Using Moss to Assess Airborne Heavy Metal Pollution in Taizhou, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Preparation and Analysis
2.3. Data Analysis
3. Results and Discussion
3.1. Quality Control of the Analysis
3.2. Heavy Metal Concentrations in the Moss Samples
3.3. Contamination Factors of Heavy Metals
3.4. Multivariate Analysis
3.5. Spatial Distribution of the Elements
3.5.1. Cadmium, Copper, Lead, and Zinc
3.5.2. Chromium and Nickel
3.5.3. Mercury
3.6. Assessment of Heavy Metal Pollution and Potential Ecological Risk
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization. Burden of Disease from Household Air Pollution for 2012; World Health Organization: Geneva, Switzerland, 2014; p. 17. [Google Scholar]
- Han, Y.M.; Du, P.X.; Cao, J.J.; Posmentier, E.S. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci. Total Environ. 2006, 355, 176–186. [Google Scholar]
- Maxhuni, A.; Lazo, P.; Kane, S.; Qarri, F.; Marku, E.; Harmens, H. First survey of atmospheric heavy metal deposition in Kosovo using moss biomonitoring. Environ. Sci. Pollut. Res. 2016, 23, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Nickel, S.; Schröder, W. Integrative evaluation of data derived from biomonitoring and models indicating atmospheric deposition of heavy metals. Environ. Sci. Pollut. Res. 2016, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Schroeter-Kermani, C.; Seiwert, M.; Rüther, M.; Conrad, A.; Schulz, C.; Wilhelm, M.; Wittsiepe, J.; Günsel, A.; Dobler, L.; et al. German health-related environmental monitoring: Assessing time trends of the general population’s exposure to heavy metals. Int. J. Hyg. Envirion. Health 2013, 216, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Markert, B.; Herpin, U.; Berlekamp, J.; Oehlmann, J.; Grodzinska, K.; Mankovska, B.; Suchara, I.; Siewers, U.; Weckert, V.; Lieth, H. A comparison of heavy metal deposition in selected Eastern European countries using the moss monitoring method, with special emphasis on the “Black Triangle”. Sci. Total Environ. 1996, 193, 85–100. [Google Scholar] [CrossRef]
- Harmens, H.; Norris, D.A.; Steinnes, E.; Kubin, E.; Piispanen, J.; Alber, R.; Aleksiayenak, Y.; Blum, O.; Coşkun, M.; Dam, M.; et al. Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe. Environ. Pollut. 2010, 158, 3144–3156. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.A.; Ederra, A.; Núñez, E.; Martı́nez-Abaigar, J.; Infante, M.; Heras, P.; Elı́as, M.J.; Mazimpaka, V.; Carballeira, A. Biomonitoring of metal deposition in northern Spain by moss analysis. Sci. Total Environ. 2002, 300, 115–127. [Google Scholar] [CrossRef]
- Blagnyte, R.; Paliulis, D. Research into heavy metals pollution of atmosphere applying moss as bioindicator: A literature review. Environ. Res. Eng. Manag. 2011, 54, 26–33. [Google Scholar]
- Broady, P.A. Life on land. In Exploring the Last Continent; Liggett, D., Storey, B., Cook, Y., Eds.; Springer: Berlin, Germany, 2015; pp. 201–228. [Google Scholar]
- Melaku, S.; Morris, V.; Raghavan, D.; Hosten, C. Seasonal variation of heavy metals in ambient air and precipitation at a single site in Washington, DC. Environ. Pollut. 2008, 155, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Pérez, A.L.; Anderson, K.A. DGT estimates cadmium accumulation in wheat and potato from phosphate fertilizer applications. Sci. Total Environ. 2009, 407, 5096–5103. [Google Scholar] [CrossRef] [PubMed]
- Okubo, A.; Takeda, S.; Obata, H. Atmospheric deposition of trace metals to the western North Pacific Ocean observed at coastal station in Japan. Atmos. Res. 2013, 129, 20–32. [Google Scholar] [CrossRef]
- Chamseddine, M.; Wided, B.A.; Guy, H.; Marie-Edith, C.; Fatma, J. Cadmium and copper induction of oxidative stress and antioxidative response in tomato (Solanum lycopersicon) leaves. Plant Growth Regul. 2009, 57, 89–99. [Google Scholar] [CrossRef]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Bradl, H.B. Heavy Metals in the Environment: ORIgin, Interaction and Remediation; Academic Press: London, UK, 2005. [Google Scholar]
- Rühling, Å.; Rasmussen, L.; Pilegaard, K.; Makinen, A.; Steinnes, E. Survey of atmospheric heavy metal deposition in the Nordic countries in 1985—Monitored by moss analysis. Nord 1987, 21, 1–10. [Google Scholar]
