 29, 2505–2528. [Google Scholar] [CrossRef]
- Hopper, J.R.; Nielsen, J.M. Recycling as altruistic behavior: Normative and behavioral strategies to expand participation in a community recycling program. Environ. Behav. 1991, 23, 195–220. [Google Scholar] [CrossRef]
- Bratt, C. The impact of norms and assumed consequences on recycling behavior. Environ. Behav. 1999, 31, 630–656. [Google Scholar] [CrossRef]
- Hunecke, M.; Blöbaum, A.; Matthies, E.; Höger, R. Responsibility and environment: Ecological norm orientation and external factors in the domain of travel mode choice behavior. Environ. Behav. 2001, 33, 830–852. [Google Scholar] [CrossRef]
- Ajzen, I. Constructing a Theory of Planned Behavior Questionnaire. Available online: http://people.umass.edu/~aizen/pdf/tpb.measurement.pdf (accessed on 6 May 2016).
- Qureshi, I.; Compeau, D. Assessing between-group differences in information systems research: A comparison of covariance-and component-based SEM. MIS Quart. 2009, 33, 197–214. [Google Scholar] [CrossRef]
- Chin, W.W. Issues and opinion on structural equation modeling. MIS Quart. 1998, 22, 1–8. [Google Scholar]
- Chin, W.W.; Marcolin, B.L.; Newsted, P.R. A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Inf. Syst. Res. 2003, 14, 189–217. [Google Scholar] [CrossRef]
- Ringle, C.M.; Wende, S.; Will, A. SmartPLS 2. Hamburg: SmartPLS. Available online: http://www.smartpls.com (accessed on 6 May 2016).
- Fornell, C.; Larcker, D.F. Structural equation models with unobservable variables and measurement error: Algebra and statistics. J. Market. Res. 1981, 18, 382–388. [Google Scholar] [CrossRef]
- Harman, H.H. Modern Factor Analysis; University of Chicago Press: Chicago, IL, USA, 1976. [Google Scholar]
- Zhang, Y.; Wang, Z.; Zhou, G. Antecedents of employee electricity saving behavior in organizations: An empirical study based on norm activation model. Energy Policy 2013, 62, 1120–1127. [Google Scholar] [CrossRef]
- Chan, P.; Bishop, B. A moral basis for recycling: Extending the theory of planned behavior. J. Environ. Psychol. 2013, 36, 96–102. [Google Scholar] [CrossRef]
- Hodan, W.M.; Barnard, W.R. Evaluating the Contribution of PM2.5 Precursor Gases and Re-Entrained Road Emissions to Mobile Source PM2.5 Particulate Matter Emissions. Available online: https://www3.epa.gov/ttnchie1/conference/ei13/mobile/hodan.pdf (accessed on 11 December 2017).
- World Health Organization. Public Transport. Available online: http://www.who.int/sustainable-development/transport/strategies/public-transport/en/ (accessed on 11 December 2017).
Variable | Percentage |
---|---|
Age | |
<25 | 5% |
25–29 | 25% |
30–34 | 30% |
35–39 | 25% |
40–49 | 10% |
50 | 5% |
Education | |
Less than high school | 0.2% |
High school or vocational education | 2.5% |
Associate degree | 17.2% |
Bachelor’s degree | 72.2% |
Master’s degree or higher | 8.0% |
Income | |
Less than RMB ¥100,000 | 4.5% |
RMB ¥100,000–150,000 | 20.3% |
RMB ¥200,000–300,000 | 35.2% |
RMB ¥300,000–500,000 | 12.7% |
RMB ¥500,000 or more | 2.0% |
Variable | AVE | Composite Reliability | Cronbach’s α |
---|---|---|---|
AC | 0.676 | 0.893 | 0.839 |
AR | 0.795 | 0.886 | 0.743 |
PBC | 0.703 | 0.876 | 0.788 |
PN | 0.758 | 0.904 | 0.840 |
SN | 0.668 | 0.858 | 0.749 |
Attitude towards car-transport reduction | 0.704 | 0.904 | 0.859 |
Intention to reduce car-transport | 0.586 | 0.849 | 0.762 |
Variable | AC | AR | SN | PN | PBC | Att. | Int. |
---|---|---|---|---|---|---|---|
AC | 0.822 | ||||||
AR | 0.632 | 0.892 | |||||
PBC | 0.593 | 0.565 | 0.838 | ||||
PN | 0.648 | 0.595 | 0.638 | 0.871 | |||
SN | 0.475 | 0.396 | 0.526 | 0.457 | 0.817 | ||
Attitude | 0.462 | 0.410 | 0.441 | 0.428 | 0.394 | 0.839 | |
Intention | 0.379 | 0.335 | 0.433 | 0.348 | 0.397 | 0.440 | 0.766 |
Paths | β (S.E.) | t | Results |
AC→PN | 0.32 (0.04) | 7.66 *** | H1a supported |
AR→PN | 0.20 (0.04) | 5.39 *** | H2a supported |
PN→Intention | 0.12 (0.04) | 2.80 ** | H3 supported |
Attitudes→Intention | 0.30 (0.04) | 7.00 *** | H4 supported |
SN→PN | 0.33 (0.04) | 8.12 *** | H5 supported |
PBC→Intention | 0.23 (0.04) | 5.72 *** | H6 supported |
SN→Intention | 0.04 (0.02) | 2.57 * | H7a supported |
Mediation Effects | β (S.E.) | 95% CI | Results |
AC→PN→Intention | 0.11 (0.04) | [0.04, 0.19] | H1b supported |
AR→PN→Intention | 0.13 (0.04) | [0.06, 0.22] | H2b supported |
SN→PN→Intention | 0.08 (0.04) | [0.002, 0.38] | H7b supported |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Sheng, H.; Mundorf, N.; Redding, C.; Ye, Y. Integrating Norm Activation Model and Theory of Planned Behavior to Understand Sustainable Transport Behavior: Evidence from China. Int. J. Environ. Res. Public Health 2017, 14, 1593. https://doi.org/10.3390/ijerph14121593
Liu Y, Sheng H, Mundorf N, Redding C, Ye Y. Integrating Norm Activation Model and Theory of Planned Behavior to Understand Sustainable Transport Behavior: Evidence from China. International Journal of Environmental Research and Public Health. 2017; 14(12):1593. https://doi.org/10.3390/ijerph14121593
Chicago/Turabian StyleLiu, Yuwei, Hong Sheng, Norbert Mundorf, Colleen Redding, and Yinjiao Ye. 2017. "Integrating Norm Activation Model and Theory of Planned Behavior to Understand Sustainable Transport Behavior: Evidence from China" International Journal of Environmental Research and Public Health 14, no. 12: 1593. https://doi.org/10.3390/ijerph14121593
APA StyleLiu, Y., Sheng, H., Mundorf, N., Redding, C., & Ye, Y. (2017). Integrating Norm Activation Model and Theory of Planned Behavior to Understand Sustainable Transport Behavior: Evidence from China. International Journal of Environmental Research and Public Health, 14(12), 1593. https://doi.org/10.3390/ijerph14121593