Basigin rs8259 Polymorphism Confers Decreased Risk of Chronic Heart Failure in a Chinese Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Polymorphism Genotyping
2.3. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. Association of BSG rs8259 Polymorphism with Risk of CHF
3.3. Association of BSG rs8259 Polymorphism with BSG Expression
3.4. Association of BSG rs8259 Polymorphism with Progression of CHF
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ziaeian, B.; Fonarow, G.C. Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol. 2016, 13, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Lopes, L.R.; Elliott, P.M. Genetics of heart failure. Biochim. Biophys. Acta 2013, 1832, 2451–2461. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.L.; He, H.W.; Yang, Z.J. The angiotensinogen gene polymorphism is associated with heart failure among Asians. Sci. Rep. 2014, 4, 4207. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.J.; Liu, P.; He, H.R.; Zheng, X.W.; Wang, Y.; Yang, Q.T.; Dong, Y.L.; Lu, J. The association of ADORA2A and ADORA2B polymorphisms with the risk and severity of chronic heart failure: A case-control study of a northern Chinese population. Int. J. Mol. Sci. 2015, 16, 2732–2746. [Google Scholar] [CrossRef] [PubMed]
- He, G.H.; Cai, W.K.; Meng, J.R.; Ma, X.; Zhang, F.; Lu, J.; Xu, G.L. Relation of polymorphism of the histidine decarboxylase gene to chronic heart failure in Han Chinese. Am. J. Cardiol. 2015, 115, 1555–1562. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.-L.; Zhou, J.-P.; Kuang, D.-B.; Qi, H.; Peng, L.-M.; Yang, T.-L.; Li, X.; Zhang, W.; Zhou, H.-H.; Chen, X.-P. Considerable impacts of AGXT2 V140I polymorphism on chronic heart failure in the Chinese population. Atherosclerosis 2016, 251, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Sandip, C.; Tan, L.; Huang, J.; Li, Q.; Ni, L.; Cianflone, K.; Wang, D.W. Common variants in IL-17A/IL-17RA axis contribute to predisposition to and progression of congestive heart failure. Medicine 2016, 95, e4105. [Google Scholar] [CrossRef] [PubMed]
- Amir, O.; Smith, Y.; Zafrir, B.; Azzam, N.; Lewis, B.S.; Fares, F. Absence of the alpha(2c)-adrenoceptor Del322-325 allele is associated with increased mortality in patients with chronic systolic heart failure. J. Card. Fail. 2012, 18, 925–929. [Google Scholar] [CrossRef] [PubMed]
- Azzam, N.; Zafrir, B.; Fares, F.; Smith, Y.; Salman, N.; Nevzorov, R.; Amir, O. Endothelial nitric oxide synthase polymorphism and prognosis in systolic heart failure patients. Nitric Oxide 2015, 47, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Beber, A.R.; Polina, E.R.; Biolo, A.; Santos, B.L.; Gomes, D.C.; La Porta, V.L.; Olsen, V.; Clausell, N.; Rohde, L.E.; Santos, K.G. Matrix metalloproteinase-2 polymorphisms in chronic heart failure: relationship with susceptibility and long-term survival. PLoS ONE 2016, 11, e0161666. [Google Scholar] [CrossRef] [PubMed]
- Seizer, P.; Gawaz, M.; May, A.E. Cyclophilin A and EMMPRIN (CD147) in cardiovascular diseases. Cardiovasc. Res. 2014, 102, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Edwards, C.K.; Zhou, L. The biological function and clinical utilization of CD147 in human diseases: A review of the current scientific literature. Int. J. Mol. Sci. 2014, 15, 17411–17441. [Google Scholar] [CrossRef] [PubMed]
- Pennings, G.J.; Kritharides, L. CD147 in cardiovascular disease and thrombosis. Semin. Thromb. Hemost. 2014, 40, 747–755. [Google Scholar] [PubMed]