- Rühling, Å. AtmospheRIc Heavy Metal Deposition in Europe—Estimation Based on Moss Analysis; Nordic Council of Ministers: Copenhagen, Denmark, 1994. [Google Scholar]
- Rühling, Å.; Steinnes, E. Atmospheric Heavy Metal Deposition in Europe 1995–1996; Nordic Council of Ministers: Copenhagen, Denmark, 1998. [Google Scholar]
- Harmens, H.; Ilyin, I.; Mills, G.; Aboal, J.R.; Alber, R.; Blum, O.; Coşkun, M.; De Temmerman, L.; Fernández, J.Á.; Figueira, R.; et al. Country-specific correlations across Europe between modelled atmospheric cadmium and lead deposition and concentrations in mosses. Environ. Pollut. 2012, 166, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Harmens, H.; Norris, D.A.; Sharps, K.; Mills, G.; Alber, R.; Aleksiayenak, Y.; Blum, O.; Cucu-Man, S.M.; Dam, M.; De Temmerman, L.; et al. Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010. Environ. Pollut. 2015, 200, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Saxena, D.K.; Singh, S.; Srivastava, K. Atmospheric heavy metal deposition in Garhwal hill area (India): Estimation based on native moss analysis. Aerosol Air Qual. Res. 2008, 8, 94–111. [Google Scholar]
- Olajire, A.A. A survey of heavy metal deposition in Nigeria using the moss monitoring method. Environ. Int. 1998, 24, 951–958. [Google Scholar] [CrossRef]
- Schilling, J.S.; Lehman, M.E. Bioindication of atmospheric heavy metal deposition in the Southeastern US using the moss Thuidium delicatulum. Atmos. Environ. 2002, 36, 1611–1618. [Google Scholar] [CrossRef]
- An, L.; Cao, T.; Yu, Y.H. Bryophytes and environmental heavy metal pollution monitoring. Chin. J. Ecol. 2006, 25, 201–206. (In Chinese) [Google Scholar]
- Cao, T.; An, L.; Wang, M.; Lou, Y.; Yu, Y.; Wu, J.; Zhu, Z.; Qing, Y.; Janice, G. Spatial and temporal changes of heavy metal concentrations in mosses and its indication to the environments in the past 40 years in the city of Shanghai, China. Atmos. Environ. 2008, 42, 5390–5402. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, P.; Fang, Y.M. Monitoring airborne heavy metal using mosses in the City of Xuzhou, China. Bull. Environ. Contam. Toxicol. 2016, 96, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhang, Q.; Wang, G.G.; Fang, Y.M. Atmospheric deposition of heavy metals in Wuxi, China: Estimation based on native moss analysis. Environ. Monit. Assess. 2016, 188, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Harmens, H.; Norris, D.A.; Koerber, G.R.; Buse, A.; Steinnes, E.; Rühling, Å. Temporal trends (1990–2000) in the concentration of cadmium, lead and mercury in mosses across Europe. Environ. Pollut. 2008, 151, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Zhou, Q.; Koval, P.V. Flowering stage characteristics of cadmium hyperaccumulator Solanum. nigrum L. and their significance to phytoremediation. Sci. Total Environ. 2006, 369, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Finkelshtein, M.Y.; Deev, K.V. GIS-INTEGRO a set of tools for development of information system for nature management. Geoinformatika 1999, 3, 22–24. [Google Scholar]
- Fernández, J.A.; Carballeira, A. A comparison of indigenous mosses and topsoils for use in monitoring atmospheric heavy metal deposition in Galicia (northwest Spain). Environ. Pollut. 2001, 114, 431–441. [Google Scholar] [CrossRef]
- Shakya, K.; Chettri, M.K.; Sawidis, T. Use of mosses for the survey of heavy metal deposition in ambient air of the Kathmandu valley applying active monitoring technique. Ecoprint Int. J. Ecol. 2014, 19, 17–29. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Ni, S.J.; Tuo, X.G. Calculation of heavy metals toxicity coefficient in the evaluation of potential ecological risk index. Environ. Sci. Technol. 2008, 28, 112–115. (In Chinese) [Google Scholar]
- Allajbeu, S.; Yushin, N.S.; Qarri, F.; Duliu, O.G.; Lazo, P.; Frontasyeva, M.V. Atmospheric deposition of rare earth elements in Albania studied by the moss biomonitoring technique, neutron activation analysis and GIS technology. Environ. Sci. Pollut. Res. 2016, 23, 14087–14101. [Google Scholar] [CrossRef] [PubMed]
- Harmens, H.; Mills, G.; Hayes, F.; Norris, D. Air Pollution and Vegetation: ICP Vegetation Annual Report 2010/2011. Available online: http://nora.nerc.ac.uk/15072/1/ICP_Vegetation_annual_report_2010-11.pdf (accessed on 18 January 2017).
