Polypyrrole-Grafted Coconut Shell Biological Carbon as a Potential Adsorbent for Methyl Tert-Butyl Ether Removal: Characterization and Adsorption Capability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PPy and PPy/GAC Composites
2.3. Characterization
2.4. Adsorption Experiments
2.5. Laboratory Column Experiments
2.6. Biofilm Microbial Community Analysis
2.7. Analytical Methods
3. Results and Discussion
3.1. Characterization of the Adsorbents
3.2. Adsorption Properties of the Adsorbents
3.3. Adsorption and Biodegradation of MTBE in Continuous Flow by the Biofilm Reactor
3.4. Analysis of the Biofilm Community
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Johnson, R.; Pankow, J.; Bender, D.; Price, C.; Zogorski, J. MTBE—To what extent will past releases contaminate community water supply wells? Environ. Sci. Technol. 2000, 34, 210A–217A. [Google Scholar] [CrossRef] [PubMed]
- Guisado, I.M.; Purswani, J.; Gonzalez-Lopez, J.; Pozo, C. Physiological and genetic screening methods for the isolation of methyl tert-butyl ether-degrading bacteria for bioremediation purposes. Int. Biodeterior. Biodegrad. 2014, 97, 67–74. [Google Scholar] [CrossRef]
- Khan, M.A.; Lee, S.-H.; Kumar, R.; Jeon, B.-H. Adsorptive removal of volatile organic contaminants from aqueous medium by granular activated carbons. Geosystem. Eng. 2010, 13, 25–34. [Google Scholar] [CrossRef]
- Rossner, A.; Knappe, D.R. MTBE adsorption on alternative adsorbents and packed bed adsorber performance. Water Res. 2008, 42, 2287–2299. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Adams, C.; Ludlow, D. Adsorption isotherms for methyl tertbutyl ether and other fuel oxygenates on two bituminous-coal activated carbons. J. Environ. Eng. 2014, 131, 983–987. [Google Scholar] [CrossRef]
- Li, S.S.; Zhang, D.; Yan, W. Enhanced biodegradation of methyl tert-butyl-ether by a microbial consortium. Curr. Microbiol. 2014, 68, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Hyman, M. Biodegradation of gasoline ether oxygenates. Curr. Opin. Biotechnol. 2013, 24, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Salazar, M.; Morales, M.; Revah, S. Biodegradation of methyl tert-butyl ether by cometabolism with hexane in biofilters inoculated with Pseudomonas aeruginosa. J. Environ. Sci. Health 2012, 47, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Li, Y.; Sun, K.; Jin, J.; Li, X.; Zhang, F.; Chen, J. Aerobic degradation of methyl tert-butyl ether in a closed symbiotic system containing a mixed culture of Chlorella ellipsoidea and Methylibium petroleiphilum PM1. J. Hazard. Mater. 2011, 185, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Aktaş, Ö.; Çeçen, F. Bioregeneration of activated carbon: A review. Int. Biodeterior. Biodegrad. 2007, 59, 257–272. [Google Scholar] [CrossRef]
- Çeçen, F.; Aktas, Ö. Activated Carbon for Water and Wastewater Treatment: Integration of Adsorption and Biological Treatment; Wiley: Hoboken, NJ, USA, 2011; pp. 43–52. [Google Scholar]
- Kim, D.J.; Miyahara, T.; Noike, T. Effect of C/N ratio on the bioregeneration of biological activated carbon. Water Sci. Technol. 1997, 36, 239–249. [Google Scholar] [CrossRef]
- Mochidzuki, K.; Takeuchi, Y. The effects of some inhibitory components on biological activated carbon processes. Water Res. 1999, 33, 2609–2616. [Google Scholar] [CrossRef]
- Hu, J.; Li, B.J.; Huang, L.Y.; Zuo, J.; Zhang, W.; Ying, W.C.; Matsumoto, M.R. Biological-activated carbon process for removing MTBE from groundwater. Environ. Prog. Sustain. Energy 2013, 32, 512–523. [Google Scholar] [CrossRef]
- Hong, S.; Cannon, F.S.; Hou, P.; Byrne, T.; Nieto-Delgado, C. Sulfate removal from acid mine drainage using polypyrrole-grafted granular activated carbon. Carbon 2014, 73, 51–60. [Google Scholar] [CrossRef]
- And, X.Z.; Bai, R. Surface electric properties of polypyrrole in aqueous solutions. Langmuir 2003, 19, 10703–10709. [Google Scholar]