- Schmidt, R.; Bultmann, A.; Ungerer, M.; Joghetaei, N.; Bulbul, O.; Thieme, S.; Chavakis, T.; Toole, B.P.; Gawaz, M.; Schomig, A.; et al. Extracellular matrix metalloproteinase inducer regulates matrix metalloproteinase activity in cardiovascular cells: Implications in acute myocardial infarction. Circulation 2006, 113, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Sturhan, H.; Ungern-Sternberg, S.N.; Langer, H.; Gawaz, M.; Geisler, T.; May, A.E.; Seizer, P. Regulation of EMMPRIN (CD147) on monocyte subsets in patients with symptomatic coronary artery disease. Thromb. Res. 2015, 135, 1160–1164. [Google Scholar] [CrossRef] [PubMed]
- Nie, R.; Xie, S.; Du, B.; Liu, X.; Deng, B.; Wang, J. Extracellular matrix metalloproteinase inducer (EMMPRIN) is increased in human left ventricle after acute myocardial infarction. Arch. Med. Res. 2009, 40, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Seizer, P.; Ochmann, C.; Schonberger, T.; Zach, S.; Rose, M.; Borst, O.; Klingel, K.; Kandolf, R.; MacDonald, H.R.; Nowak, R.A.; et al. Disrupting the EMMPRIN (CD147)-cyclophilin A interaction reduces infarct size and preserves systolic function after myocardial ischemia and reperfusion. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1377–1386. [Google Scholar] [CrossRef] [PubMed]
- Seizer, P.; Geisler, T.; Bigalke, B.; Schneider, M.; Klingel, K.; Kandolf, R.; Stellos, K.; Schreieck, J.; Gawaz, M.; May, A.E. EMMPRIN and its ligand cyclophilin A as novel diagnostic markers in inflammatory cardiomyopathy. Int. J. Cardiol. 2013, 163, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Spinale, F.G.; Coker, M.L.; Heung, L.J.; Bond, B.R.; Gunasinghe, H.R.; Etoh, T.; Goldberg, A.T.; Zellner, J.L.; Crumbley, A.J. A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation 2000, 102, 1944–1949. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Satoh, K.; Ikeda, S.; Sunamura, S.; Otsuki, T.; Satoh, T.; Kikuchi, N.; Omura, J.; Kurosawa, R.; Nogi, M.; et al. Basigin promotes cardiac fibrosis and failure in response to chronic pressure overload in mice. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 636–646. [Google Scholar] [CrossRef] [PubMed]
- Zavadzkas, J.A.; Plyler, R.A.; Bouges, S.; Koval, C.N.; Rivers, W.T.; Beck, C.U.; Chang, E.I.; Stroud, R.E.; Mukherjee, R.; Spinale, F.G. Cardiac-restricted overexpression of extracellular matrix metalloproteinase inducer causes myocardial remodeling and dysfunction in aging mice. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H1394–H1402. [Google Scholar] [CrossRef] [PubMed]
- Huet, E.; Gabison, E.; Vallee, B.; Mougenot, N.; Linguet, G.; Riou, B.; Jarosz, C.; Menashi, S.; Besse, S. Deletion of extracellular matrix metalloproteinase inducer/CD147 induces altered cardiac extracellular matrix remodeling in aging mice. J. Physiol. Pharmacol. 2015, 66, 355–366. [Google Scholar] [PubMed]
- Su, Z.; Lin, R.; Chen, Y.; Shu, X.; Zhang, H.; Nie, R.; Wang, J.; Xie, S. Knockdown of EMMPRIN improves adverse remodeling mediated by IL-18 in the post-infarcted heart. Am. J. Transl. Res. 2015, 7, 1908–1916. [Google Scholar] [PubMed]
- Konstam, M.A.; Kramer, D.G.; Patel, A.R.; Maron, M.S.; Udelson, J.E. Left ventricular remodeling in heart failure: Current concepts in clinical significance and assessment. JACC Cardiovasc. Imaging 2011, 4, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.S.; Li, F.F.; Sun, L.D.; Li, D.; Su, J.; Kuang, Y.H.; Chen, G.; Chen, X.P.; Chen, X. A miRNA-492 binding-site polymorphism in BSG (basigin) confers risk to psoriasis in central south Chinese population. Hum. Genet. 2011, 130, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Mao, Y.; Wang, C.; Wang, Z. Association study between an SNP in CD147 and its expression with acute coronary syndrome in a Jiangsu Chinese population. Medicine 2015, 94, e1537. [Google Scholar] [CrossRef] [PubMed]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr.; Drazner, M.H.; Fonarow, G.C.; Geraci, S.A.; Horwich, T.; Januzzi, J.L.; et al. 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2013, 62, e147–e239. [Google Scholar] [CrossRef] [PubMed]
- GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science 2015, 348, 648–660. [Google Scholar]
- Li, H.Y.; Liu, Y.C.; Bai, Y.H.; Sun, M.; Wang, L.; Zhang, X.B.; Cai, B. SNP at miR-483-5p-binding site in the 3′-untranslated region of the BSG gene is associated with susceptibility to esophageal cancer in a Chinese population. Genet. Mol. Res. 2016. [Google Scholar] [CrossRef] [PubMed]
- Saito, A.; Fujikura-Ouchi, Y.; Kuramasu, A.; Shimoda, K.; Akiyama, K.; Matsuoka, H.; Ito, C. Association study of putative promoter polymorphisms in the neuroplastin gene and schizophrenia. Neurosci. Lett. 2007, 411, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Naka, I.; Patarapotikul, J.; Hananantachai, H.; Ohashi, J. Lack of association between BSG polymorphisms and cerebral malaria. Jpn. J. Infect. Dis. 2014, 67, 432–435. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Song, B.; Duan, X.; Long, Y.; Lu, J.; Li, Z.; Zeng, S.; Zhan, Q.; Yuan, M.; Yang, Q.; et al. Association of BSG genetic polymorphisms with atherosclerotic cerebral infarction in the Han Chinese population. Int. J. Neurosci. 2014, 124, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Gradman, A.H.; Alfayoumi, F. From left ventricular hypertrophy to congestive heart failure: Management of hypertensive heart disease. Prog. Cardiovasc. Dis. 2006, 48, 326–341. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Jin, R.; Zhu, X.; Yan, J.; Li, G. Function of CD147 in atherosclerosis and atherothrombosis. J. Cardiovasc. Transl. Res. 2015, 8, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Kullo, I.J. Geographic differences in allele frequencies of susceptibility SNPs for cardiovascular disease. BMC Med. Genet. 2011, 12, 55. [Google Scholar] [CrossRef] [PubMed]
Characteristics | CHF (n = 922) | Control (n = 1107) | p |
---|---|---|---|
Male (%) | 563 (61.1) | 647 (58.4) | 0.232 |
Age (years) | 61 ± 11 | 60 ± 8 | 0.173 |
SBP (mmHg) | 133.3 ± 25.6 | 114.4 ± 10.3 | <0.001 |
DBP (mmHg) | 79.4 ± 14.4 | 73.5 ± 7.3 | <0.001 |
TC (mmol/L) | 4.7 ± 1 | 3.9 ± 1.4 | <0.001 |
TG (mmol/L) | 1.8 ± 1.9 | 1.5 ± 1.3 | <0.001 |
HDL-C (mmol/L) | 1.3 ± 1 | 1.7 ± 0.7 | <0.001 |
LDL-C (mmol/L) | 2.4 ± 0.9 | 2.1 ± 0.6 | <0.001 |
Cigarette smoker within the past year (%) | 313 (33.9) | 283 (25.6) | <0.001 |
Dyslipidemia (%) | 266 (28.9) | 216 (19.5) | <0.001 |
Hypertension (%) | 596 (64.6) | 0 (0) | <0.001 |
Coronary heart disease (%) | 690 (74.8) | 0 (0) | <0.001 |
Diabetes mellitus (%) | 232 (25.2) | 0 (0) | <0.001 |
Models | Genotypes | CHF, n (%) | Control, n (%) | Unadjusted OR (95% CI) | p | * Adjusted OR (95% CI) | p |
---|---|---|---|---|---|---|---|
Entire cohort | |||||||
Additive | AA | 388 (42.1) | 422 (38.1) | 1.00 (reference) | 1.00 (reference) | ||
AT | 432 (46.8) | 529 (47.8) | 0.89 (0.74–1.07) | 0.215 | 0.88 (0.73–1.07) | 0.199 | |
TT | 102 (11.1) | 156 (14.1) | 0.84 (0.73–0.97) | 0.019 | 0.83 (0.72–0.96) | 0.010 | |
Dominant | AA | 388 (42.1) | 422 (38.1) | 1.00 (reference) | 1.00 (reference) | ||
AT/TT | 534 (57.9) | 685 (61.9) | 0.85 (0.71–1.01) | 0.070 | 0.84 (0.70–1.01) | 0.056 | |
Recessive | AA/AT | 820 (88.9) | 951 (85.9) | 1.00 (reference) | 1.00 (reference) | ||
TT | 102 (11.1) | 156 (14.1) | 0.87 (0.76–1.00) | 0.042 | 0.86 (0.75–0.98) | 0.027 | |
Hypertension | |||||||
Additive | AA | 253 (42.4) | 422 (38.1) | 1.00 (reference) | 1.00 (reference) | ||