- Wang, A.X. Mosses and Trees as Indicators for Heavy Metal Pollution in the Atmosphere of Nanjing City, China. PhD Thesis, Nanjing Forestry University, Nanjing, China, 2010. [Google Scholar]
- Qarri, F.; Lazo, P.; Stafilov, T.; Frontasyeva, M.; Harmens, H.; Bekteshi, L.; Baceva, K. Multi-elements atmospheric deposition study in Albania. Environ. Sci. Pollut. Res. 2014, 21, 2506–2518. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.J.; Liu, D.Y.; Wang, Y.B. Heavy metals accumulation by bryophytes. Chin. J. Ecol. 2006, 25, 541–545. (In Chinese) [Google Scholar]
- Zhang, M.; Hao, W. Concentrations and chemical forms of potentially toxic metals in road-deposited sediments from different zones of Hangzhou. China J. Environ. Sci. 2009, 21, 625–631. [Google Scholar] [CrossRef]
- UNEP/AMAP; Expert Group. Assessment Programme (AMAP) and United Nations Environment Programme (UNEP): Technical Background Report to the Global Atmospheric Mercury Assessment; AMAP/UNEP: Athens, Greece, 2008. [Google Scholar]
- Coskun, M.; Cayir, A.; Coskun, M.; Kilic, O. Heavy metal deposition in moss samples from East and South Marmara Region, Turkey. Environ. Monit. Assess. 2011, 174, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Berg, T.; Røyset, O.; Steinnes, E.; Vadset, M. Atmospheric trace element deposition: principal component analysis of ICP-MS data from moss samples. Environ. Pollut. 1995, 88, 67–77. [Google Scholar] [CrossRef]
Element | Certified Value (μg·g−1) | Obtained Value (μg·g−1) | RSD (%) |
---|---|---|---|
Cd | 0.17 | 0.16 | 4.4 |
Cr | 1.25 | 1.23 | 1.8 |
Cu | 6.6 | 6.3 | 1.8 |
Hg | 150 | 147 | 1.4 |
Ni | 1.1 | 1.2 | 4.9 |
Pb | 9.7 | 9.3 | 0.73 |
Zn | 18 | 18 | 2.5 |
Parameter | Cd | Cr | Cu | Hg | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|
Minimum | 0.05 | 6.55 | 14.48 | 0.13 | 5.85 | 8.75 | 63.28 |
Maximum | 3.50 | 83.65 | 116.55 | 0.79 | 48.07 | 89.45 | 1096.25 |
Range | 3.45 | 77.1 | 102.07 | 0.66 | 42.22 | 80.7 | 1032.97 |
Median | 0.93 | 26.05 | 40.89 | 0.47 | 17.79 | 39.18 | 198.86 |
Mean | 1.05 | 30.92 | 48.00 | 0.49 | 20.95 | 44.18 | 232.83 |
SD | 0.59 | 18.03 | 23.91 | 0.14 | 10.82 | 21.64 | 171.84 |
CV% | 56.2 | 58.3 | 49.8 | 28.6 | 51.6 | 49.0 | 73.8 |
Skewness | 1.36 | 1.35 | 0.08 | −0.03 | 0.93 | 0.55 | 2.70 |
Kurtosis | 3.74 | 1.48 | −0.12 | −0.39 | −0.13 | −0.70 | 10.54 |
Elements | Taizhou (Current Study) | Wuxi [28] | Xuzhou [27] | Nanjing [38] | Europe (2010) [21] |
---|---|---|---|---|---|
Cd | 1.05 | 0.93 | 0.82 | 0.53 | 0.19 |
Cr | 30.92 | 15.1 | 26.3 | 8.2 | 1.50 |
Cu | 48.0 | 36.5 | 28.0 | 17.7 | 6.99 |
Ni | 20.95 | 10.1 | 20.1 | 5.5 | 1.82 |
Pb | 44.18 | 31.2 | 33.0 | 21.3 | 3.69 |
Zn | 232.83 | 206.3 | 155 | 74.9 | 32.9 |
Hg | 0.49 | - | - | - | 0.05 |
Parameter | Cd | Cr | Cu | Hg | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|
CF | 5.25 | 3.78 | 3.02 | 2.30 | 3.04 | 3.60 | 3.54 |
Classification | C4 | C4 | C3 | C3 | C3 | C4 | C4 |
Contamination | Moderate | Moderate | Slightly | Slightly | Slightly | Moderate | Moderate |
Elements | Cd | Cr | Cu | Hg | Ni | Pb |
---|---|---|---|---|---|---|
Cr | 0.163 | - | - | - | - | - |
Cu | 0.669 ** | 0.243 | - | - | - | - |
Hg | 0.087 | 0.217 | 0.056 | - | - | - |
Ni | 0.152 | 0.709 ** | 0.197 | 0.105 | - | - |
Pb | 0.710 ** | 0.344 ** | 0.739 ** | 0.168 | 0.342 ** | - |
Zn | 0.399 ** | 0.22 | 0.377 ** | 0.204 | 0.218 | 0.400 ** |
