Nutritional Potential of Selected Insect Species Reared on the Island of Sumatra
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Nitrogen and the Crude Protein Content Determination by Kjeldahl
2.2.2. Determination of Fat Content by Soxhlet
2.2.3. Determination of Chitin
2.2.4. Determination of the Fatty Acid Profile
2.2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- FAO. Regional Overview of Food Insecurity Asia and the Pacific, Towards a Food Secure Asia and the Pacific; FAO, Regional Office for Asia and the Pacific: Bangkok, Thailand, 2015. [Google Scholar]
- UNICEF/WHO/WBG. Child Malnutrition Estimates; UNICEF/WHO/WBG, 2015. Available online: http://www.who.int/entity/nutgrowthdb/jme_master_2015.xlsx?ua=1 (accessed on 8 April 2017).
- Lipoeto, N.I.; Wattanapenpaiboon, N.; Malik, A.; Wahlqvist, M.L. The nutrition transition in West Sumatra, Indonesia. Asia Pac. J. Clin. Nutr. 2004, 13, 312–316. [Google Scholar] [PubMed]
- Defoliart, G.R. Insects as human food: Gene DeFoliart discusses some nutritional and economic aspects. Crop Prot. 1992, 11, 395–399. [Google Scholar] [CrossRef]
- Ramos-Elorduy, J.; Moreno, J.M.P.; Vázquez, A.I.; Landero, I.; Oliva-Rivera, H.; Camacho, V.H.M. Edible Lepidoptera in Mexico: Geographic distribution, ethnicity, economic and nutritional importance for rural people. J. Ethnobiol. Ethnomed. 2011, 7, 1–22. [Google Scholar] [CrossRef] [PubMed]
- EFSA Scientific Committee. Risk profile related to production and consumption of insects as food and feed. EFSA J. 2015, 13, 1–60. [Google Scholar]
- Meyer-Rochow, V.B. Can insects help to ease the problem of world food shortage? Search 1975, 6, 261–262. [Google Scholar]
- Ramos-Elorduy, J.; Gonzalez, E.A.; Hernandez, A.R.; Pino, J.M. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J. Econ. Entomol. 2002, 95, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Veldkamp, T.; van Duinkerken, G.; van Huis, A.; Iakemond, C.M.M.; Ottevanger, E.; Bosh, G.; van Boekel, M.A.J.S. Insects as a Sustainable Feed Ingredient in Pig and Poultry Diets—A Feasibility Study, 1st ed.; Wageningen UR Livestock Research: Wageningen, The Netherlands, 2012. [Google Scholar]
- Chakravorty, J.; Ghosh, S.; Meyer-Rochow, V.B. Chemical composition of Aspongopus nepalensis Westwood 1837 (Hemiptera; Pentatomidae), a common food insect of tribal people in Arunachal Pradesh (India). Int. J. Vitam. Nutr. Res. 2011, 81, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Chakravorty, J.; Ghosh, S.; Jung, C.; Meyer-Rochow, V.B. Nutritional composition of Chondacris rosea and Brachytrupes orientalis: Two common insects used as food by tribes of Arunachal Pradesh, India. J. Asia Pac. Entomol. 2014, 17, 407–415. [Google Scholar] [CrossRef]
- Chakravorty, J.; Ghosh, S.; Megu, K.; Jung, C.; Meyer-Rochow, V.B. Nutritional and anti-nutritional composition of Oecophylla smaragdina (Hymenoptera: Formicidae) and Odontotermes sp. (Isoptera: Termitidae): Two preferred edible insects of Arunachal Pradesh, India. J. Asia Pac. Entomol. 2016, 19, 711–720. [Google Scholar] [CrossRef]