- Li, S.; Li, D.; Yan, W. Cometabolism of methyl tert-butyl ether by a new microbial consortium ERS. Environ. Sci. Pollut. Res. Int. 2015, 22, 10196–10205. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Li, J.; Lv, W.; Xu, H.; Yang, H.; Yan, W. Synthesis of polypyrrole nano-fibers with hierarchical structure and its adsorption property of Acid Red G from aqueous solution. Synth. Met. 2014, 191, 66–73. [Google Scholar] [CrossRef]
- Kumar, S.; Nei, M.; Dudley, J.; Tamura, K. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 2008, 9, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; Mcgettigan, P.A.; Mcwilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, C.; Ghasemi, M.; Heng, L.Y.; Hassan, S.H.; Abdi, M.M.; Daud, W.R.; Ilbeygi, H.; Ismail, A.F. Synthesis and application of polypyrrole/carrageenan nano-bio composite as a cathode catalyst in microbial fuel cells. Carbohyd. Polym. 2014, 114, 253–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, M.; Vasconcelos, I.; Bull, A.; Castro, P. A GAC biofilm reactor for the continuous degradation of 4-chlorophenol: Treatment efficiency and microbial analysis. Appl. Microbiol. Biotechnol. 2001, 57, 419–426. [Google Scholar] [PubMed]
- Lee, C.M.; Lu, C.J.; Chuang, M.S. Effects of immobilized cells on the biodegradation of chlorinated phenols. Water Sci. Technol. 1994, 30, 87–90. [Google Scholar]
- Ullah, M.A.; Kadhim, H.; Rastall, R.A.; Evans, C.S. Evalualtion of solid substrates for enzyme production by Coriolus versicolor, for use in bioremediation of chlorophenols in aqueous effluents. Appl. Microbiol. Biotechnol. 2000, 54, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.; Nava, V.; Velasquez, E.; Razo-Flores, E.; Revah, S. Mineralization of methyl tert-butyl ether and other gasoline oxygenates by pseudomonads using short n-alkanes as growth source. Biodegradation 2009, 20, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, H.; Li, Y.; Niu, S.; Cai, B. Complete genome sequence of the naphthalene-degrading Pseudomonas putida strain ND6. J. Bacteriol. 2012, 194, 5154–5155. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.; Rosales, E.; Sanroman, M.A.; Pazos, M. Preliminary testing and design of permeable bioreactive barrier for phenanthrene degradation by Pseudomonas stutzeri CECT 930 immobilized in hydrogel matrices. J. Chem. Technol. Biotechnol. 2015, 90, 500–506. [Google Scholar] [CrossRef]
- Hasan, S.A.; Jabeen, S. Degradation kinetics and pathway of phenol by Pseudomonas and bacillus species. Biotechnol. Biotechnol. Equip. 2015, 29, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; Wu, C.; Liu, N.; Li, S.J.; Li, W.; Chen, J.M.; Chen, D.Z. Degradation of ethyl mercaptan and its major intermediate diethyl disulfide by Pseudomonas sp. strain WL2. Appl. Microbiol. Biotechnol. 2015, 99, 3211–3220. [Google Scholar] [CrossRef] [PubMed]
- Vallon, T.; Simon, O.; Rendgen-Heugle, B.; Frana, S.; Muckschel, B.; Broicher, A.; Siemann-Herzberg, M.; Pfannenstiel, J.; Hauer, B.; Huber, A.; et al. Applying systems biology tools to study n-butanol degradation in Pseudomonas putida KT2440. Eng. Life Sci. 2015, 15, 760–771. [Google Scholar] [CrossRef]
- Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.S.; Hufnagle, W.O.; Kowalik, D.J.; Lagrou, M. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000, 406, 959–964. [Google Scholar] [PubMed]
- Weinel, C.; Nelson, K.E.; Tümmler, B. Global features of the Pseudomonas putida KT2440 genome sequence. Environ. Microbiol. 2003, 4, 809–818. [Google Scholar] [CrossRef]
- Guo, W.; Wang, Y.; Song, C.; Yang, C.; Li, Q.; Li, B.; Su, W.; Sun, X.; Song, D.; Yang, X.; et al. Complete genome of Pseudomonas mendocina NK-01, which synthesizes medium-chain-length polyhydroxyalkanoates and alginate oligosaccharides. J. Bacteriol. 2011, 193, 3413–3414. [Google Scholar] [CrossRef] [PubMed]
- Kostka, J.E.; Prakash, O.; Overholt, W.A.; Green, S.J.; Freyer, G.; Canion, A.; Delgardio, J.; Norton, N.; Hazen, T.C.; Huettel, M. Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill. Appl. Environ. Microbiol. 2011, 77, 7962–7974. [Google Scholar] [CrossRef] [PubMed]
