The Presence of Anti-Angiotensin II Type-1 Receptor Antibodies Adversely Affect Kidney Graft Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Data Extraction and Quality Assessment
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Studies
3.2. The Presence of AT1R-Abs and AR Risk
3.3. The Presence of AT1R-Abs and Risk of Kidney Graft Failure
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sayegh, M.H.; Carpenter, C.B. Transplantation 50 years later—Progress, challenges, and promises. N. Engl. J. Med. 2004, 351, 2761–2766. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Budde, K.; Lu, H.; Schmidt, D.; Liefeldt, L.; Glander, P.; Neumayer, H.H.; Rudolph, B. The severity of acute cellular rejection defined by Banff classification is associated with kidney allograft outcomes. Transplantation 2014, 97, 1146–1154. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.; Palanisamy, A.; Tsapepas, D.; Tanriover, B.; Crew, R.J.; Dube, G.; Ratner, L.E.; Cohen, D.J.; Radhakrishnan, J. Donor-specific antibodies adversely affect kidney allograft outcomes. J. Am. Soc. Nephrol. 2012, 23, 2061–2071. [Google Scholar] [CrossRef] [PubMed]
- Ahern, A.T.; Artruc, S.B.; DellaPelle, P.; Cosimi, A.B.; Russell, P.S.; Colvin, R.B.; Fuller, T.C. Hyperacute rejection of HLA-AB-identical renal allografts associated with B lymphocytes and endothelial reactive antibodies. Transplantation 1982, 33, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Jobert, A.; Rao, N.; Deayton, S.; Bennett, G.D.; Brealey, J.; Nolan, J.; Carroll, R.P.; Dragun, D.; Coates, P.T. Angiotensin II type 1 receptor antibody precipitating acute vascular rejection in kidney transplantation. Nephrology 2015, 20, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Hunyadi, L.; Catt, K.J. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol. Endocrinol. 2006, 20, 953. [Google Scholar] [CrossRef] [PubMed]
- Fuss, A.; Hope, C.M.; Deayton, S.; Bennett, G.D.; Holdsworth, R.; Carroll, R.P.; Coates, P.T. C4d-negative antibody-mediated rejection with high anti-angiotensin II type I receptor antibodies in absence of donor-specific antibodies. Nephrology 2015, 20, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.L.; Herlitz, H.; Schulze, W.; Wallukat, G.; Micke, P.; Eftekhari, P.; Sjögren, K.G.; Hjalmarson, A.; Müller-Esterl, W.; Hoebeke, J. Autoantibodies against the angiotensin receptor (AT1) in patients with hypertension. J. Hypertens. 2000, 18, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zheng, R.; Yang, L.; Zhang, X.; Zuo, L.; Yang, X.; Bai, K.; Song, L.; Tian, J.; Yang, J.; et al. Angiotensin type 1 receptor autoantibody from preeclamptic patients induces human fetoplacental vasoconstriction. J. Cell. Physiol. 2013, 228, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Cabral-Marques, O.; Riemekasten, G. Vascular hypothesis revisited: Role of stimulating antibodies against angiotensin and endothelin receptors in the pathogenesis of systemic sclerosis. Autoimmun. Rev. 2016, 15, 690–694. [Google Scholar] [CrossRef] [PubMed]
- Nankivell, B.J.; Kuypers, D.R. Diagnosis and prevention of chronic kidney allograft loss. Lancet 2011, 378, 1428–1437. [Google Scholar] [CrossRef]
- Lee, J.; Huh, K.H.; Park, Y.; Park, B.G.; Yang, J.; Jeong, J.C.; Lee, J.; Park, J.B.; Cho, J.H.; Lee, S.; et al. The clinicopathological relevance of pretransplant anti-angiotensin II type 1 receptor antibodies in renal transplantation. Nephrol. Dial. Transplant. 2015, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Méndez, E.A.; Arreola-Guerra, J.M.; Morales-Buenrostro, L.E.; Ramírez, J.B.; Calleja, S.; Castelán, N.; Salcedo, I.; Vilatobá, M.; Contreras, A.G.; Gabilondo, B.; et al. Pre-transplant angiotensin II type 1 receptor antibodies: A risk factor for decreased kidney graft function in the early post-transplant period? Clin. Transpl. 2014, 66, 343–350. [Google Scholar]