- Fontaneto, D.; Tommaseo-Ponzetta, M.; Galli, C.; Risé, P.; Glew, R.H.; Paoletti, M.G. Differences in fatty acid composition between aquatic and terrestrial insects used as food in human nutrition. Ecol. Food Nutr. 2011, 50, 351–367. [Google Scholar] [CrossRef] [PubMed]
- ISO 1871:2009. Food and Feed Products—General Guidelines for the Determination of Nitrogen by the Kjeldahl Method, 2nd ed.; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- Soxhlet, F. Die gewichtsanalytische Bestimmung des Milchfettes (The weight analysis of milk fat). Dingler’s Polytech. J. 1879, 232, 461–465. [Google Scholar]
- Liu, S.; Sun, J.; Yu, L.; Zhang, C.; Bi, J.; Zhu, F.; Qu, M.; Jiang, C.; Yang, Q. Extraction and characterization of chitin from the beetle Holotrichia parallela motschulsky. Molecules 2012, 17, 4604–4611. [Google Scholar] [CrossRef] [PubMed]
- ISO 12966-2:2011. Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters, 1st ed.; ISO: Geneva, Switzerland, 2011. [Google Scholar]
- Bednářová, M. Possibilities of Using Insects as Food in the Czech Republic. Doctoral’s Thesis, Mendel University, Brno, Czech Republic, 2013. [Google Scholar]
- Finke, M.D. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol. 2002, 21, 269–285. [Google Scholar] [CrossRef]
- Barroso, F.G.; de Haro, C.; Sánchez-Muros, M.-J.; Venegas, E.; Martínez-Sánchez, A.; Pérez-Bañón, C. The potential of various insect species for use as food for fish. Aquaculture 2014, 422, 193–201. [Google Scholar] [CrossRef]
- Tzompa-Sosa, D.A.; Yi, L.; van Valenberg, H.J.F.; van Boekel, M.A.J.S.; Lakemond, C.M.M. Insect lipid profile: Aqaueous versus organic solvent-based extraction methods. Food Res. Int. 2014, 62, 1087–1094. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- Sánchez-Muros, M.J.; de Haro, C.; Sanz, A.; Trenzado, C.E.; Villareces, S.; Barroso, F.G. Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquac Nutr 2016, 22, 943–955. [Google Scholar] [CrossRef]
- Yi, L.; Lakemond, C.M.M.; Sagis, L.M.C.; Eisner-Schadler, V.; Huis, A.V.; Boekel, M.A.J.S.V. Extraction and characterisation of protein fractions from five insect species. Food Chem. 2013, 141, 3341–3348. [Google Scholar] [CrossRef] [PubMed]
- Mariod, A.A.; Abdel-Wahab, S.I.; Ain, N.M. Proximate amino acid, fatty acid and mineral composition of two Sudanese edible pentatomid insects. Int. J. Trop. Insect Sci. 2011, 31, 145–153. [Google Scholar] [CrossRef]
- Verkerk, M.C.; Tramper, J.; van Trijp, J.C.M.; Martens, D.E. Insect cells for human food. Biotechnol. Adv. 2007, 25, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Elorduy, J.; Moreno, J.M.P.; Prado, E.E.; Perez, M.A.; Otero, J.L.; De Guevara, O.L. Nutritional value of edible insects from the state of Oaxaca, Mexico. J. Food Compost. Anal. 1997, 10, 142–157. [Google Scholar] [CrossRef]
- Finke, M.D. Nutrient content of insects. In Encyclopedia of Entomology; Capinera, J.L., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 1563–1575. [Google Scholar]
