Volatile Profiles of Emissions from Different Activities Analyzed Using Canister Samplers and Gas Chromatography-Mass Spectrometry (GC/MS) Analysis: A Case Study
Abstract
:1. Introduction
- Analytical (chemical analyses);
- Sensorial: (dynamic olfactometry);
- Senso-instrumental: (electronic nose)
2. Materials and Methods
2.1. Chemicals
2.2. Quality Assurance
2.3. Site and Stations Description
- Twelve air samples were collected in the Palermo urban area (samples n° 1–10, n° 13a,b), in particular, samples n° 13a and n° 13b were collected from a petrol station;
- Two samples (n° 11 and n° 12) were collected directly from the emissions of the fuel tanks of two cars, powered by gasoline and diesel, respectively;
- Two samples (n° 11a and n° 12a) were taken from the previous cars from the exhaust pipes;
- Two samples (n° 14, n° 15) were taken at the Bellolampo Municipal solid waste landfills that collect the garbage from the city of Palermo and other neighboring municipalities. In particular, sample n° 15 was taken in the vicinity of a large tank that collects the leachate. The Bellolampo landfill, one of the largest landfills in Sicily, is part of the municipality of Palermo, north-west of the city center. The site, which is between 364 m above sea level (the lower part of the reclaimed historic landfill) and 536 m above sea level, converges to the east with a valley and is bordered to the north and south-east by heights. The nearest inhabited settlement is located about 1 km south of the area;
- Four air samples (from n° 16 to n° 19) were collected at different points in the area around the landfill, within a radius of about 2 km;
- One air sample was collected during a fire in a waste dumpster located in the previous area (n° 20);
- One sample was obtained during a fire in a depot of waste plastics (n° 21);
- During different production activities (n° 22 citrus processing, n° 23 hairdresser, n° 24 dental, n° 25 stone and marble processing, n° 26a,b coffee roasting, n° 27a,b fried food cooking, n° 28 wood painting) nine air samples were obtained;
- Two samples (n° 29 and n° 30) were taken inside two homes during use of incense and scented candles. In the past, candles have been utilized as a source of light and during the day are frequently used, together with incense, for decorative and religious purposes in indoor environments. Candles and incense burning produce smoke during the long, slow, and incomplete combustion process. The smoke emitted by these objects has been proven to contain hazardous substances [19,33,34,35] and has also been identified as mutagenic using the Ames test [35].
2.4. Canister/GC-Analysis
3. Results
3.1. Fuels
3.2. Urban Area (Motor Vehicle Traffic)
3.3. Municipal Solid Landfill
3.4. Suburban Areas External to the Landfill
3.5. Coffee Roasting
3.6. Street Food Laboratory
3.7. Building Work
3.8. Use Indoor of Incense and Scented Candles
3.9. Dental Laboratory
3.10. Processing of Stones and Marbles
4. Principal Component Analysis
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jones, A.P. Indoor air quality and health. Atmos. Environ. 1999, 33, 4535–4564. [Google Scholar] [CrossRef]
- Guo, H.; Lee, S.C.; Chan, L.Y.; Li, W.M. Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ. Res. 2004, 94, 57–66. [Google Scholar] [CrossRef]
- Slezakova, K.; Castro, D.; Begonha, A.; Delerue-Matos, C.; Alvim-Ferraz, M.C.; Morais, S.; do Carmo Pereira, M. Air pollution from traffic emissions in Oporto, Portugal: Health and environmental implications. Microchem. J. 2011, 99, 51–59. [Google Scholar] [CrossRef]
- Wu, T.; Wang, X.M.; Li, D.J.; Yi, Z.G. Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes. Atmos. Environ. 2010, 44, 5065–5071. [Google Scholar] [CrossRef]
- Vilavert, L.; Nadal, M.; Figueras, M.; Domingo, J. Volatile organic compounds and bioaerosols in the vicinity of a municipal waste organic fraction treatment plant. Human health risks. Environ. Sci. Pollut. Res. 2012, 19, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Lu, W.; Li, D.; Wang, H. Temporal variation of trace compound emission on the working surface of a landfill in Beijing China. Atmos. Environ. 2014, 88, 230–238. [Google Scholar] [CrossRef]
- EPA/AWMA Int. Syrup. Report No. EPA/600/9–91/018; Publication Number VIP-21; Air and Waste Management Association: Pittsburgh, PA, USA; pp. 367–374.