- Banasik, M.; Boratyńska, M.; Kościelska-Kasprzak, K.; Kamińska, D.; Bartoszek, D.; Zabińska, M.; Myszka, M.; Zmonarski, S.; Protasiewicz, M.; Nowakowska, B.; et al. The influence of non-HLA antibodies directed against angiotensin II type 1 receptor (AT1R) on early renal transplant outcomes. Transpl. Int. 2014, 27, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- In, J.W.; Park, H.; Rho, E.Y.; Shin, S.; Park, K.U.; Park, M.H.; Song, E.Y. Anti-angiotensin type 1 receptor antibodies associated with antibody-mediated rejection in patients without preformed HLA-donor-specific antibody. Transplant. Proc. 2014, 46, 3371–3374. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, E.; Arreola-Guerra, J.M.; Hernández-Méndez, E.A.; Salcedo, I.; Castelán, N.; Uribe-Uribe, N.O.; Vilatobá, M.; Contreras-Saldívar, A.G.; Sánchez-Cedillo, A.I.; Ramírez, J.B.; et al. Pretransplant angiotensin II type 1-receptor antibodies are a risk factor for earlier detection of de novo HLA donor-specific antibodies. Nephrol. Dial. Transplant. 2016, 31, 1738–1745. [Google Scholar] [CrossRef] [PubMed]
- Stang, A. Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2000, 25, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Giral, M.; Foucher, Y.; Dufay, A.; Van Huyen, J.P.; Renaudin, K.; Moreau, A.; Philippe, A.; Hegner, B.; Dechend, R.; Heidecke, H.; et al. Pretransplant sensitization against angiotensin II type 1 receptor is a risk factor for acute rejection and graft loss. Am. J. Transplant. 2013, 13, 2567–2576. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, M.; Rebellato, L.M.; Cai, J.; Hopfield, J.; Briley, K.P.; Haisch, C.E.; Catrou, P.G.; Bolin, P.; Parker, K.; Kendrick, W.T.; et al. Higher risk of kidney graft failure in the presence of anti-angiotensin II type-1 receptor antibodies. Am. J. Transplant. 2013, 13, 2577–2589. [Google Scholar] [CrossRef] [PubMed]
- Carroll, R.P.; Riceman, M.; Hope, C.M.; Zeng, A.; Deayton, S.; Bennett, G.D.; Coates, P.T. Angiotensin II type-1 receptor antibody (AT1Rab) associated humoral rejection and the effect of peri operative plasma exchange and candesartan. Hum. Immunol. 2016, 77, 30418–30419. [Google Scholar] [CrossRef] [PubMed]
- Philogene, M.C.; Bagnasco, S.; Kraus, E.S.; Montgomery, R.A.; Dragun, D.; Leffell, M.S.; Zachary, A.A.; Jackson, A.M. Anti-Angiotensin II Type 1 Receptor and Anti-Endothelial Cell Antibodies: A Cross-Sectional Analysis of Pathological Findings in Allograft Biopsies. Transplantation 2016, 101, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Dzau, V.J. Tissue angiotensin and pathobiology of vascular disease: A unifying hypothesis. Hypertension 2001, 37, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ortega, M.; Lorenzo, O.; Suzuki, Y.; Rupérez, M.; Egido, J. Proinflammatory actions of angiotensins. Curr. Opin. Nephrol. Hypertens. 2001, 10, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Ingelfinger, J.R. Agonistic autoantibodies and rejection of renal allografts. N. Engl. J. Med. 2005, 352, 617–619. [Google Scholar] [CrossRef] [PubMed]
- Dragun, D. Agonistic antibody-triggered stimulation of Angiotensin II type 1 receptor and renal allograft vascular pathology. Nephrol. Dial. Transplant. 2007, 22, 1819–1822. [Google Scholar] [CrossRef] [PubMed]
- Dragun, D.; Müller, D.N.; Bräsen, J.H.; Fritsche, L.; Nieminen-Kelhä, M.; Dechend, R.; Kintscher, U.; Rudolph, B.; Hoebeke, J.; Eckert, D.; et al. Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection. N. Engl. J. Med. 2005, 352, 558–569. [Google Scholar] [CrossRef] [PubMed]