- Van Broekhoven, S.; Oonincx, D.G.A.B.; van Huis, A.; van Loon, J.J.A. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 2015, 73, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Belluco, S.; Losasso, C.; Maggioletti, M.; Alonzi, C.C.; Paoletti, M.G.; Ricci, A. Edible insects in a food safety and nutritional perspective: A critical review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 296–313. [Google Scholar] [CrossRef]
- Paul, A.; Frederich, M.; Caparros Megido, R.; Alabi, T.; Malik, P.; Uyttenbroeck, R.; Francis, F.; Blecker, C.; Haubruge, E.; Lognay, G.; et al. Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. J. Asia Pac. Entomol. 2017, 20, 337–340. [Google Scholar] [CrossRef]
- Ghosh, S.; Lee, S.M.; Jung, Ch.; Meyer-Rochow, V.B. Nutritional composition of five commercial edible insects in South Korea. J. Asia Pac. Entomol. 2017, 20, 686–694. [Google Scholar] [CrossRef]
- Pipek, P. Technologie Masa I. (Meat Technology I), 3rd ed.; VŠCHT: Praha, Czech Republic, 1995. [Google Scholar]
- Steinhauser, L. Hygiena a Technologie Masa (Hygiene and Technology of Meat), 1st ed.; LAST: Brno, Czech Republic, 1995. [Google Scholar]
- Raksakantong, P.; Meeso, N.; Kubola, J.; Siriamornpun, S. Fatty acids and proximate composition of eight Thai edible terricolous insects. Food. Res. Int. 2010, 43, 350–355. [Google Scholar] [CrossRef]
- Kinyuru, J.N.; Konyole, S.O.; Roos, N.; Onyango, C.A.; Owino, V.O.; Owuor, B.O.; Estambale, B.B.; Friis, H.; Aagaard-Hansen, J.; Kenji, G.M. Nutrient composition of four species of winged termites consumed in western Kenya. J. Food Compost. Anal. 2013, 30, 120–124. [Google Scholar] [CrossRef]
- Kinyuru, J.N.; Mogendi, J.B.; Riwa, C.H.A.; Ndung’u, N.W. Edible insects—A novel source of essential nutrients for human diet: Learning from traditional knowledge. Anim. Front. 2015, 5, 14–19. [Google Scholar]
- Van Huis, A.; van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible insects: Future Prospects for Food and Feed Security, 1st ed.; Food and agriculture organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Paul, A.; Frederich, M.; Uyttenbroeck, R.; Malik, P.; Filocco, S.; Richel, A.; Heuskin, S.; Alabi, T.; Caparros Megido, R.; Franck, T.; et al. Nutritional composition and rearing potential of the meadow grasshopper (Chorthippus parallelus Zetterstedt). J. Asia Pac. Entomol. 2016, 19, 1111–1116. [Google Scholar] [CrossRef]
- Paul, A.; Frederich, M.; Uyttenbroeck, R.; Hatt, S.; Malik, P.; Lebecque, S.; Hamaidia, M.; Miazek, K.; Goffin, D.; Willems, L.; et al. Grasshoppers as a food source? A review [Les criquets: Une nouvelle source d’aliments? (synthèse bibliographique)]. Biotechnol. Agron. Soc. 2016, 20, 337–352. [Google Scholar]
- Adámková, A.; Kourimská, L.; Borkovcová, M.; Kulma, M.; Mlček, J. Nutritional values of edible Coleoptera (Tenebrio molitor, Zophobas morio and Alphitobius diaperinus) reared in the Czech Republic. Potravinarstvo 2016, 10, 663–671. [Google Scholar] [CrossRef]