Variable | Factor 1 | Factor 2 |
---|---|---|
Cd | 0.885 | 0.021 |
Cr | 0.137 | 0.901 |
Cu | 0.873 | 0.094 |
Hg | 0.096 | 0.370 |
Ni | 0.116 | 0.880 |
Pb | 0.858 | 0.267 |
Zn | 0.565 | 0.239 |
Variance (%) | 0.439 | 0.204 |
Elements | Eri | Ecological Risk Level | |
---|---|---|---|
Range | Mean | ||
Cd | 11.90–833.33 | 250.89 | very high |
Cr | 0.17–2.15 | 0.79 | low |
Cu | 3.25–26.13 | 10.76 | low |
Hg | 36.82–219.38 | 135.17 | considerable |
Ni | 1.10–9.00 | 3.92 | low |
Pb | 1.67–17.07 | 8.43 | low |
Zn | 1.01–17.51 | 3.72 | low |
RI | 76.99–1002.16 | 413.69 | considerable |
Sampling | RI | Ecological Risk Level | Sampling | RI | Ecological Risk Level | Sampling | RI | Ecological Risk Level |
---|---|---|---|---|---|---|---|---|
1 | 318.37 | considerable | 21 | 718.52 | very high | 41 | 604.85 | very high |
2 | 206.89 | moderate | 22 | 389.10 | considerable | 42 | 386.39 | considerable |
3 | 433.78 | considerable | 23 | 452.68 | considerable | 43 | 479.84 | considerable |
4 | 398.21 | considerable | 24 | 420.14 | considerable | 44 | 575.87 | considerable |
5 | 1002.16 | very high | 25 | 354.30 | considerable | 45 | 356.64 | considerable |
6 | 445.11 | considerable | 26 | 366.93 | considerable | 46 | 392.78 | considerable |
7 | 335.97 | considerable | 27 | 479.28 | considerable | 47 | 545.06 | considerable |
8 | 386.12 | considerable | 28 | 597.02 | considerable | 48 | 272.84 | moderate |
9 | 200.23 | moderate | 29 | 544.00 | considerable | 49 | 414.05 | considerable |
10 | 530.62 | considerable | 30 | 323.09 | considerable | 50 | 447.52 | considerable |
11 | 440.77 | considerable | 31 | 302.40 | considerable | 51 | 338.45 | considerable |
12 | 259.17 | moderate | 32 | 274.23 | moderate | 52 | 651.51 | very high |
13 | 351.77 | considerable | 33 | 303.85 | considerable | 53 | 396.90 | considerable |
14 | 174.91 | moderate | 34 | 278.91 | moderate | 54 | 525.51 | considerable |
15 | 316.33 | considerable | 35 | 372.57 | considerable | 55 | 655.96 | very high |
16 | 578.96 | considerable | 36 | 425.53 | considerable | 56 | 389.70 | considerable |
17 | 401.93 | considerable | 37 | 323.95 | considerable | 57 | 665.82 | very high |
18 | 76.99 | low | 38 | 318.73 | considerable | 58 | 216.36 | moderate |
19 | 349.57 | considerable | 39 | 313.43 | considerable | 59 | 777.54 | very high |
20 | 354.72 | considerable | 40 | 290.80 | moderate | 60 | 316.00 | considerable |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Chen, Q.; Liu, C.; Fang, Y. Using Moss to Assess Airborne Heavy Metal Pollution in Taizhou, China. Int. J. Environ. Res. Public Health 2017, 14, 430. https://doi.org/10.3390/ijerph14040430
Zhou X, Chen Q, Liu C, Fang Y. Using Moss to Assess Airborne Heavy Metal Pollution in Taizhou, China. International Journal of Environmental Research and Public Health. 2017; 14(4):430. https://doi.org/10.3390/ijerph14040430
Chicago/Turabian StyleZhou, Xiaoli, Qin Chen, Chang Liu, and Yanming Fang. 2017. "Using Moss to Assess Airborne Heavy Metal Pollution in Taizhou, China" International Journal of Environmental Research and Public Health 14, no. 4: 430. https://doi.org/10.3390/ijerph14040430
APA StyleZhou, X., Chen, Q., Liu, C., & Fang, Y. (2017). Using Moss to Assess Airborne Heavy Metal Pollution in Taizhou, China. International Journal of Environmental Research and Public Health, 14(4), 430. https://doi.org/10.3390/ijerph14040430