Assessing the Risk of Hg Exposure Associated with Rice Consumption in a Typical City (Suzhou) in Eastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Hg Analysis
2.2. Questionnaire Survey
2.3. Health Risk Assessment
2.4. Statistical Analysis
3. Results and Discussion
3.1. Mercury Contents in Rice in Suzhou City
3.2. Results of the Questionnaire Survey
3.3. Risk Assessment of Hg in Rice for Suzhou Residents
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rice, G.; Swartout, J.; Mahaffey, K.; Schoeny, R. Derivation of U.S. EPA’s oral reference dose (rfd) for methylmercury. Drug Chem. Toxicol. 2000, 23, 41–54. [Google Scholar] [CrossRef] [PubMed]
- National Research Council Committee on the Toxicological Effects. Toxicological Effects of Methylmercury; National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Mergler, D.; Anderson, H.A.; Chan, L.H.M.; Mahaffey, K.R.; Murray, M.; Sakamoto, M.; Stern, A.H. Methylmercury exposure and health effects in humans: A worldwide concern. Ambio 2007, 36, 3–11. [Google Scholar] [CrossRef]
- Gueguen, M.; Amiard, J.C.; Arnich, N.; Badot, P.M.; Claisse, D.; Guerin, T.; Vernoux, J.P. Shellfish and residual chemical contaminants: Hazards, monitoring, and health risk assessment along French coasts. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: New York, NY, USA, 2011; Volume 213, pp. 55–111. [Google Scholar]
- Peng, Q.; Nunes, L.M.; Greenfield, B.K.; Dang, F.; Zhong, H. Are chinese consumers at risk due to exposure to metals in crayfish? A bioaccessibility-adjusted probabilistic risk assessment. Environ. Int. 2016, 88, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.L.; Xu, X.R.; Yu, S.; Cheng, H.; Peng, J.X.; Hong, Y.G.; Feng, X.B. Mercury contamination in fish and human hair from Hainan island, south China sea: Implication for human exposure. Environ. Res. 2014, 135, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.M.; Scheuhammer, A.M.; Ferran, A.; Loupelle, C.; Holloway, J.; Weech, S. Impacts of mercury on freshwater fish-eating wildlife and humans. Hum. Ecol. Risk Assess. 2003, 9, 867–883. [Google Scholar] [CrossRef]
- Dorea, J.G. Persistent, bioaccumulative and toxic substances in fish: Human health considerations. Sci. Total Environ. 2008, 400, 93–114. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, Z.Y.; Hu, Y.; Yang, H. Potential risk assessment of heavy metals by consuming shellfish collected from Xiamen, China. Environ. Sci. Pollut. Res. 2013, 20, 2937–2947. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, J.K.; Rissanen, T.H.; Voutilainen, S.; Tuomainen, T.-P. Mercury as a risk factor for cardiovascular diseases. J. Nutr. Biochem. 2007, 18, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Grump, K.S.; Kjellström, T.; Shipp, A.M.; Silvers, A.; Stewart, A. Influence of prenatal mercury exposure upon scholastic and psychologica test performance: Benchmark analysis of a New Zealand cohort. Risk Anal. 1998, 18, 701–713. [Google Scholar] [CrossRef]
- Myers, G.J.; Davidson, P.W.; Cox, C.; Shamlaye, C.F.; Palumbo, D.; Cernichiari, E.; Sloane-Reeves, J.; Wilding, G.E.; Kost, J.; Huang, L.S.; et al. Prenatal methylmercury exposure from ocean fish consumption in the seychelles child development study. Lancet 2003, 361, 1686–1692. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, X.; Larssen, T.; Shang, L.; Li, P. Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L.) grain. Environ. Sci. Technol. 2010, 44, 4499–4504. [Google Scholar] [CrossRef] [PubMed]
- Qiu, G.; Feng, X.; Meng, B.; Wang, X. Methylmercury in rice (Oryza sativa L.) grown from the Xunyang Hg mining area, Shanxi province, northwestern China. Pure Appl. Chem. 2012, 84, 281–289. [Google Scholar]
- Zhang, H.; Feng, X.; Larssen, T.; Qiu, G.; Vogt, R.D. In inland China, rice, rather than fish, is the major pathway for methylmercury exposure. Environ. Health Perspect. 2010, 118, 1183–1188. [Google Scholar] [CrossRef] [PubMed]
