The Occurrence and Diversity of Waterborne Fungi in African Aquatic Systems: Their Impact on Water Quality and Human Health
Abstract
:1. Introduction
2. Aquatic Fungi in African Waters
3. The Effect of Aquatic Fungi in Seafood Consumed by Humans
4. Human Exposure to Toxic Aquatic Fungi
4.1. Direct Toxicity to Humans
4.2. Indirect Toxicity to Humans
4.3. Aquatic Fungal Secondary Metabolites
5. Methods for the Isolation of Aquatic Fungi from African Water Systems
6. Methods for the Analysis of Fungal Metabolites
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization (WHO). Guidelines for Drinking-Water Quality; WHO publications: Geneva, Switzerland, 1997; Volume 1. [Google Scholar]
- Pereira, V.J.; Basílio, M.C.; Fernandes, D.; Domingues, M.; Paiva, J.M.; Benoliel, M.J.; Crespo, M.T.; Romão, M.V.S. Occurrence of filamentous fungi and yeasts in three different drinking water sources. Water Res. 2009, 43, 3813–3819. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Tutuka, C.; Keegan, A.; Jin, B. Fate of pathogenic microorganisms and indicators in secondary activated sludge wastewater treatment plants. J. Environ. Manag. 2009, 90, 1442–1447. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.J.; Fernandes, D.; Carvalho, G.; Benoliel, M.J.; Romão, M.V.S.; Crespo, M.T.B. Assessment of the presence and dynamics of fungi in drinking water sources using cultural and molecular methods. Water Res. 2010, 44, 4850–4859. [Google Scholar] [CrossRef] [PubMed]
- Marín, I.; Goñi, P.; Lasheras, A.M.; Ormad, M.P. Efficiency of a Spanish wastewater treatment plant for removal potentially pathogens: Characterization of bacteria and protozoa along water and sludge treatment lines. Ecol. Eng. 2015, 74, 28–32. [Google Scholar] [CrossRef]
- Alasoadura, S.O. Some aquatic hyphomycetes from Nigeria. Trans. Br. Mycol. Soc. 1968, 51, 535–540. [Google Scholar] [CrossRef]
- Sinclair, R.C.; Eicker, A. Ten interesting species of aquatic Hyphomycetes from South Africa. Bothalia 1983, 942, 939–942. [Google Scholar] [CrossRef]
- Crous, P.W.; Rong, I.H.; Wood, A.; Lee, S.; Glen, H.; Botha, W.; Slippers, B.; de Beer, W.Z.; Wingfield, M.J.; Hawksworth, D.L. How many species of fungi are there at the tip of Africa? Stud. Mycol. 2006, 55, 13–33. [Google Scholar] [CrossRef] [PubMed]
- Ingold, C.T. Aquatic spora of Omo Forest, Nigeria. Trans. Br. Mycol. Soc. 1959, 42, 479–485. [Google Scholar] [CrossRef]
- Hyde, K.D.; Steinke, T.S. Two new species of Delitschia from submerged wood. Mycoscience 1996, 37, 99–102. [Google Scholar] [CrossRef]
- Ingold, C.T. Stream spora in Nigeria. Trans. Br. Mycol. Soc. 1956, 39, 108–110. [Google Scholar] [CrossRef]
- El-Sharouny, H.M.; Gherbawy, Y.A.M.H.; Abdel-Aziz, F.A. Fungal diversity in brackish and saline lakes in Egypt. Nov. Hedwig. 2009, 89, 437–450. [Google Scholar] [CrossRef]
- El-Hissy, F.T.; Moharram, A.M.; El-Zayat, S.A.; Massoud, M.S. Aquatic phycomycetes recovered from Aswan High Dam Lake (AHDL). Microbiol. Res. 1996, 151, 149–156. [Google Scholar] [CrossRef]
- Nasser, L.A. Occurrence of terrestrial fungi in accumulated rainfall water in Saudi Arabia. Agric. Sci. 2005, 18, 63–72. [Google Scholar]
- Abdel-Raquf, M.A.K. Mycoflora associated with some fresh-water plants collected from Delta Region (Egypt). J. Basic Microbiol. 1990, 30, 663–674. [Google Scholar] [CrossRef]