- USEPA. An Introduction to Indoor Air Quality (IAQ)—Volatile Organic Compounds (VOCs). 2011. Available online: http://www.epa.gov/iaq/voc2.html (accessed on 9 January 2017). [Google Scholar]
- NRC. The Scientific Basis for Estimating Emissions from Animal Feeding Operations; National Academy Press: Washington, DC, USA, 2002. [Google Scholar]
- Sironi, S.; Capelli, L.; Céntola, P.; Del Rosso, R.; Grande, M. Odour emission factors for the prediction of odour emissions from plants for the mechanical and biological treatment of MSW. Atmos. Environ. 2006, 40, 7632–7643. [Google Scholar] [CrossRef]
- Sironi, S.; Capelli, L.; Céntola, P.; del Rosso, R.; Grande, M. Continuous monitoring of odours from a composting plant using electronic noses. Waste Manag. 2007, 27, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Capelli, L.; Sironi, S.; Céntola, P.; del Rosso, R.; Grande, M. Electronic noses for the continuous monitoring of odours from a wastewater treatment plant at specific receptors: Focus on training methods. Sens. Actuators 2008, 131, 53–62. [Google Scholar] [CrossRef]
- Capelli, L.; Sironi, S.; del Rosso, R.; Centola, P.; Grande, M. A comparative and critical evaluation of odour assessment methods on a landfill site. Atmos. Environ. 2008, 42, 7050–7058. [Google Scholar] [CrossRef]
- Giungato, P.; de Gennaro, G.; Barbieri, P.; Briguglio, S.; Amodio, M.; de Gennaro, L.; Lasigna, F. Improving recognition of odors in a waste management plant by using electronic noses with different technologies, gaschromatographyemass spectrometry/olfactometry and dynamic olfactometry. J. Clean. Prod. 2016, 133, 1395–1402. [Google Scholar] [CrossRef]
- Fitzgerald, J.E.; Bui, E.T.; Simon, N.M.; Fennir, H. Artificial nose technology: Status and prospects in diagnostics. Trend Biotechnol. 2017, 36, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Rodríguez, M.; Ruiz-Montoya, M.; Giraldez, I.; López, R.; Madejón, E.; Díaz, M.J. Use of electronic nose and GC-MS in detection and monitoring some VOC. Atmos. Environ. 2012, 51, 278–285. [Google Scholar] [CrossRef]
- Tsai, C.; Chen, M.; Ye, A.; Chou, M.; Shen, S.; Mao, I. The relationship of odor concentration and the critical components emitted from food waste composting plants. Atmos. Environ. 2008, 42, 8246–8251. [Google Scholar] [CrossRef]
- Mannino, M.R.; Orecchio, S. Polycyclic aromatic hydrocarbons (PAHs) in indoor dust matter of Palermo (Italy) area: Extraction, GC-MS analysis, distribution and sources. Atmos. Environ. 2008, 42, 1801–1817. [Google Scholar] [CrossRef]
- Orecchio, S. Polycyclic aromatic hydrocarbons (PAHs) in indoor emission from decorative candles. Atmos. Environ. 2011, 45, 1888–1895. [Google Scholar] [CrossRef]
- Orecchio, S.; Amorello, D.; Barreca, S. Formaldehyde and total aldehydes in indoor air of public environments by voltammetry. Life Saf. Secur. 2015, 2, 14–21. [Google Scholar]
- Tolnai, B.; Hlavay, J.; Molle, D.; Prumke, H.-J.; Becker, H.; Dostler, M. Combination of canister and solid adsorbent sampling techniques for determination of volatile organic hydrocarbons. Microchem. J. 2000, 67, 163–169. [Google Scholar] [CrossRef]
- U.S. Environment Protection Agency. Supplement to EPA Compendium Method TO-15—Reduction of Method Detection Limits to Meet Vapor Intrusion Monitoring; U.S. Environment Protection Agency: Washington, DC, USA, 2009.
- Kelly, T.J.; Holdren, M.W. Applicability of Canisters for sample storage in the determination of hazardous air pollutants. Atmos. Environ. 1995, 29, 2595–2608. [Google Scholar] [CrossRef]
- Kelly, T.J.; Holdren, M.W. Final Report Applicability of Canister Sampling for Hazardous, Air Pollutants. Available online: https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryID=43053 (accessed on 7 January 2017).