- Windham-Myers, L.; Fleck, J.A.; Ackerman, J.T.; Marvin-DiPasquale, M.; Stricker, C.A.; Heim, W.A.; Bachand, P.A.M.; Eagles-Smith, C.A.; Gill, G.; Stephenson, M.; et al. Mercury cycling in agricultural and managed wetlands: A synthesis of methylmercury production, hydrologic export, and bioaccumulation from an integrated field study. Sci. Total Environ. 2014, 484, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Du, B.Y.; Chan, H.M.; Feng, X.B. Human inorganic mercury exposure, renal effects and possible pathways in Wanshan mercury mining area, China. Environ. Res. 2015, 140, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Strickman, R.J.; Mitchell, C.R.J. Accumulation and translocation of methylmercury and inorganic mercury in oryza sativa: An enriched isotope tracer study. Sci. Total Environ. 2017, 574, 1415–1423. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Li, P.; Qiu, G.; Wang, S.; Li, G.; Shang, L.; Meng, B.; Jiang, H.; Bai, W.; Li, Z.; et al. Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou province, China. Environ. Sci. Technol. 2008, 42, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Karagas, M.R.; Choi, A.L.; Oken, E.; Horvat, M.; Schoeny, R.; Kamai, E.; Cowell, W.; Grandjean, P.; Korrick, S. Evidence on the human health effects of low-level methylmercury exposure. Environ. Health Perspect. 2012, 120, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Zahir, F.; Rizwi, S.J.; Haq, S.K.; Khan, R.H. Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol. 2005, 20, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Pan, X.D.; Wu, P.G.; Han, J.L.; Chen, Q. Health risk assessment of heavy metals in rice to the population in Zhejiang, China. PLoS ONE 2013, 8, e75007. [Google Scholar] [CrossRef] [PubMed]
- Boffetta, P.; Merler, E.; Vainio, H. Carcinogenicity of mercury and mercury-compounds. Scand. J. Work Environ. Health 1993, 19, 1–7. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Risk Assessment Guidance for Superfund Volume 1 Human Health Evaluation Manual (Part A): Interim Final; USEPA: Washington, DC, USA, 1991.
- Ministry of Public Health of China. GB 2762-2012 China National Food Safety Standard: Maximum Limit of Contaminants in Food. Available online: http://www.nhfpc.gov.cn/ewebeditor/uploadfile/2013/01/20130128114248937.pdf (accessed on 1 April 2017).
- Brombach, C.C.; Manorut, P.; Kolambage-Dona, P.P.P.; Ezzeldin, M.F.; Chen, B.; Corns, W.T.; Feldmann, J.; Krupp, E.M. Methylmercury varies more than one order of magnitude in commercial European rice. Food Chem. 2017, 214, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Eom, Y.; Kim, D.-Y.; Han, S.H.; Lee, T.G. Preparation of quality control materials for the determination of mercury in rice. Food Chem. 2014, 147, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.B.; Meng, M.; Shao, J.J.; Zhang, K.G.; Zhang, Q.H.; Jiang, G.B. Spatial distribution of mercury in topsoil from five regions of China. Environ. Sci. Pollut. Res. 2013, 20, 1756–1761. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Zang, S.; Zhai, D.; Wu, B. Potential ecological risk of heavy metals and metalloid in the sediments of Wuyuer river basin, Heilongjiang province, China. Ecotoxicology 2014, 23, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yan, B.; Zhu, L.; Ou, Y. The effect of reclamation on the distribution of heavy metals in saline-sodic soil of Songnen plain, China. Environ. Earth Sci. 2015, 73, 1083–1090. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of China. Environmental Quality Standards for Soils. Available online: http://kjs.mep.gov.cn/hjbhbz/bzwb/trhj/trhjzlbz/199603/W020070313485587994018.pdf (accessed on 1 April 2017).
- Rothenberg, S.E.; Feng, X.; Zhou, W.; Tu, M.; Jin, B.; You, J. Environment and genotype controls on mercury accumulation in rice (Oryza sativa L.) cultivated along a contamination gradient in Guizhou, China. Sci. Total Environ. 2012, 426, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Jiangsu Statistics Bureau. Jiangsu Statistical Yearbook; China Statistics Press: Beijing, China, 2016; Volume 5.
- Liaoning Statistics Bureau. Liaoning Statistical Yearbook; China Statistics Press: Beijing, China, 2016; Volume 10.
