Remote Sensing, Crowd Sensing, and Geospatial Technologies for Public Health: An Editorial
Acknowledgments
Conflicts of Interest
References
- Hay, S.I. An overview of remote sensing and geodesy for epidemiology and public health application. Adv. Parasitol. 2000, 47, 1–35. [Google Scholar] [PubMed]
- Cromley, E.K.; McLafferty, S.L. GIS and Public Health; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Jokar Arsanjani, J.; Bakillah, M. Understanding the potential relationship between the socio-economic variables and contributions to OpenStreetMap. Int. J. Digit. Earth 2015, 8, 861–876. [Google Scholar] [CrossRef]
- Arsanjani, T.J.; Javidan, R.; Nazemosadat, M.J.; Jokar Arsanjani, J.; Vaz, E. Spatiotemporal monitoring of Bakhtegan Lake’s areal fluctuations and an exploration of its future status by applying a cellular automata model. Comput. Geosci. 2015, 78, 37–43. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Tayyebi, A.; Vaz, E. GlobeLand30 as an alternative fine-scale global land cover map: Challenges, possibilities, and implications for developing countries. Habitat Int. 2016, 55, 25–31. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Vaz, E. An assessment of a collaborative mapping approach for exploring land use patterns for several European metropolises. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 329–337. [Google Scholar] [CrossRef]
- Antoniou, V.; Fonte, C.C.; See, L.; Estima, J.; Arsanjani, J.J.; Lupia, F.; Minghini, M.; Foody, G.; Fritz, S. Investigating the feasibility of geo-tagged photographs as sources of land cover input data. ISPRS Int. J. Geo-Inf. 2016, 5, 64. [Google Scholar] [CrossRef]
- Zhang, T.; Gong, W.; Wang, W.; Ji, Y.; Zhu, Z.; Huang, Y. Ground Level PM2.5 Estimates over China Using Satellite-Based Geographically Weighted Regression (GWR) Models Are Improved by Including NO2 and Enhanced Vegetation Index (EVI). Int. J. Environ. Res. Public Health 2016, 13, 1215. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Deng, F.; Xie, Z.; Hu, S.; Shen, S.; Shi, J.; Liu, D. Spatial Analysis of Severe Fever with Thrombocytopenia Syndrome Virus in China Using a Geographically Weighted Logistic Regression Model. Int. J. Environ. Res. Public Health 2016, 13, 1125. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, X.; Zhou, S.; Wu, S.; Zhu, Y.; Lu, C. Optimization of Sample Points for Monitoring Arable Land Quality by Simulated Annealing while Considering Spatial Variations. Int. J. Environ. Res. Public Health 2016, 13, 980. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Liu, G.; Zhu, Z.; Gong, W.; Ji, Y.; Huang, Y. Real-Time Estimation of Satellite-Derived PM2.5 Based on a Semi-Physical Geographically Weighted Regression Model. Int. J. Environ. Res. Public Health 2016, 13, 974. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Xue, B.; Xierali, I.M. Identifying the Uncertainty in Physician Practice Location through Spatial Analytics and Text Mining. Int. J. Environ. Res. Public Health 2016, 13, 930. [Google Scholar] [CrossRef] [PubMed]
- Young, S.G.; Carrel, M.; Malanson, G.P.; Ali, M.A.; Kayali, G. Predicting Avian Influenza Co-Infection with H5N1 and H9N2 in Northern Egypt. Int. J. Environ. Res. Public Health 2016, 13, 886. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Qian, T.; Xi, C.; Rui, Y.; Wang, J. Spatial Distribution Characteristics of Healthcare Facilities in Nanjing: Network Point Pattern Analysis and Correlation Analysis. Int. J. Environ. Res. Public Health 2016, 13, 833. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zhao, W.; Zhang, Q.; Yu, X.; Zheng, X.; Zhao, J.; Lv, M. Spatial Distribution, Sources Apportionment and Health Risk of Metals in Topsoil in Beijing, China. Int. J. Environ. Res. Public Health 2016, 13, 727. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Gong, W.; Mao, F.; Pan, Z.; Liu, B. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China. Int. J. Environ. Res. Public Health 2016, 13, 508. [Google Scholar] [CrossRef] [PubMed]
- Ebhuoma, O.; Gebreslasie, M. Remote Sensing-Driven Climatic/Environmental Variables for Modelling Malaria Transmission in Sub-Saharan Africa. Int. J. Environ. Res. Public Health 2016, 13, 584. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arsanjani, J.J. Remote Sensing, Crowd Sensing, and Geospatial Technologies for Public Health: An Editorial. Int. J. Environ. Res. Public Health 2017, 14, 405. https://doi.org/10.3390/ijerph14040405
Arsanjani JJ. Remote Sensing, Crowd Sensing, and Geospatial Technologies for Public Health: An Editorial. International Journal of Environmental Research and Public Health. 2017; 14(4):405. https://doi.org/10.3390/ijerph14040405
Chicago/Turabian StyleArsanjani, Jamal Jokar. 2017. "Remote Sensing, Crowd Sensing, and Geospatial Technologies for Public Health: An Editorial" International Journal of Environmental Research and Public Health 14, no. 4: 405. https://doi.org/10.3390/ijerph14040405
APA StyleArsanjani, J. J. (2017). Remote Sensing, Crowd Sensing, and Geospatial Technologies for Public Health: An Editorial. International Journal of Environmental Research and Public Health, 14(4), 405. https://doi.org/10.3390/ijerph14040405