- U.S. Environment Protection Agency. Compendium Method TO-14. The Determination of Volatile Organic Compounds (VOCs) in Ambient Air Using Summa Passivated Canister Sampling and Chromatographic Analysis; Environmental Monitoring Systems Laboratory: Research Triangle Park, Durham, NC, USA, 1988.
- Guida All’espressione Dell’incertezza di Misura. Available online: http://www.inrim.it/events/insegnanti/doc/Modulo_3-Norma_UNI-CEI_ENV_13005.pdf (accessed on 7 January 2017).
- EURACHEM/CITAC. EURACHEM/CITAC Guide—Measurement Uncertainty Arising from Sampling. Available online: www.eurachem.org/images/stories/Guides/pdf/Interpretation_with_expanded_uncertainty_2007_v1.pdf (accessed on 7 January 2017).
- EURACHEM/CITAC. Guide Quantifying Uncertainty in Analytical Measurement. Available online: www.eurachem.org/index.php/events/workshops/71-evmumv2012 (accessed on 7 January 2017).
- U.S. EPA. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air Center for Environmental Research Information Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 January 1999. Available online: http://www.epa.gov/ttnamti1/files/ambient/airtox/to-15r.pdf (accessed on 7 January 2017).
- Gianguzza, A.; Culotta, L.; Orecchio, S. Absorption of polycyclic aromatic hydrocarbons by pinus bark: Analytical method and use for environmental pollution monitoring in the Palermo area (Sicily, Italy). Environ. Res. 2008, 107, 371–379. [Google Scholar]
- Orecchio, S.; Amorello, D. Platinum and rhodium associated with the leaves of Nerium oleander L.; analytical method using voltammetry; assessment of air quality in the Palermo (Italy) area. Hazard. Mater. 2010, 174, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Orecchio, S. PAHs associated with leaves of Quercus ilex L.: Extraction, GC-MS analysis, distribution and sources. Assessment of air quality in the Palermo (Italy) area. Atmos. Environ. 2007, 41, 8669–8680. [Google Scholar] [CrossRef]
- Lung, S.C.C.; Kao, M.C.; Hu, S.C. Contribution of incense burning to indoor PM10 and particle-bound polycyclic aromatic hydrocarbons under two ventilation conditions. Indoor Air 2003, 13, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Wang, B. Characteristics of emissions of air pollutants from mosquito coils and candles burning in a large environmental chamber. Atmos. Environ. 2006, 40, 2128–2138. [Google Scholar] [CrossRef]
- Lau, C.; Fiedler, H.; Hutzinger, O.; Schwind, K.H.; Hosseinpour, J. Levels of selected organic compounds in materials for candle production and human exposure to candle emissions. Chemosphere 1997, 34, 1623–1630. [Google Scholar] [CrossRef]
- Krol, S.; Zabiegała, B.; Namiesnik, J. Monitoring VOCs in atmospheric air II. Sample collection and preparation. Trends Anal. Chem. 2010, 29, 1101–1112. [Google Scholar] [CrossRef]
- Heo, G.S.; Lee, J.H.; Kim, D.W.; Lee, D.W. Comparison of analytical methods for ozone precursors using adsorption tube and canister. Microchem. J. 2001, 70, 275–283. [Google Scholar] [CrossRef]