- Colvin, R.B. Antibody-mediated renal allograft rejection: Diagnosis and pathogenesis. J. Am. Soc. Nephrol. 2007, 18, 1046–1056. [Google Scholar] [CrossRef] [PubMed]
- Barz, D.; Friedrich, S.; Schuller, A.; Rummler, S. Antibodies against AT1-receptor in transplantation (diagnostics, treatment, clinical relevance). Atheroscler. Suppl. 2015, 18, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Pearl, M.H.; Leuchter, R.K.; Reed, E.F.; Zhang, Q.; Ettenger, R.B.; Tsai, E.W. Accelerated rejection, thrombosis, and graft failure with angiotensin II type 1 receptor antibodies. Pediatr. Nephrol. 2015, 30, 1371–1374. [Google Scholar] [CrossRef] [PubMed]
- Unal, H.; Jagannathan, R.; Bhat, M.B.; Karnik, S.S. Ligand-specific conformation of extracellular loop-2 in the angiotensin II type 1 receptor. J. Biol. Chem. 2010, 285, 16341–16350. [Google Scholar] [CrossRef] [PubMed]
- Kolmus, K.; Tavernier, J.; Gerlo, S. β2-Adrenergic receptors in immunity and inflammation: Stressing NF-κB. Brain Behav. Immun. 2015, 45, 297–310. [Google Scholar] [CrossRef] [PubMed]
- Saadi, S.; Takahashi, T.; Holzknecht, R.A.; Platt, J.L. Pathways to acute humoral rejection. Am. J. Pathol. 2004, 164, 1073–1080. [Google Scholar] [CrossRef]
- Coupel, S.; Giral-Classe, M.; Karam, G.; Morcet, J.F.; Dantal, J.; Cantarovich, D.; Blancho, G.; Bignon, J.D.; Daguin, P.; Soulillou, J.P.; et al. Ten-year survival of second kidney transplants: Impact of immunologic factors and renal function at 12 months. Kidney Int. 2003, 64, 674–680. [Google Scholar] [CrossRef] [PubMed]
- El Ters, M.; Grande, J.P.; Keddis, M.T.; Rodrigo, E.; Chopra, B.; Dean, P.G.; Stegall, M.D.; Cosio, F.G. Kidney allograft survival after acute rejection, the value of follow-up biopsies. Am. J. Transplant. 2013, 13, 2334–2341. [Google Scholar] [CrossRef] [PubMed]
- Billet, S.; Bardin, S.; Tacine, R.; Clauser, E.; Conchon, S. The AT1A receptor “gain-of-function” mutant N111S/∆329 is both constitutively active and hyperreactive to angiotensin II. Am. J. Physiol. Endocrinol. Metab. 2006, 290, E840–E848. [Google Scholar] [CrossRef] [PubMed]
Study Participants (n) | Study Design | Sex (% Male) | Age (Years) | First Transplant | Patients with Living Donors | Detection of AT1R-Abs | Follow-Up Period | Diagnosis of AR | Classification of AR | Induction | Maintenance | Adjustment | Quality Score * | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Robert et al., 2016 [23] | 145 men and women in Australia (monocentric) | Cohort (HR) | 66.2 | 51.3 | 87.6% | 16.6% | ELISA | 150 days | Allograft biopsies | Banff 2013 | Anti-IL2R antibody 93.79%, ATG 6.21% | NR | NR | High |
Philogene et al., 2016 [24] | 70 men and women in US (monocentric) | Case- control (OR) | 65.7 | 44.9 | 45.7% | 75.7% | ELISA | NA | Allograft biopsies | Banff 2009–2013 | 91.43% Anti-IL2R antibody/ATG | TAC + MMF | NR | High |
Cuevas et al., 2016 [16] | 141 men and women in Mexico (monocentric) | Cohort (HR) | 58.9 | 31.7 | 95.7% | NR | ELISA | 3.5 years | Allograft biopsies | Banff 2007 | Anti-IL2R antibody 75.10%, ATG 10.63% | MMF 87.9% | Donor age, Male-to-male donation, Class I %PRA | High |
Lee et al., 2015 [12] | 166 men and women in Korea (multicentric) | Cohort (HR) | 66.9 | 45.7 | 95.2% | 67.5% | ELISA | 12 months | Allograft biopsies | Banff | Anti-IL2R antibody 96.39%, ATG 3.61% | TAC + MMF ± Steroid 76.51%, CsA + MMF + Steroid 13.25%, Others 10.24% | Gender, Age, mismatch ≥5, Peak PRA Class I > 0%, Peak PRA Class II > 0%, Pretransplant DSA, ABO incompatibility | High |