- Wu, Y.; Li, X. The Fourth China Total Diet Study; Chemical Industry Press: Beijing, China, 2015. [Google Scholar]
- Gilbert-Diamond, D.; Cottingham, K.L.; Gruber, J.F.; Punshon, T.; Sayarath, V.; Gandolfi, A.J.; Baker, E.R.; Jackson, B.P.; Folt, C.L.; Karagas, M.R. Rice consumption contributes to arsenic exposure in US women. Proc. Natl. Acad. Sci. USA 2011, 108, 20656–20660. [Google Scholar] [CrossRef] [PubMed]
- Cascio, C.; Raab, A.; Jenkins, R.O.; Feldmann, J.; Meharg, A.A.; Haris, P.I. The impact of a rice based diet on urinary arsenic. J. Environ. Monit. 2011, 13, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Deng, X.; Liang, H.; Hu, S.; Wen, J.; Huang, W.; Lin, X.; Wang, P.; Liu, C.; Yang, X. Cadmium contamination and dietary exposure assessment in retailed rice in Guangdong province, 2012. South China J. Prev. Med. 2013, 139, 4–9. [Google Scholar]
- Han, X.; Zhang, W.; Shang, Q. Comparison of two methods in calculating the cumulative cadmium intake (CCI) from rice in the cadmium polluted area. J. Hyg. Res. 2015, 44, 939–942, 969. [Google Scholar]
- Zheng, N.; Wang, Q.; Zhang, X.; Zheng, D.; Zhang, Z.; Zhang, S. Population health risk due to dietary intake of heavy metals in the industrial area of Huludao city, China. Sci. Total Environ. 2007, 387, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.E.; Mo, Z.; Qin, J.; Li, Q.; Wei, Y.; Ma, S.; Xiong, Y.; Liang, G.; Qing, L.; Chen, Z.; et al. Change of water sources reduces health risks from heavy metals via ingestion of water, soil, and rice in a riverine area, south China. Sci. Total Environ. 2015, 530–531, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Hang, X.; Wang, H.; Zhou, J.; Ma, C.; Du, C.; Chen, X. Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze river delta. Environ. Pollut. 2009, 157, 2542–2549. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Wang, Y.; Teng, Y.; Yu, X. Heavy metal pollution and ecological risk assessment of the paddy soils near a zinc-lead mining area in Hunan. Environ. Monit. Assess. 2015, 187, 627. [Google Scholar] [CrossRef] [PubMed]
- Li, W.C.; Ouyang, Y.; Ye, Z.H. Accumulation of mercury and cadmium in rice from paddy soil near a mercury mine. Environ. Toxicol. Chem. 2014, 33, 2438–2447. [Google Scholar] [CrossRef] [PubMed]
- Akerstrom, M.; Barregard, L.; Lundh, T.; Sallsten, G. Relationship between mercury in kidney, blood, and urine in environmentally exposed individuals, and implications for biomonitoring. Toxicol. Appl. Pharmacol. 2017, 320, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Cheng, J.; Zhao, W.; Wang, W. Mercury levels and estimated total daily intakes for children and adults from an electronic waste recycling area in Taizhou, China: Key role of rice and fish consumption. J. Environ. Sci. 2015, 34, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Kang, Y.; Cheng, Z.; Wang, H.; Huang, M.; Wu, S.; Chen, K.; Wong, M.H. Hair mercury levels and food consumption in residents from the Pearl river delta: South China. Food Chem. 2013, 136, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Myers, G.J.; Davidson, P.W.; Strain, J.J. Nutrient and methyl mercury exposure from consuming fish. J. Nutr. 2007, 137, 2805–2808. [Google Scholar] [PubMed]
- Mahaffey, K.R.; Sunderland, E.M.; Chan, H.M.; Choi, A.L.; Grandjean, P.; Marien, K.; Oken, E.; Sakamoto, M.; Schoeny, R.; Weihe, P.; et al. Balancing the benefits of n-3 polyunsaturated fatty acids and the risks of methylmercury exposure from fish consumption. Nutr. Rev. 2011, 69, 493–508. [Google Scholar] [CrossRef] [PubMed]
- Mahaffey, K.R. Fish and shellfish as dietary sources of methylmercury and the omega-3 fatty acids, eicosahexaenoic acid and docosahexaenoic acid: Risks and benefits. Environ. Res. 2004, 95, 414–428. [Google Scholar] [CrossRef] [PubMed]