- Dincer, F.; Odabasi, M.; Muezzinoglu, A. Chemical characterization of odorous gases at a landfill site by gas chromatography-mass spectrometry. J. Chromatogr. 2006, 112, 2222–2229. [Google Scholar] [CrossRef] [PubMed]
- Singer, B.C.; Harley, R.A. A fuel-based inventory of motor vehicle exhaust emissions in the Los Angeles area during summer 1997. Atmos. Environ. 2000, 34, 1783–1795. [Google Scholar] [CrossRef]
- Marr, L.C.; Harley, R.A. Spectral analysis of weekday-weekend differences in ambient ozone, nitrogen oxide, and non-methane hydrocarbon time series in California. Atmos. Environ. 2002, 36, 2327–2335. [Google Scholar] [CrossRef]
- Rogers, T.M.; Grimsrud, E.P.; Herndon, S.C.; Jayne, J.T.; Kolb, C.E.; Allwine, E.; Westberg, H.; Lamb, B.K.; Zavala, M.; Molina, L.T.; et al. On-road measurements of volatile organic compounds in the Mexico city metropolitan area using proton transfer reaction mass spectrometry. Int. J. Mass. Spectrom. 2006, 252, 26–37. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, W. Assessment of ambient volatile organic compounds (VOCs) near major roads in urban Nanjing, China. Atmos. Res. 2008, 89, 289–297. [Google Scholar] [CrossRef]
- Sweet, C.W.; Vermette, S.J. Toxic volatile organic compounds in urban air in Illinois. Environ. Sci. Technol. 1992, 26, 165–173. [Google Scholar] [CrossRef]
- Orecchio, S. Contamination from polycyclic aromatic hydrocarbons (PAHs) in the soil of a botanical garden localized next to a former manufacturing gas plant in Palermo (Italy). Hazard. Mater. 2010, 180, 590–601. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.R.; Braithwaite, A.; Hills, C.C. Trace organic compounds in landfill gas at seven UK waste disposal sites. Environ. Sci. Technol. 1997, 31, 1054–1061. [Google Scholar] [CrossRef]
- Thomas, C.L.; Barlaz, M.A. Production of non-methane organic compounds during refuse decomposition in a laboratory-scale landfill. Waste Manag. Res. 1999, 17, 205–211. [Google Scholar] [CrossRef]
- Maleknia, S.D.; Berger, J.; Odermatt, J. Identification of volatile organic compounds of solid waste by pyrolysis GC/MS for environmental impact and green manufacturing. Air Qual. Clim. Chang. 2016, 50, 22–25. [Google Scholar]
- Maleknia, S.D.; Parcsi, G.; Stuetz, R. Analysis of volatile organic compounds from building materials for indoor air quality assessment. Air Qual. Clim. Chang. 2014, 48, 13–18. [Google Scholar]
- Orecchio, S.; Indelicato, R.; Barreca, S. The distribution of phthalate esters in indoor dust of Palermo (Italy). Environ. Geochem. Hlealth 2013, 35, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Orecchio, S.; Indelicato, R.; Barreca, S. Determination of selected phthalates by gas chromatography-mass spectrometry in mural paintings from Palermo (Italy). Microchem. J. 2014, 114, 187–191. [Google Scholar] [CrossRef]
- Orecchio, S.; Indelicato, R.; Barreca, S.; Pace, A. Photodegradation of selected phthalates on mural painting surfaces under UV light irradiation. Microchem. J. 2014, 114, 192–196. [Google Scholar]
N° | Emission | Description | Coordinates |