AT | 279 (46.8) | 529 (47.8) | 0.88 (0.71–1.09) | 0.238 | 0.86 (0.69–1.07) | 0.182 | |
TT | 64 (10.7) | 156 (14.1) | 0.83 (0.70–0.98) | 0.024 | 0.80 (0.68–0.95) | 0.011 | |
Dominant | AA | 253 (42.4) | 422 (38.1) | 1.00 (reference) | 1.00 (reference) | ||
AT/TT | 343 (57.6) | 685 (61.9) | 0.84 (0.68–1.02) | 0.082 | 0.81 (0.66–1.00) | 0.049 | |
Recessive | AA/AT | 532 (89.3) | 951 (85.9) | 1.00 (reference) | 1.00 (reference) | ||
TT | 64 (10.7) | 156 (14.1) | 0.86 (0.73–1.00) | 0.050 | 0.84 (0.72–0.98) | 0.030 | |
Nonhypertension | |||||||
Additive | AA | 135 (41.4) | 422 (38.1) | 1.00 (reference) | 1.00 (reference) | ||
AT | 153 (46.9) | 529 (47.8) | 0.90 (0.69–1.18) | 0.455 | 0.91 (0.69–1.20) | 0.501 | |
TT | 38 (11.7) | 156 (14.1) | 0.87 (0.71–1.07) | 0.186 | 0.88 (0.72–1.09) | 0.247 | |
Dominant | AA | 135 (41.4) | 422 (38.1) | 1.00 (reference) | 1.00 (reference) | ||
AT/TT | 191 (58.6) | 685 (61.9) | 0.87 (0.68–1.12) | 0.284 | 0.88 (0.68–1.14) | 0.333 | |
Recessive | AA/AT | 288 (88.3) | 951 (85.9) | 1.00 (reference) | 1.00 (reference) | ||
TT | 38 (11.7) | 156 (14.1) | 0.90 (0.74–1.08) | 0.259 | 0.91 (0.75–1.10) | 0.314 | |
CHD | |||||||
Additive | AA | 290 (42.0) | 422 (38.1) | 1.00 (reference) | 1.00 (reference) | ||
AT | 324 (47.0) | 529 (47.8) | 0.89 (0.73–1.09) | 0.268 | 0.87 (0.71–1.07) | 0.193 | |
TT | 76 (11.0) | 156 (14.1) | 0.84 (0.72–0.98) | 0.031 | 0.81 (0.69–0.96) | 0.013 | |
Dominant | AA | 290 (42.0) | 422 (38.1) | 1.00 (reference) | 1.00 (reference) | ||
AT/TT | 400 (58.0) | 685 (61.9) | 0.85 (0.70–1.03) | 0.100 | 0.82 (0.67–1.01) | 0.056 | |
Recessive | AA/AT | 614 (89.0) | 951 (85.9) | 1.00 (reference) | 1.00 (reference) | ||
TT | 76 (11.0) | 156 (14.1) | 0.87 (0.75–1.01) | 0.059 | 0.85 (0.73–0.99) | 0.033 | |
Non-CHD | |||||||
Additive | AA | 98 (42.2) | 422 (38.1) | 1.00 (reference) | 1.00 (reference) | ||
AT | 108 (46.6) | 529 (47.8) | 0.88 (0.65–1.19) | 0.403 | 0.89 (0.65–1.21) | 0.455 | |
TT | 26 (11.2) | 156 (14.1) | 0.85 (0.67–1.07) | 0.166 | 0.86 (0.68–1.09) | 0.218 | |
Dominant | AA | 98 (42.2) | 422 (38.1) | 1.00 (reference) | 1.00 (reference) | ||
AT/TT | 134 (57.8) | 685 (61.9) | 0.84 (0.63–1.12) | 0.242 | 0.86 (0.64–1.15) | 0.300 | |
Recessive | AA/AT | 206 (88.8) | 951 (85.9) | 1.00 (reference) | 1.00 (reference) | ||
TT | 26 (11.2) | 156 (14.1) | 0.88 (0.70–1.09) | 0.245 | 0.89 (0.71–1.12) | 0.314 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.-P.; Hu, X.-L.; Yang, Y.-L.; Zhang, Y.-J.; Zhou, J.-P.; Peng, L.-M.; Tang, J.; Chen, X.-P. Basigin rs8259 Polymorphism Confers Decreased Risk of Chronic Heart Failure in a Chinese Population. Int. J. Environ. Res. Public Health 2017, 14, 211. https://doi.org/10.3390/ijerph14020211
Li M-P, Hu X-L, Yang Y-L, Zhang Y-J, Zhou J-P, Peng L-M, Tang J, Chen X-P. Basigin rs8259 Polymorphism Confers Decreased Risk of Chronic Heart Failure in a Chinese Population. International Journal of Environmental Research and Public Health. 2017; 14(2):211. https://doi.org/10.3390/ijerph14020211
Chicago/Turabian StyleLi, Mu-Peng, Xiao-Lei Hu, Yong-Long Yang, Yan-Jiao Zhang, Ji-Peng Zhou, Li-Ming Peng, Jie Tang, and Xiao-Ping Chen. 2017. "Basigin rs8259 Polymorphism Confers Decreased Risk of Chronic Heart Failure in a Chinese Population" International Journal of Environmental Research and Public Health 14, no. 2: 211. https://doi.org/10.3390/ijerph14020211
APA StyleLi, M.-P., Hu, X.-L., Yang, Y.-L., Zhang, Y.-J., Zhou, J.-P., Peng, L.-M., Tang, J., & Chen, X.-P. (2017). Basigin rs8259 Polymorphism Confers Decreased Risk of Chronic Heart Failure in a Chinese Population. International Journal of Environmental Research and Public Health, 14(2), 211. https://doi.org/10.3390/ijerph14020211