A Three-Year Follow-Up Study of Antibiotic and Metal Residues, Antibiotic Resistance and Resistance Genes, Focusing on Kshipra—A River Associated with Holy Religious Mass-Bathing in India: Protocol Paper
Abstract
:1. Background
- (1)
- To determine, over a 3-year period, water-quality, antibiotic residue levels, heavy metal residue levels, the coliform and E. coli burden and antibiotic resistance patterns in E. coli isolated from river-water and sediment.
- (2)
- To determine, over a 3-year period, water-quality, antibiotic residue levels, heavy metal, residue levels, the coliform and E. coli burden, and antibiotic resistance patterns in E. coli isolated from river water and sediment during special mass-bathing occasions.
- (3)
- To study the association between water-quality, antibiotic residues, heavy metal residues, the coliform burden and antibiotic resistance patterns of E. coli isolated from river-water and sediment over the 3-year study period.
- (4)
- To study the association between water-quality, antibiotic residues, heavy metal residues, the coliform burden and antibiotic resistance patterns in E. coli isolated from river-water and sediment during special mass-bathing occasions.
- (5)
- To evaluate the genomic commonality and diversity and pan-genomic correlates of antibiotic resistance genes of E. coli isolated from riverwater and sediment during different seasons and during special mass-bathing occasions.
- (6)
- To explore the perceptions, beliefs and opinions of stakeholders and policy makers regarding antibiotic resistance, antibiotic residues and antibiotic use in the context of environmental pollution.
2. Methods
2.1. Design
2.2. Setting
2.3. About the Kshipra River
2.4. Weather
2.5. Sampling
2.5.1. Selection of Sampling Points
2.5.2. Sampling Points for “Regular River Sampling”
2.5.3. Sampling Points for “Mass-Bathing” Events
2.6. Sample Collection
2.6.1. For “Regular River Sampling”
2.6.2. For “Mass-Bathing Events”
2.7. Transport of Water and Sediment Samples to the Laboratory
2.8. Physical and Chemical Examination of Collected Water and Sediment Samples
2.8.1. Water-Parameter Examination at Field Level
2.8.2. Water- and Sediment-Parameter Examination in the Laboratory
2.8.3. Analysis of Heavy and Other Metals
2.9. Antibiotic Residue Analysis
2.10. Microbiological Methods
2.11. Molecular Methods
PCR Amplification of Genes
2.12. Qualitative Study
2.13. Data Management and Analyses
2.13.1. Data Management
2.13.2. Data Analysis for Quantitative Data
2.13.3. Data Analysis for Qualitative Data
2.14. Pilot Study
3. Discussion
Ethics Approval and Ethical Considerations
4. Conclusions
Availability of Data and Materials
Supplementary Materials
Acknowledgments
Author Contributions
Conflict of Interests
References
- Kummerer, K. Significance of antibiotics in the environment. J. Antimicrob. Chemother. 2003, 52, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.L.B. Occurrence, transformation and fate of antibiotics in municipal wastewater treatment plants. Crit. Rev. Environ. Sci. Technol. 2011, 41, 951–998. [Google Scholar] [CrossRef]
- Harnisz, M. Total resistance of native bacteria as an indicator of changes in the water environment. Environ. Pollut. 2013, 174, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Heberer, T. Occurrence, fate and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicol. Lett. 2002, 131, 5–17. [Google Scholar] [CrossRef]
- Kemper, N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol. Indic. 2008, 8, 1–13. [Google Scholar] [CrossRef]
- Li, W.C. Occurrence, sources and fate of pharmaceuticals in aquatic environmentand soil. Environ. Pollut. 2014, 187, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Gothwal, R.; Shashidhar, T. Antibiotic pollution in the environment: A review. Clean Soil Air Water 2015, 43, 479–489. [Google Scholar] [CrossRef]
- Diwan, V.; Stalsby Lundborg, C.; Tamhankar, A.J. Seasonal and temporal variation in release of antibiotics in hospital wastewater: Estimation using continuous and grab sampling. PLoS ONE 2013, 8, e68715. [Google Scholar] [CrossRef] [PubMed]
- Diwan, V.; Tamhankar, A.J.; Khandal, R.K.; Sen, S.; Aggarwal, M.; Marothi, Y.; Iyer, R.V.; Sundblad-Tonderski, K.; Stalsby-Lundborg, C. Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health 2010, 10, 414. [Google Scholar] [CrossRef] [PubMed]
- Lien, L.T.; Hoa, N.Q.; Chuc, N.T.; Thoa, N.T.; Phuc, H.D.; Diwan, V.; Dat, N.T.; Tamhankar, A.J.; Lundborg, C.S. Antibiotics in Wastewater of a Rural and an Urban Hospital before and after Wastewater Treatment, and the Relationship with Antibiotic Use-A One Year Study from Vietnam. Int. J. Environ. Res. Public Health 2016, 13, 588. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.T.; Santos, L. Antibiotics in the aquatic environments: A review of the European scenario. Environ. Int. 2016, 94, 736–757. [Google Scholar] [CrossRef] [PubMed]