---|---|---|---|
1 | Urban traffic | Indipendenza Square | 38°06′38.67″ N–13°21′04.30″ E |
2 | Urban traffic | Messina Marine St. | 38°06′54.63″ N–13°22′33.50″ E |
3 | Urban traffic | Re Ruggero St. | 38°06′31.96″ N–13°21′14.39″ E |
4 | Urban traffic | Basile St. | 38°05′57.57″ N–13°20′45.58″ E |
5 | Urban traffic | Tukory St. | 38°06′30.95″ N–13°21′30.90″ E |
6 | Urban traffic | Strasburgo St. | 38°09′24.75″ N–13°19′34.87″ E |
7 | Urban traffic | Leonardo da Vinci Av | 38°07′36.27″ N–13°19′14.90″ E |
8 | Urban traffic | Indipendenza Square 2 | 38°06′38.67″ N–13°21′04.30″ E |
9 | Urban traffic | Michelangelo St | 38°07′49.18″ N–13°18′18.88″ E |
10 | Urban traffic | Orleans Park | 38°06′35.09″ N–13°21′30.90″ E |
11 | Fuel | Gasoline | 38°06′52.22″ N–13°20′16.87″ E |
11a | Fuel combustion | Gasoline combustion | 38°06′52.22″ N–13°20′16.87″ E |
12 | Fuel | Diesel fuel | 38°06′52.22″ N–13°20′16.87″ E |
12a | Fuel combustion | Diesel fuel combustion | 38°06′52.22″ N–13°20′16.87″ E |
13 | Fuel distributor | Fuel distributor | 38°04′56.83″ N–13°25′55.05″ E |
14 | Waste emission | Landfill waste (Bellolampo) | 38°08′36.13″ N–13°16′17.09″ E |
15 | Waste emission | Landfill waste (leachate) | 38°08′36.13″ N–13°16′17.09″ E |
16 | Waste emission | Area adjacent to the landfill (7 km) | 38°08′13.38″ N–13°16′19.94″ E |
17 | Waste emission | Area adjacent to a landfill | 38°08′06.46″ N–13°14′49.15″ E |
18 | Waste emission | Area adjacent to a landfill | 38°08′58.05″ N–13°17′52.87″ E |
19 | Waste emission | Armerina street | 38°07′47.65″ N–13°17′43.66″ E |
20 | Waste emission | Waste dumpster fire | 38°07′47.65″ N– 13°17′43.66″ E |
21 | Waste emission | Fire during plastic recycling | 37°58′32.04″ N–13°42′38.09″ E |
22 | Industrial emission | Citrus processing | 38°05′22.45″ N–13°24′03.50″ E |
23 | Professional emission | Hairdresser | 38°07′10.38″ N–13°21′05.82″ E |
24 | Professional emission | Dental laboratory | 38°07′07.12″ N–13°21′14.84″ E |
25 | Professional emission | Laboratory (stone and marble) | 38°09′58.89″ N–13°18′23.62″ E |
25a | Professional emission | Laboratory (stone and marble) | 38°09′58.89″ N–13°18′23.62″ E |
26 | Professional emission | Coffee roasting | 38°10′00.30″ N–13°18′19.99″ E |
27a | Professional emission | Street food (hall) | 38°06′29.21″ N–13°20′45.34″ E |
27b | Professional emission | Street food (cooking) | 38°06′29.21″ N–13°20′45.34″ E |
28 | Professional emission | Wood painting | 38°02′59.40″ N–13°29′43.34″ E |
29 | Indoor activity | Burning incense | 38°05′37.37″ N–13°24′05.08″ E |
30 | Indoor activity | Burning scented candles | 38°06′52.22″ N–13°20′16.87″ E |
Compound | RSD% Sampling | RSD% Analysis | RSD% Process | U% Process (k = 2) |
---|---|---|---|---|
Benzene | 7.2 | 10 | 12 | 25 |
Heptane | 10 | 14 | 17 | 34 |
Toluene | 7.1 | 12 | 14 | 28 |
Ethylbenzene | 9.3 | 14 | 17 | 34 |
p-Xylene, m-Xylene | 12 | 15 | 19 | 39 |
o-Xylene | 12 | 15 | 20 | 40 |
4-Ethyltoluene | 14 | 14 | 20 | 40 |
1,3,5 Trimethylbenzene | 15 | 14 | 20 | 40 |