- Khallil, A.M.; Abdel-Sater, A.M. Fungi from water, soil and air polluted by the industrial effluents of manquabad superphosphate factory (Assiut, Egypt). Int. Biodeterior. Biodegrad. 1992, 30, 363–386. [Google Scholar] [CrossRef]
- Abdel-Raheem, A.M. Colonization pattern of aquatic hyphomycetes on leaf packs in subtropical stream. Mycopathologia 1997, 138, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Linnakoski, R.; Puhakka-tarvainen, H.; Pappinen, A. Endophytic fungi isolated from Khaya anthotheca in Ghana. Fungal Ecol. 2012, 5, 298–308. [Google Scholar] [CrossRef]
- Nsolomo, V.R.; Venn, K.; Solheim, H. The ability of some fungi to cause decay in the East African camphor tree, Ocotea usambarensis. Mycol. Res. 2000, 104, 1473–1479. [Google Scholar] [CrossRef]
- Ogbonna, C.I.C.; Alabi, R.O. Studies on species of fungi associated with mycotic infections of fish in a Nigerian freshwater fish pond. Hydrobiologia 1991, 220, 131–135. [Google Scholar] [CrossRef]
- Huchzermeyer, K.D.A.; van der Waal, B.C.W. Epizootic ulcerative syndrome: Exotic fish disease threatens Africa’s aquatic ecosystems. J. S. Afr. Vet. Assoc. 2012, 83, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Eissa, A.E.; Tharwat, N.A.; Zaki, M.M. Field assessment of the mid winter mass kills of trophic fishes at Mariotteya stream, Egypt: Chemical and biological pollution synergistic model. Chemosphere 2013, 90, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R. Fungal attack on Tilapia mossambicus in culture pond, leading to mass mortality of fishes. Pharma Sci. Res. 2014, 5, 425–428. [Google Scholar]
- Mastan, S. Fungal infection in freshwater fishes of Andhra Pradesh, India. Biotechnology 2015, 14, 530–534. [Google Scholar]
- Shearer, C.A.; Descals, E.; Kohlmeyer, B.; Kohlmeyer, J.; Marvanová, L.; Padgett, D.; Porter, D.; Raja, H.A.; Schmit, J.P.; Thorton, H.A.; et al. Fungal biodiversity in aquatic habitats. Biodivers. Conserv. 2007, 16, 49–67. [Google Scholar] [CrossRef]
- Scott, W.W.; O’Bier, A.H. Aquatic fungi associated with diseased fish and fish eggs. Progress. Fish-Cultur. 1962, 24, 3–15. [Google Scholar] [CrossRef]
- Pascho, R.J.; Goodrich, T.D.; Mckibben, C.L. Evaluation by enzyme-linked immunosorbent assay (ELISA) of Renibacterium salmoninarum bacterins affected by persistence of bacterial antigens. J. Aquat. Anim. Health 1997, 9, 99–107. [Google Scholar] [CrossRef]
- Paxton, C. Resistance of perch eggs to attack by aquatic fungi. J. Fish Biol. 2000, 57, 562–570. [Google Scholar] [CrossRef]
- Pickering, A.D.; Richards, R. Factors influencing the structure, function and biota of the salmonid epidermis. Proc. R. Soc. Edinb. 1980, 79, 93–104. [Google Scholar] [CrossRef]
- Fernández-Benéitez, M.J.; Ortiz-Santaliestra, M.E.; Lizana, M.; Diéguez-Uribeondo, J. Saprolegnia diclina: Another species responsible for the emergent disease “Saprolegnia infections” in amphibians. FEMS Microbiol. 2008. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.H.; Mohamed, F.A.; Yousif, R.A. Isolation of fungal species from Oreochromis Niloticus from two environments. Int. J. Biol. Pharm. Appl. Sci. 2012, 1, 927–932. [Google Scholar]
- Fregeneda-Grandes, J.M.; Rodríguez-Cadenas, F.; Aller-Gancedo, J.M. Fungi isolated from cultured eggs, alevins and broodfish of brown trout in a hatchery affected by saprolegniosis. J. Fish Biol. 2007, 71, 510–518. [Google Scholar] [CrossRef]