- Daghrir, R.; Drogui, P. Tetracycline antibiotics in the environment: A review. Environ. Chem. Lett. 2013, 11, 3. [Google Scholar] [CrossRef]
- Kummerer, K. Antibiotics in the aquatic environment—A review. Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Kummerer, K. Antibiotics in the aquatic environment—A review. Part II. Chemosphere 2009, 75, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.X.; Zhang, T.; Fang, H.H. Antibiotic resistance genes in water environment. Appl. Microbial. Biotechnol. 2009, 82, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Kummerer, K. Resistance in the environment. J. Antimicrob. Chemother. 2004, 54, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Bo, L.; Shengen, Z.; Chang, C.C. Emerging Pollutants—Part II: Treatment. Water Environ. Res. 2016, 88, 1876–1904. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Ogo, M.; Miller, T.W.; Shimizu, A.; Takada, H.; Siringan, M.A. Who possesses drug resistance genes in the aquatic environment? Sulfamethoxazole (SMX) resistance genes among the bacterial community in water environment of Metro-Manila, Philippines. Front. Microbial. 2013, 4, 102. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.L. Antibiotics and antibiotic resistance genes in natural environments. Science 2008, 321, 365–367. [Google Scholar] [CrossRef] [PubMed]
- Sandegren, L. Selection of antibiotic resistance at very low antibiotic concentrations. Ups. J. Med. Sci. 2014, 119, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Gullberg, E.; Cao, S.; Berg, O.G.; Ilback, C.; Sandegren, L. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011, 7, e1002158. [Google Scholar] [CrossRef] [PubMed]
- Jan, A.T.; Ali, A.; Haq, Q.M.R. Mercury pollution: An emerging problem and potential bacterial remediation strategies. World J. Microbiol. Biotechnol. 2009, 25, 1529–1537. [Google Scholar] [CrossRef]
- Jackson, R.W.V.B.; Arnold, D.L.; Dorus, S.; Murillo, J. The influence of the accessory genome on bacterial pathogen evolution. Mob. Genet. Elements 2011, 1, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Seiler, C.B.T. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front. Microbiol. 2012, 3, 399. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.X.; Xu, J.; Zhang, X.; Xu, S.; Du, Q. Combined toxic effects of heavy metals and antibiotics on a pseudomonas fluorescens strain zy2 isolated from swine wastewater. Int. J. Mol. Sci. 2015, 16, 2839–2850. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.; Jan, A.T.; Haq, Q.M. BlaCTX-M-152, a Novel Variant of CTX-M-group-25, Identified in a Study Performed on the Prevalence of Multidrug Resistance among Natural Inhabitants of River Yamuna, India. Front. Microbial. 2016, 7, 176. [Google Scholar] [CrossRef] [PubMed]
- Baker-Austin, C.W.M.; Stepanauskas, R.; McArthur, J.V. Co-selection of antibiotic and metal resistance. Trends Microbiol. 2006, 14, 176–182. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Water for Health—Taking Charge. Available online: http://www.who.int/wat6er_sanitation_health/takingcharge.html (accessed on 23 March 2017).
- Schlüter, A.S.R.; Pühler, A.; Top, E.M. Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol. Rev. 2007, 31, 449–477. [Google Scholar] [CrossRef] [PubMed]
- Witte, W. Ecological impact of antibiotic use in animals on different complex microflora: Environment. Int. J. Antimicrob. Agents 2000, 14, 321–325. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Zhang, H.; Luo, Z.; Yan, C. Occurrence, distribution, and seasonal variation of estrogenic compounds and antibiotic residues in Jiulongjiang River, South China. Environ. Sci. Pollut. Res. Int. 2012, 19, 1392–1404. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Yang, Y.; Zhou, J.; Liu, M.; Nie, M.; Shi, H.; Gu, L. Antibiotics in the surface water of the Yangtze Estuary: Occurrence, distribution and risk assessment. Environ. Pollut. 2013, 175, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Hu, X.; Yin, D.; Zhang, H.; Yu, Z. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China. Chemosphere 2011, 82, 822–828. [Google Scholar] [CrossRef] [PubMed]
- He, L.Y.; Ying, G.G.; Liu, Y.S.; Su, H.C.; Chen, J.; Liu, S.S.; Zhao, J.L. Discharge of swine wastes risks water quality and food safety: Antibiotics and antibiotic resistance genes from swine sources to the receiving environments. Environ. Int. 2016, 92–93, 210–219. [Google Scholar] [CrossRef]
- Hess, S.; Gallert, C. Growth Behavior of E. coli, Enterococcus and Staphylococcus Species in the Presence and Absence of Sub-inhibitory Antibiotic Concentrations: Consequences for Interpretation of Culture-Based Data. Microbial. Ecol. 2016, 72, 898–908. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Communicable Disease Alert and Response for Mass Gatherings. Available online: http://www.who.int/csr/mass_gathering/en/ (accessed on 27 March 2017).