1,2,4-Trimethylbenzene | 17 | 12 | 21 | 41 |
Station | Benzene | Heptane | Toluene | Etyl Benzene | m,p-Xylene | o-Xylene | 4 Ethyl Toluene | 1,3,5 Trimethyl Benzene | 1,2,4 Trimethyl Benzene |
---|---|---|---|---|---|---|---|---|---|
1 | 3.4 | 0.98 | 12 | 2.2 | 9.1 | 3.1 | 2.1 | 0.94 | 3.6 |
1 | 3.7 | 1.0 | 12 | 2.2 | 9.3 | 3.2 | 2.2 | 0.95 | 3.8 |
1 | 3.4 | 0.95 | 11 | 2.1 | 8.7 | 3.0 | 2.1 | 0.93 | 3.6 |
1 | 3.5 | 1.0 | 12 | 2.2 | 9.0 | 3.2 | 2.1 | 0.96 | 3.6 |
2 | 1.0 | 1.2 | 5.9 | 1.1 | 3.7 | 1.2 | <LOQ | <LOQ | 1.0 |
2 | 1.1 | 1.1 | 6.1 | 1.1 | 3.8 | 1.2 | <LOQ | <LOQ | 0.97 |
2 | 1.1 | 1.2 | 6.2 | 1.1 | 3.9 | 1.2 | <LOQ | <LOQ | 1.2 |
2 | 1.1 | 1.2 | 6.4 | 1.2 | 4.1 | 1.2 | <LOQ | <LOQ | 1.1 |
3 | 6.1 | 2.0 | 20 | 3.8 | 16 | 6.0 | 5.2 | 2.6 | 11 |
3 | 5.6 | 2.0 | 19 | 3.7 | 15 | 5.8 | 4.8 | 2.5 | 9.9 |
3 | 5.7 | 1.9 | 19 | 3.9 | 15 | 6.5 | 5.3 | 2.8 | 12 |
3 | 5.6 | 1.8 | 19 | 3.7 | 14 | 5.9 | 4.2 | 2.1 | 8.2 |
4 | 3.4 | 1.0 | 11 | 1.9 | 7.7 | 3.2 | 2.0 | 0.65 | 4.0 |
4 | 3.4 | 0.95 | 11 | 1.9 | 7.8 | 3.1 | 2.0 | 0.59 | 3.9 |
4 | 3.2 | 0.98 | 11 | 1.9 | 7.7 | 3.2 | 2.0 | 0.60 | 4.1 |
4 | 3.2 | 0.92 | 11 | 1.8 | 7.2 | 3.2 | 1.9 | 0.50 | 3.6 |
5 | 6.3 | 2.3 | 23 | 4.3 | 16 | 6.3 | 1.9 | 2.4 | 9.9 |
5 | 6.3 | 2.3 | 23 | 4.3 | 16 | 6.2 | 1.9 | 2.3 | 9.7 |
5 | 5.9 | 2.1 | 22 | 4.0 | 16 | 6.2 | 2.0 | 2.4 | 10 |
5 | 6.1 | 2.2 | 22 | 4.1 | 16 | 6.2 | 1.9 | 2.3 | 9.6 |
6 | 2.1 | 0.46 | 5.8 | 0.95 | 3.9 | 1.4 | 0.45 | <LOQ | 0.78 |
6 | 2.1 | 0.46 | 5.8 | 0.94 | 3.8 | 1.3 | 0.40 | <LOQ | 0.70 |
6 | 2.0 | 0.46 | 5.5 | 0.94 | 3.7 | 1.3 | 0.45 | <LOQ | 0.85 |
6 | 2.0 | 0.47 | 5.6 | 0.96 | 3.8 | 1.3 | 0.61 | <LOQ | 0.76 |
7 | 15 | 4.6 | 46 | 9.3 | 32 | 13 | 11 | 5.2 | 21 |
7 | 15 | 4.6 | 45 | 9.1 | 32 | 12 | 11 | 5.2 | 21 |
7 | 16 | 5.1 | 50 | 10 | 36 | 14 | 12 | 5.9 | 24 |
7 | 16 | 5.6 | 52 | 11 | 41 | 16 | 14 | 7.1 | 30 |
8 | 7.1 | 2.2 | 24 | 3.0 | 12 | 4.3 | 3.5 | 1.2 | 4.7 |
8 | 7.2 | 2.2 | 24 | 3.0 | 12 | 4.4 | 3.3 | 1.2 | 4.6 |
8 | 7.8 | 2.3 | 25 | 3.3 | 13 | 4.7 | 3.8 | 1.3 | 5.2 |
8 | 7.6 | 2.2 | 24 | 3.2 | 12 | 4.6 | 3.8 | 1.3 | 5.1 |
9 | 3.6 | 1.3 | 9.3 | 1.5 | 6.7 | 2.2 | 1.3 | 0.50 | 2.2 |
9 | 3.5 | 1.2 | 8.9 | 1.4 | 6.3 | 2.1 | 1.2 | 0.43 | 1.9 |
9 | 3.5 | 1.2 | 9.2 | 1.5 | 6.5 | 2.1 | 1.4 | 0.48 | 2.1 |
9 | 3.5 | 1.2 | 9.2 | 1.5 | 6.6 | 2.2 | 1.5 | 0.51 | 1.9 |
10 | 4.2 | 1.2 | 10 | 1.8 | 7.7 | 2.7 | 1.7 | 0.57 | 2.1 |
10 | 4.1 | 1.1 | 10 | 1.8 | 7.4 | 2.5 | 1.7 | 0.58 | 2.1 |
10 | 3.9 | 0.96 | 9.2 | 1.6 | 7.1 | 2.4 | 1.7 | 0.62 | 2.2 |
10 | 4.1 | 1.0 | 9.7 | 1.7 | 7.3 | 2.4 | 1.8 | 0.61 | 2.3 |
Compound/Activity | Gasoline | Exhaust Gasoline | Diesel | Exhaust Diesel | Urban Traffic | Petrol Pump | Waste Landfill | Leachate | Station 16 | Station 17 | Station 18 | Station 19 | Station 19 During Fire | Waste Dump Fire | Fire Plastic | Citrus Processing | Coffee Production | Food Street Laboratory | Food Street Laboratory |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1,2,4-trimethylbenzene | x | x | x | x | |||||||||||||||
2 methyl propene | x | ||||||||||||||||||