- Finke, M.D. Complete nutrient content of four species of commercially available feeder insects fed enhanced diets during growth. Zoo Biol. 2015, 34, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Bai, Y.; Li, J.; Zhang, C. Nutritional value of the field cricket (Gryllus testaceus Walker). Entomol. Sin. 2004, 11, 275–283. [Google Scholar] [CrossRef]
- Paoletti, M.G.; Norberto, L.; Damini, R.; Musumeci, S. Human gastric juice contains chitinase that can degrade chitin. Ann. Nutr. Metab. 2007, 51, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Velíšek, J. Chemie Potravin (The Chemistry of Food), 2nd ed.; OSSIS: Tábor, Czech Republic, 2002. [Google Scholar]
- Finke, M.D. Estimate of chitin in raw whole insects. Zoo Biol. 2007, 26, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Marono, S.; Piccolo, G.; Loponte, R.; Meo, C.D.; Attia, Y.A.; Nizza, A.; Bovera, F. In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Ital. J. Anim. Sci. 2015, 14, 338–343. [Google Scholar] [CrossRef]
- Finke, M.D. Complete Nutrient Content of Four Species of Feeder Insects. Zoo Biol. 2013, 32, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Goodman, W.G. Chitin: A Magic Bullet? Food Insects Newslett. 1989, 2, 6–7. [Google Scholar]
- Akinnawo, O.; Ketiku, A.O. Chemical composition and fatty acid profile of edible larva of Cirina forda (Westwood). Afr. J. Biomed. Res. 2000, 3, 93–96. [Google Scholar]
- Longvah, T.; Mangthya, K.; Ramulu, P. Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chem. 2011, 128, 400–403. [Google Scholar] [CrossRef] [PubMed]
Species | Crude Protein [g/100 g] |
---|---|
Giant mealworm larva | 46 ± 1.0 a |
Common mealworm pupa | 51 ± 1.0 b |
Common mealworm larvae | 52 ± 0.4 b |
Field cricket nymph | 56 ± 3.1 b |
Species | Fat [g/100 g] |
---|---|
Giant mealworm larva | 35 ± 0.1 a |
Common mealworm pupa | 32 ± 0.5 a |
Common mealworm larvae | 31 ± 1.1 a |
Field cricket nymph | 32 ± 0.2 a |
Species | Chitin [g/100 g] |
---|---|
Giant mealworm larva | 6 ± 0.8 a |
Common mealworm pupa | 12 ± 0.2 b |
Common mealworm larvae | 13 ± 0.4 b |
Field cricket nymph | 7 ± 0.7 a |
Origin | Sumatra | Brno | Marion | Spain |
---|---|---|---|---|
Stage | Larvae | Larvae | Larvae | Larvae |
C12:0 | 0.7 ± 0.1 | 0.0 | - | 0.0 |
C14:0 | 1.4 ± 0.1 | 0.6 | 1.0 | 1.1 |
C16:0 | 29.1 ± 0.6 | 32.2 | 31.3 | 30.6 |
C16:1 (cis-9) | 1.2 ± 0.1 | 1.2 | 0.4 | 1.0 |
C17:0 | 0.2 ± 0.1 | 0.1 | 0.4 | 0.0 |
C18:0 | 6.4 ± 0.3 | 7.7 | 7.5 | 7.7 |
C18:1 (cis-9) | 35.7 ± 0.3 | 35.9 | 39.1 | 35.2 |
C18:2 (cis-9,12) | 23.4 ± 0.3 | 19.8 | 19.5 | 22.9 |
C20:0 | 0.1 ± 0.1 | 2.4 | 0.2 | - |
C18:3 (cis-9,12,15) | 1.6 ± 0.1 | 0.0 | 0.7 | 1.4 |
Reference | Bednářová, 2013, [18] | Finke, 2002, [19] | Barroso, 2014, [20] |
Origin | Sumatra | Sumatra | The Netherlands | Warsaw | Marion | Spain | Spain | Marion |
---|---|---|---|---|---|---|---|---|
Stage | Pupa | Larva | - | - | Larva | Larva | Larva | Adult |
C12:0 | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.2 | 0.2 | - | - | 0.0 | - |