In et al., 2014 [15] | 79 men and women in Korea (monocentric) | Case-control (OR) | 50.6 | 48.2 | 97.5% | 65.8% | ELISA | NA | Allograft biopsies | Banff 2007 | NR | NR | NR | High |
Banasik et al., 2014 [14] | 117 men and women in Poland (monocentric) | Cohort (HR) | 66.7 | 47.7 | 94.0% | NR | ELISA | 12 months | Allograft biopsies | Banff 2009 | NR | TAC + MMF + Steroid 69.23%, CsA + MMF + Steroid 30.77% | Retransplantation, Historical peak PRA, HLA mismatch ≥ 5 | High |
Hernández-Méndez et al., 2014 [13] | 103 men and women in Mexico (monocentric) | Cohort (RR) | 54.4 | 27.7 | 97.1% | NR | ELISA | 12 months | ≥25% increase in serum creatinine | NR | Anti-IL2R antibody 80.58%, ATG 5.83%, None 12.62% | TAC + MMF + Steroid | de novo DSA, recipient age, donor age | High |
Taniguchi et al., 2013 [22] | 351 men and women in US (monocentric) | Case-control (OR) | 56.1 | 48.3 | 91.7% | 46.4% | ELISA | NA | Allograft biopsies | Banff 1997 | Anti-IL2R antibody 41.6%, ATG 56.13%, Both 1.99% | TAC + MMF + Steroid 34.76%, CsA + MMF + Steroid 48.15%, Others 17.09% | Age, gender, race, primary disease, deceased donor, retransplant, pretransplant PRA > 10%, DGF, HLA mismatch, immunosuppression | High |
Giral et al., 2013 [21] | 599 men and women in French (monocentric) | Cohort (HR) | 60.9 | 48.9 | 87.0% | 94.2% | ELISA | 4 months a, 3 years b | Allograftbiopsies | Banff 2007 | Anti-IL2R antibody 49.6%, ATG 34% | TAC + MMF + Steroid 49.4%, CsA + MMF + Steroid 43.2%, Others 7.4% | HLA mismatch ≥ 5, Historical peak of anti-Class II PRA > 0%, Historical peak of anti-Class I PRA > 0%, Retransplantation | High |
Subgroup | N | Pooled RR (95% CI) | p | |
---|---|---|---|---|
Heterogeneity | Meta-Regression | |||
Mean age (years) | ||||
<46 | 4 | 1.47 (0.98, 1.95) | 0.19 | 0.34 |
>46 | 5 | 1.95 (1.15, 2.74) | 0.26 | |
Study type | ||||
Cohort (RR) | 1 | 2.47 (0.14, 4.80) | NA | 0.11 |
Cohort (HR) | 5 | 1.48 (0.88, 2.09) | 0.34 | |
Case-control (OR) | 3 | 1.77 (1.15, 2.39) | 0.59 | |
Patients with living donors (%) | ||||
>50 | 4 | 1.73 (0.71, 2.76) | 0.59 | 0.56 |
<50 | 2 | 1.99 (1.26, 2.71) | 0.69 | |
First transplant (%) | ||||
>90 | 6 | 1.73 (1.28, 2.19) | 0.06 | 0.33 |
<90 | 3 | 1.41 (0.29, 2.53) | 0.89 | |
Adjustment | ||||
Yes | 3 | 1.66 (1.25, 2.07) | 0.09 | 0.12 |
No | 6 | 1.67 (0.04, 3.38) | 0.71 | |
Country of origin | ||||
America | 5 | 1.55 (1.16, 1.93) | 0.15 | 0.38 |
Europe | 2 | 1.64 (0.37, 3.65) | 0.58 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, M.; Liang, J.; Zhang, M.; Liu, X.-H.; Ma, L. The Presence of Anti-Angiotensin II Type-1 Receptor Antibodies Adversely Affect Kidney Graft Outcomes. Int. J. Environ. Res. Public Health 2017, 14, 500. https://doi.org/10.3390/ijerph14050500
Zhang J, Wang M, Liang J, Zhang M, Liu X-H, Ma L. The Presence of Anti-Angiotensin II Type-1 Receptor Antibodies Adversely Affect Kidney Graft Outcomes. International Journal of Environmental Research and Public Health. 2017; 14(5):500. https://doi.org/10.3390/ijerph14050500
Chicago/Turabian StyleZhang, Jian, Mingxu Wang, Jun Liang, Ming Zhang, Xiao-Hong Liu, and Le Ma. 2017. "The Presence of Anti-Angiotensin II Type-1 Receptor Antibodies Adversely Affect Kidney Graft Outcomes" International Journal of Environmental Research and Public Health 14, no. 5: 500. https://doi.org/10.3390/ijerph14050500
APA StyleZhang, J., Wang, M., Liang, J., Zhang, M., Liu, X. -H., & Ma, L. (2017). The Presence of Anti-Angiotensin II Type-1 Receptor Antibodies Adversely Affect Kidney Graft Outcomes. International Journal of Environmental Research and Public Health, 14(5), 500. https://doi.org/10.3390/ijerph14050500