- Roberts, R.J.; Shearer, W.M.; Munro, A.L.S.; Elson, K.G.R. Studies on ulcerative dermal necrosis of salmonids II. The sequential pathology of the lesions. J. Fish Biol. 1970, 2, 373–378. [Google Scholar] [CrossRef]
- Udomkusonsri, P.; Noga, E.J. The acute ulceration response (AUR): A potentially widespread and serious cause of skin infection in fish. Aquaculture 2005, 246, 63–77. [Google Scholar] [CrossRef]
- van West, P. Saprolegnia parasitica, an oomycete pathogen with a fishy appetite: New challenges for an old problem. Mycologist 2006, 20, 99–104. [Google Scholar] [CrossRef]
- Eli, A.; Briyai, O.F.; Abowei, J.F.N. A Review of Some Fungi Infection in African Fish Saprolegniasis, Dermal Mycoses; Branchiomyces infections, Systemic Mycoses and Dermocystidium. Asian J. Med. Sci. 2011, 3, 198–205. [Google Scholar]
- Iqbal, Z.; Saleemi, S. Isolation of pathogenic fungi from a freshwater. Sci. Int. 2013, 25, 851–855. [Google Scholar]
- Velmurugan, K.; Ayyaru, G. Original Article Culturable fungal diversity of brown-gill disease in three Penaeus species. Int. J. Res. Mar. Sci. 2014, 3, 1–4. [Google Scholar]
- Kumari, R. Fungal infection in some economically important fresh water fishes in gandak river near muzaffarpur region. Int. J. Life Sci. Pharma Res. 2015, 5, 1–11. [Google Scholar]
- Siddique, M.; Bashar, M.; Hussain, M.; Kibria, A. Fungal disease of freshwater fishes in Natore district of Bangladesh. J. Bangladesh Agric. Univ. 2010, 7, 157–162. [Google Scholar] [CrossRef]
- Jalees, M.M.; Hussain, I.; Arshad, M.; Muhammad, G.; Khan, Q.M. Pakistan Veterinary Journal. Pak. Vet. J. 2012, 33, 165–169. [Google Scholar]
- Iqbal, Z.; Sajjad, R. Some Pathogenic Fungi Parasitizing Two Exotic Tropical Ornamental Fishes. Int. J. Agric. Biol. 2013, 15, 595–598. [Google Scholar]
- Balan, S.S.; Jayalakshmi, S. Effect of Biosurfactant as Antibiotic role Against Fungal Pathogens in Fish Chirrinus Mirgala. Reserch 2013, 2, 338–344. [Google Scholar]
- Göttlich, E.; van der Lubbe, W.; Lange, B.; Fiedler, S.; Melchert, I.; Reifenrath, M.; Flemming, H.-C.; de Hoog, S. Fungal flora in groundwater-derived public drinking water. Int. J. Hyg. Environ. Health 2002, 205, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.B.; Paterson, R.R.M.; Lima, N. Survey and significance of filamentous fungi from tap water. Int. J. Hyg. Environ. Health 2006, 209, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Hasan, H.A. Alternaria mycotoxins in black rot lesion of tomato fruit: conditions and regulation of their production. Acta Microbiol. Immunol. Hung. 1996, 43, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Pose, G.; Patriarca, A.; Kyanko, V.; Pardo, A.; Pinto, V.F. Water activity and temperature effects on mycotoxin production by Alternaria alternata on a synthetic tomato medium. Int. J. Food Microbiol. 2010, 142, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Harwig, J.; Scott, P.M.; Stoltz, D.R.; Blanchfield, B.J. Toxins of molds from decaying tomato fruit. Appl. Environ. Microbiol. 1979, 38, 267–274. [Google Scholar] [PubMed]
- Noga, E.J. Water mold infections of freshwater recent advances. Annu. Rev. fish Dis. 1993, 3, 291–304. [Google Scholar] [CrossRef]
- Mondolfi, A.E.P.; Talhari, C.; Hoffmann, L.S.; Connor, D.L.; Talhari, S.; Bermudez-Villapol, L.; Hernandez-Perez, M.; van Bressem, M.F. Lobomycosis: An emerging disease in humans and delphinidae. Mycoses 2012, 55, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Calvo, A.M.; Wilson, R.A.; Bok, J.W.; Keller, N.P. Relationship between Secondary Metabolism and Fungal Development. Microbiol. Mol. Biol. Rev. 2002, 66, 447–459. [Google Scholar] [CrossRef] [PubMed]