C14:0 | 2.5 ± 0.2 | 2.6 ± 0.1 | 3.2 | 2.6 | 2.3 | 2.2 | 2.2 | 1.8 |
C16:0 | 21.3 ± 0.1 | 20.2 ± 0.3 | 18.8 | 18.1 | 18.5 | 16.7 | 16.7 | 18.9 |
C16:1 (cis-9) | 0.2 ± 0.1 | 0.4 ± 0.1 | 2.1 | 2.1 | 2.8 | 2.2 | 2.2 | 1.3 |
C17:0 | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.0 | 0.2 | - | - | 0.0 | 0.4 |
C18:0 | 4.8 ± 0.2 | 4.3 ± 0.5 | 2.5 | 3.9 | 3.2 | 3.4 | 3.4 | 5.8 |
C18:1 (cis-9) | 36.3 ± 0.3 | 37.7 ± 0.6 | 50.2 | 41.2 | 43.6 | 43.8 | 43.8 | 39.9 |
C18:2 (cis-9,12) | 31.9 ± 0.5 | 31.9 ± 0.2 | 22.1 | 29.9 | 28.2 | 30.5 | 30.6 | 30.5 |
C20:0 | 0.7 ± 0.1 | 0.6 ± 0.1 | 0.0 | 0.2 | 0.2 | - | - | 0.4 |
C18:3 (cis-9,12,15) | 1.8 ± 0.1 | 1.7 ± 0.1 | 0.9 | 1.6 | 1.1 | 1.1 | 1.1 | 0.9 |
Reference | Tzompa-Sosa, 2014, [21] | Zielińska, 2015, [22] | Finke, 2002, [19] | Sánches-Muros, 2016, [23] | Barroso, 2014, [20] | Finke, 2002, [19] |
Origin | Sumatra | Spain | Marion | Marion | The Netherlands | Spain |
---|---|---|---|---|---|---|
Kind | GA | GA | AD | AD | AD | AD |
Stage | Nymph | Adult | Adult | Nymph | - | Adult |
C12:0 | 2.7 ± 0.1 | 0.0 | - | - | 0.3 | 0.0 |
C14:0 | 0.7 ± 0.2 | 0.4 | 0.6 | 0.7 | 1.9 | 0.5 |
C16:0 | 22.0 ± 0.5 | 27.0 | 25.1 | 22.0 | 27.0 | 25.2 |
C16:1 (cis-9) | 1.3 ± 0.1 | 1.7 | 1.4 | 1.1 | 2.2 | 0.9 |
C17:0 | 1.2 ± 0.1 | 0.0 | 0.3 | 0.4 | 0.2 | 0.0 |
C18:0 | 8.2 ± 0.3 | 7.4 | 9.3 | 10.5 | 6.3 | 8.9 |
C18:1 (cis-9) | 25.5 ± 0.5 | 26.4 | 24.8 | 23.1 | 30.3 | 20.7 |
C18:2 (cis-9,12) | 35.7 ± 0.3 | 35.2 | 36.8 | 39.7 | 30.2 | 41.9 |
C20:0 | 1.3 ± 0.1 | - | 0.6 | 1.1 | 0.0 | - |
C18:3 (cis-9,12,15) | 1.3 ± 0.1 | 1.8 | 1.0 | 1.4 | 1.6 | 1.8 |
Reference | Barroso, 2014, [20] | Finke, 2002, [19] | Finke, 2002, [19] | Tzompa-Sosa, 2014, [21] | Barroso, 2014, [20] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adámková, A.; Mlček, J.; Kouřimská, L.; Borkovcová, M.; Bušina, T.; Adámek, M.; Bednářová, M.; Krajsa, J. Nutritional Potential of Selected Insect Species Reared on the Island of Sumatra. Int. J. Environ. Res. Public Health 2017, 14, 521. https://doi.org/10.3390/ijerph14050521
Adámková A, Mlček J, Kouřimská L, Borkovcová M, Bušina T, Adámek M, Bednářová M, Krajsa J. Nutritional Potential of Selected Insect Species Reared on the Island of Sumatra. International Journal of Environmental Research and Public Health. 2017; 14(5):521. https://doi.org/10.3390/ijerph14050521
Chicago/Turabian StyleAdámková, Anna, Jiří Mlček, Lenka Kouřimská, Marie Borkovcová, Tomáš Bušina, Martin Adámek, Martina Bednářová, and Jan Krajsa. 2017. "Nutritional Potential of Selected Insect Species Reared on the Island of Sumatra" International Journal of Environmental Research and Public Health 14, no. 5: 521. https://doi.org/10.3390/ijerph14050521
APA StyleAdámková, A., Mlček, J., Kouřimská, L., Borkovcová, M., Bušina, T., Adámek, M., Bednářová, M., & Krajsa, J. (2017). Nutritional Potential of Selected Insect Species Reared on the Island of Sumatra. International Journal of Environmental Research and Public Health, 14(5), 521. https://doi.org/10.3390/ijerph14050521