- Mahjoubi, M.; Jaouani, A.; Guesmi, A.; Ben Amor, S.; Jouini, A.; Cherif, H.; Najjari, A.; Boudabous, A.; Koubaa, N.; Cherif, A. Hydrocarbonoclastic bacteria isolated from petroleum contaminated sites in Tunisia: Isolation, identification and characterization of the biotechnological potential. New Biotechnol. 2013, 30, 723–733. [Google Scholar] [CrossRef] [PubMed]
- De Berardinis, V.; Durot, M.; Weissenbach, J.; Salanoubat, M. Acinetobacter baylyi ADP1 as a model for metabolic system biology. Curr. Opin. Microbiol. 2009, 12, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Park, W. Acinetobacter species as model microorganisms in environmental microbiology: Current state and perspectives. Appl. Microbiol. Biotechnol. 2015, 99, 2533–2548. [Google Scholar] [CrossRef] [PubMed]
- De Vries, J.; Wackernagel, W. Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc. Natl. Acad. Sci. USA 2002, 99, 2094–2099. [Google Scholar] [CrossRef] [PubMed]
Column | Adsorbents | Time Employed (Days) | ||
---|---|---|---|---|
EBCT 28.5 Min | EBCT 14 Min | EBCT 10 Min | ||
Column A | PPy | 0–30 | 31–50 | 51–60 |
Column B | 0.2-PPy/GAC | 0–30 | 31–50 | 51–60 |
Column C | GAC | 0–30 | 31–50 | 51–60 |
Sample | SBET (m2/g) | V (cm3/g) | R (nm) |
---|---|---|---|
PPy | 58.67 | 0.34 | 11.7 |
1-PPy/GAC | 96.34 | 0.33 | 8.96 |
0.5-PPy/GAC | 141.38 | 0.32 | 4.48 |
0.2-PPy/GAC | 255.30 | 0.41 | 3.18 |
0.1-PPy/GAC | 307.08 | 0.42 | 2.71 |
GAC | 500.88 | 0.59 | 2.35 |
Adsorbent | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|
K1 | Qeq | R2 | K2 | Qeq | R2 | |
PPy | 0.039 | 0.217 | 0.8415 | 1.42 | 0.29 | 0.9935 |
1-PPy/GAC | 0.045 | 0.379 | 0.9118 | 1.21 | 0.77 | 0.9856 |
0.5-PPy/GAC | 0.031 | 2.862 | 0.8954 | 0.87 | 1.31 | 0.9924 |
0.2-PPy/GAC | 0.027 | 2.434 | 0.8223 | 0.78 | 3.03 | 0.9873 |
0.1-PPy/GAC | 0.035 | 1.458 | 0.8774 | 0.67 | 3.11 | 0.9961 |
GAC | 0.019 | 0.978 | 0.9321 | 0.34 | 4.81 | 0.9984 |
Adsorbent | Langmuir Model | Freundlich Model | |||||
---|---|---|---|---|---|---|---|
Qmax | KL | R2 | RL | KF | n | R2 | |
PPy | 0.31 | 0.034 | 0.9945 | 0.386 | 2.163 | 0.452 | 0.8583 |
1-PPy/GAC | 0.78 | 0.075 | 0.9843 | 0.211 | 2.832 | 0.489 | 0.9118 |
0.5-PPy/GAC | 1.43 | 0.099 | 0.9994 | 0.168 | 3.572 | 0.773 | 0.8623 |
0.2-PPy/GAC | 2.91 | 0.177 | 0.9873 | 0.102 | 4.148 | 1.278 | 0.8834 |
0.1-PPy/GAC | 3.07 | 0.192 | 0.9979 | 0.094 | 4.356 | 1.423 | 0.9365 |
GAC | 4.74 | 0.232 | 0.9990 | 0.079 | 4.739 | 1.547 | 0.9283 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Qian, K.; Wang, S.; Liang, K.; Yan, W. Polypyrrole-Grafted Coconut Shell Biological Carbon as a Potential Adsorbent for Methyl Tert-Butyl Ether Removal: Characterization and Adsorption Capability. Int. J. Environ. Res. Public Health 2017, 14, 113. https://doi.org/10.3390/ijerph14020113
Li S, Qian K, Wang S, Liang K, Yan W. Polypyrrole-Grafted Coconut Shell Biological Carbon as a Potential Adsorbent for Methyl Tert-Butyl Ether Removal: Characterization and Adsorption Capability. International Journal of Environmental Research and Public Health. 2017; 14(2):113. https://doi.org/10.3390/ijerph14020113
Chicago/Turabian StyleLi, Shanshan, Keke Qian, Shan Wang, Kaiqiang Liang, and Wei Yan. 2017. "Polypyrrole-Grafted Coconut Shell Biological Carbon as a Potential Adsorbent for Methyl Tert-Butyl Ether Removal: Characterization and Adsorption Capability" International Journal of Environmental Research and Public Health 14, no. 2: 113. https://doi.org/10.3390/ijerph14020113
APA StyleLi, S., Qian, K., Wang, S., Liang, K., & Yan, W. (2017). Polypyrrole-Grafted Coconut Shell Biological Carbon as a Potential Adsorbent for Methyl Tert-Butyl Ether Removal: Characterization and Adsorption Capability. International Journal of Environmental Research and Public Health, 14(2), 113. https://doi.org/10.3390/ijerph14020113