2-methyl-2-butene | x | x | |||||||||||||||||
2-methylfuran | x | ||||||||||||||||||
2-methylpentane | x | x | x | ||||||||||||||||
2-methylpentene | |||||||||||||||||||
3-methylhexane | |||||||||||||||||||
acetone | x | x | x | x | x | ||||||||||||||
acroleine | x | ||||||||||||||||||
benzaldehyde | x | x | |||||||||||||||||
benzene | x | x | x | x | x | x | x | x | x | x | x | ||||||||
butane | x | x | x | x | |||||||||||||||
cyclooctatetraene | |||||||||||||||||||
cyclopentene | x | x | x | ||||||||||||||||
decane | |||||||||||||||||||
decene | x | x | |||||||||||||||||
dichloromethane | x | x | x | x | x | x | x | ||||||||||||
ethanol | x | x | x | x | x | ||||||||||||||
ethylbenzene | x | x | x | x | x | ||||||||||||||
furan | x | x | |||||||||||||||||
heptane | |||||||||||||||||||
hexane | x | x | x | x | x | x | x | x | x | x | x | x | |||||||
indene | x | ||||||||||||||||||
isopentane | x | x | x | x | x | x | |||||||||||||
limonene | x | x | |||||||||||||||||
m,p-xylene | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||
methyl cyclohexane | |||||||||||||||||||
Methyl furan | x | x | |||||||||||||||||
methyl methacrylate | x | ||||||||||||||||||
naphthalene | |||||||||||||||||||
nitromethane | x | x | |||||||||||||||||
nonane | |||||||||||||||||||
octane | |||||||||||||||||||
p-cymene | x | x | x | ||||||||||||||||
pentane | x | x | |||||||||||||||||
propane | x | x | x | ||||||||||||||||
styrene | x | x | |||||||||||||||||
toluene | x | x | x | x | x | x | x | x | x | x | x | x | |||||||
undecene | x | ||||||||||||||||||
α pinene | x | ||||||||||||||||||
β-pinene | x | ||||||||||||||||||
γ-terpinene | x |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orecchio, S.; Fiore, M.; Barreca, S.; Vara, G. Volatile Profiles of Emissions from Different Activities Analyzed Using Canister Samplers and Gas Chromatography-Mass Spectrometry (GC/MS) Analysis: A Case Study. Int. J. Environ. Res. Public Health 2017, 14, 195. https://doi.org/10.3390/ijerph14020195
Orecchio S, Fiore M, Barreca S, Vara G. Volatile Profiles of Emissions from Different Activities Analyzed Using Canister Samplers and Gas Chromatography-Mass Spectrometry (GC/MS) Analysis: A Case Study. International Journal of Environmental Research and Public Health. 2017; 14(2):195. https://doi.org/10.3390/ijerph14020195
Chicago/Turabian StyleOrecchio, Santino, Michele Fiore, Salvatore Barreca, and Gabriele Vara. 2017. "Volatile Profiles of Emissions from Different Activities Analyzed Using Canister Samplers and Gas Chromatography-Mass Spectrometry (GC/MS) Analysis: A Case Study" International Journal of Environmental Research and Public Health 14, no. 2: 195. https://doi.org/10.3390/ijerph14020195
APA StyleOrecchio, S., Fiore, M., Barreca, S., & Vara, G. (2017). Volatile Profiles of Emissions from Different Activities Analyzed Using Canister Samplers and Gas Chromatography-Mass Spectrometry (GC/MS) Analysis: A Case Study. International Journal of Environmental Research and Public Health, 14(2), 195. https://doi.org/10.3390/ijerph14020195