District | Sampling Site Number | NEC (ng/g) | NJS (ng/g) | Sampling Site Number | NEC (ng/g) | NJS (ng/g) | Sampling Site Number | NEC (ng/g) | NJS (ng/g) |
---|---|---|---|---|---|---|---|---|---|
D1 (Canglang District) | S16 | 3.03 | 1.67 | S19 | 1.94 | 2.81 | S22 | 3.3 | N.A. |
S23 | 4.08 | 5.26 | S24 | 4.7 | N.A. | S30 | 3.28 | 3.41 | |
S31 | 2.71 | N.A. | S38 | 4.03 | N.A. | S41 | 2.51 | 4.81 | |
S51 | 2.54 | 1.86 | |||||||
D2 (Jinchang District) | S10 | 3.34 | 3.22 | S11 | 8.31 | 3.65 | S17 | N.A. | 3.41 |
S18 | 3.95 | 8.48 | S21 | 2.02 | 1.64 | S25 | N.A. | 2.44 | |
D3 (Pingjiang District) | S26 | 1.98 | 2.05 | S28 | 2.7 | 3.79 | S32 | 2.89 | 5.63 |
S34 | 4.7 | 4.81 | S35 | 2.98 | 3.78 | S36 | 4.62 | 3.56 | |
S44 | 3.47 | 2.65 | S45 | 4.3 | N.A. | S48 | 3.31 | 2.98 | |
D4 (Wuzhong District) | S1 | 2.82 | 3.91 | S33 | 3.36 | 3.75 | S39 | 3.44 | 3.93 |
S42 | 3.77 | 4.69 | S43 | 4.72 | 3.27 | S46 | 3.82 | 5.57 | |
S47 | 3.13 | 3.84 | S53 | 4.87 | 3 | S58 | 2.55 | 2.1 | |
S63 | 6.84 | 2.58 | S64 | 3 | 4.22 | S67 | 4.18 | 3.2 | |
S92 | 2.73 | 2.13 | S93 | 4.12 | 5 | S94 | 2.43 | 4.42 | |
D5 (Xiangcheng District) | S37 | 2.97 | 6.01 | S96 | 5.53 | 2.74 | S97 | 3.03 | 4.06 |
S98 | 4.66 | 5.23 | S100 | 5.67 | 2.1 | ||||
D6 (Huqiu District) | S2 | 4 | 4.27 | S3 | 3.07 | 3.83 | S4 | 3.79 | 2.5 |
S5 | 3.34 | 4.01 | S6 | N.A. | 4.21 | S7 | 5.67 | 3.82 | |
S8 | 2.49 | 2.13 | S9 | 2.48 | 4.02 | S13 | 4.31 | 8.05 | |
S15 | 2.67 | 2.31 | S86 | 3.52 | 5.16 | S87 | 3.71 | 6.92 | |
S89 | 2.75 | 1.46 | S90 | 2.87 | 7.63 | S91 | 5.15 | 3.96 | |
D7 (Suzhou Industrial Park District) | S49 | 2.49 | 5.75 | S50 | 2.89 | 5.07 | S55 | 4.25 | 2.57 |
S56 | 3.16 | 6.42 | S59 | 4.85 | 4.78 | S60 | 3.45 | 3.31 | |
S61 | 4.36 | 5.16 | S62 | N.A. | 2.98 | S65 | 3.02 | 3.13 | |
S69 | 3.59 | 2.92 | S71 | 3.7 | 4.58 | S73 | 1.85 | 7.66 | |
S74 | 2.7 | 4.16 | S75 | 3.71 | 6.07 | S76 | 5.32 | 2.21 | |
S78 | 2.37 | 1.82 | S79 | 3.66 | 2.51 | S80 | N.A. | 1.7 | |
S82 | N.A. | 5.37 | S83 | 1.67 | 5.19 | S84 | N.A. | 2.84 | |
S85 | 4.12 | 4.22 | S101 | 2.41 | 6.94 | S102 | 4.97 | 6.25 | |
S103 | 3.92 | 3.7 | S104 | 3.39 | 4.65 |
Sex | Male | Female | |||
58.5% | 41.5% | ||||
Age * | Age < 30 | 30 ≤ Age < 40 | 40 ≤ Age < 50 | 50 ≤ Age | |
44.1% | 27.1% | 13.1% | 15.7% | ||
Staple Food * | Rice | Wheat | Both | Other | |
38.6% | 11.4% | 50.0% | 0.0% | ||
Source * | Supermarket | Market | Home | Canteen | Other |
52.1% ** | 41.5% ** | 4.7% ** | 28.0% ** | 2.1% ** |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Gong, Y.; Zhu, Y.-X.; Miao, A.-J.; Yang, L.-Y.; Zhong, H. Assessing the Risk of Hg Exposure Associated with Rice Consumption in a Typical City (Suzhou) in Eastern China. Int. J. Environ. Res. Public Health 2017, 14, 525. https://doi.org/10.3390/ijerph14050525
Wang G, Gong Y, Zhu Y-X, Miao A-J, Yang L-Y, Zhong H. Assessing the Risk of Hg Exposure Associated with Rice Consumption in a Typical City (Suzhou) in Eastern China. International Journal of Environmental Research and Public Health. 2017; 14(5):525. https://doi.org/10.3390/ijerph14050525
Chicago/Turabian StyleWang, Gang, Yu Gong, Yi-Xin Zhu, Ai-Jun Miao, Liu-Yan Yang, and Huan Zhong. 2017. "Assessing the Risk of Hg Exposure Associated with Rice Consumption in a Typical City (Suzhou) in Eastern China" International Journal of Environmental Research and Public Health 14, no. 5: 525. https://doi.org/10.3390/ijerph14050525
APA StyleWang, G., Gong, Y., Zhu, Y. -X., Miao, A. -J., Yang, L. -Y., & Zhong, H. (2017). Assessing the Risk of Hg Exposure Associated with Rice Consumption in a Typical City (Suzhou) in Eastern China. International Journal of Environmental Research and Public Health, 14(5), 525. https://doi.org/10.3390/ijerph14050525