- El-hasan, A.; Walker, F.; Schöne, J. Detection of viridiofungin A and other antifungal metabolites excreted by Trichoderma harzianum active against different plant pathogens. Eur. J. Plant Pathol. 2009, 124, 457–470. [Google Scholar] [CrossRef]
- Hernández-Carlos, B.; Gamboa-Angulo, M.M. Metabolites from freshwater aquatic microalgae and fungi as potential natural pesticides. Phytochem. Rev. 2011, 10, 261–286. [Google Scholar] [CrossRef]
- Swathi, J. Marine fungal metabolites as a rich source of bioactive compounds. Afr. J. Biochem. Res. 2013, 7, 184–196. [Google Scholar] [CrossRef]
- Zhao, J.; Zhou, L.; Wang, J.; Shan, T.; Zhong, L.; Liu, X.; Gao, X. Endophytic Fungi for Producing Bioactive Compounds Originally from Their Host Plants. Available online: http://www.formatex.info/microbiology2/567-576.pdf (accessed on 20 May 2017).
- Imhoff, J.F. Natural Products from Marine Fungi—Still an Underrepresented Resource. Mar. Drugs 2016, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Gams, W.; Seifert, K.A. Anamorphic Fungi. eLS 2001. [Google Scholar] [CrossRef]
- Ediage, E.N.; Hell, K.; de Saeger, S. A Comprehensive Study To Explore Di ff erences in Mycotoxin Patterns from Agro-ecological Regions through Maize, Peanut, Cassava Products: A Case Study, Cameroon. J. Agric. Food Chem. 2014, 62, 4789–4797. [Google Scholar] [CrossRef] [PubMed]
- Nystrom, A.; Grimvall, A.; Savenhed, R.; Akerstrand, K. Drinking water off-flavour caused by 2, 4, 6-trichloroanisole. Water Sci. Thchnol. 1992, 25, 241–249. [Google Scholar]
- IARC Working Group. Some Halogenated Hydrocarbons and Pesticide Exposures. IARC Monogr. Eval. Carcinog. Risk Chem. Hum. 1986, 41, 1–407. [Google Scholar]
- Dixon, P.A. Stream spora in Ghana. Trans. Br. Mycol. Soc. 1959, 42, 174–176. [Google Scholar] [CrossRef]
- Abdel-Raheem, A.M. Study of the effect of different techniques on diversity of freshwater hyphomycetes in the River Nile (Upper Egypt). Mycopathologia 2004, 157, 59–72. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magwaza, N.M.; Nxumalo, E.N.; Mamba, B.B.; Msagati, T.A.M. The Occurrence and Diversity of Waterborne Fungi in African Aquatic Systems: Their Impact on Water Quality and Human Health. Int. J. Environ. Res. Public Health 2017, 14, 546. https://doi.org/10.3390/ijerph14050546
Magwaza NM, Nxumalo EN, Mamba BB, Msagati TAM. The Occurrence and Diversity of Waterborne Fungi in African Aquatic Systems: Their Impact on Water Quality and Human Health. International Journal of Environmental Research and Public Health. 2017; 14(5):546. https://doi.org/10.3390/ijerph14050546
Chicago/Turabian StyleMagwaza, Nontokozo M., Edward N. Nxumalo, Bhekie B. Mamba, and Titus A. M. Msagati. 2017. "The Occurrence and Diversity of Waterborne Fungi in African Aquatic Systems: Their Impact on Water Quality and Human Health" International Journal of Environmental Research and Public Health 14, no. 5: 546. https://doi.org/10.3390/ijerph14050546
APA StyleMagwaza, N. M., Nxumalo, E. N., Mamba, B. B., & Msagati, T. A. M. (2017). The Occurrence and Diversity of Waterborne Fungi in African Aquatic Systems: Their Impact on Water Quality and Human Health. International Journal of Environmental Research and Public Health, 14(5), 546. https://doi.org/10.3390/ijerph14050546