- Joshi, R. Evaluating the Impact of Human Activities during the Maha—Kumbh 2010 Fair on Elephants in the Shivalik Elephant Reserve. Trop. Nat. Hist. 2010, 13, 107–129. [Google Scholar]
- World Health Organization. International Travel and Health, and Mass Gatherings. Available online: http://www.who.int/ihr/ith_and_mass_gatherings/en/ (accessed on 26 March 2017).
- Abubakar, I.; Gautret, P.; Brunette, G.W.; Blumberg, L.; Johnson, D.; Poumerol, G. Gobal perspectives for prevention of infectious diseases associated with mass gatherings. Lancet Infect. Dis. 2012, 12, 66–74. [Google Scholar] [CrossRef]
- David, S.R.N. Public health perspectives from the biggest human mass gathering on earth: KumbhMela, India. Int. J. Infect. Dis 2016, 47, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Office of the Registrar General & Census Commissioner, India. Government of India Ministry of Home Affairs. Population Enumeration Data (Final Population). 2011. Available online: http://www.censusindia.gov.in/2011census/population_enumeration.html (accessed on 29 March 2017).
- Government of Madhya Pradesh. 2007 Human Development Report for Madhya Pradesh Report No.: 4. Available online: http://www.dif.mp.gov.in/mphdr2007.htm (accessed on 29 March 2017).
- Tyagi, A.S.M.; Bhatia, K.K.S. The study of temporal and spatial trends of water quality of river Kshipra using Water Quality Index. Environ. Health 2003, 45, 15–20. [Google Scholar]
- World Weather Online. Available online: http://www.worldweatheronline.com/Ujjain-weather-averages/Madhya-Pradesh/IN.aspx (accessed on 24 March 2017).
- Adoni, A.D.J.G.; Ghosh, K.; Chourasia, S.K.; Vaishya, A.K.; Yadav, M.; Verma, H.G. Workbook on Limnology; Pratibha Publishers: Sagar, India, 1985; p. 127. [Google Scholar]
- American Public Health Association. Standard Methods for Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Trivedy, R.K.; Goel, P.K. Chemical and Biological Methods for Water Pollution Studies; Environmental Publications: Karad, India, 1986. [Google Scholar]
- Huang, C.H.; Renew, J.E.; Smeby, K.L.; Pinkerston, K.; Sedlak, D.L. Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis. Water Resour. Update 2001, 120, 30–40. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Tests. Twenty-Third Informational Supplement; CLSI: Wayne, PA, USA, 2014; Volume 33. [Google Scholar]
- Chandran, S.P.; Diwan, V.; Tamhankar, A.J.; Joseph, B.V.; Rosales-Klintz, S.; Mundayoor, S.; Lundborg, C.S.; Macaden, R. Detection of carbapenem resistance genes and cephalosporin, and quinolone resistance genes along with oqxAB gene in Escherichia coli in hospital wastewater: A matter of concern. J. Appl. Microbial. 2014, 117, 984–995. [Google Scholar] [CrossRef] [PubMed]
- Clermont, O.; Bonacorsi, S.; Bingen, E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbial. 2000, 66, 4555–4558. [Google Scholar] [CrossRef]
- Viti, C.; Marchi, E.; Decorosi, F.; Giovannetti, L. Molecular mechanisms of Cr (VI) resistance in bacteria and fungi. FEMS Microbial. Rev. 2014, 38, 633–659. [Google Scholar] [CrossRef] [PubMed]
- NiChadhain, S.M.; Schaefer, J.K.; Crane, S.; Zylstra, G.J.; Barkay, T. Analysis of mercuric reductase (merA) gene diversity in an anaerobic mercury-contaminated sediment enrichment. Environ. Microbial. 2006, 8, 1746–1752. [Google Scholar] [CrossRef] [PubMed]
- Inouye, M.; Dashnow, H.; Raven, L.A.; Schultz, M.B.; Pope, B.J.; Tomita, T.; Zobel, J.; Holt, K.E. SRST2: Rapid genomic surveillance for public health and hospital microbiology labs. Gen. Med. 2014, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Zankari, E.; Hasman, H.; Kaas, R.S.; Seyfarth, A.M.; Agerso, Y.; Lund, O.; Larsen, M.V.; Aarestrup, F.M. Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. J. Antimicrob. Chemother. 2013, 68, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Graneheim, U.H.; Lundman, B. Qualitative content analysis in nursing research: Concepts, procedures and measures to achieve trustworthiness. Nurse Educ. Today 2004, 24, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Marti, E.; Variatza, E.; Balcazar, J.L. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol. 2014, 22, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Baquero, F.; Martinez, J.L.; Canton, R. Antibiotics and antibiotic resistance in water environments. Current Opin. Biotechnol. 2008, 19, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Aminov, R.I. The role of antibiotics and antibiotic resistance in nature. Environ. Microbial. 2009, 11, 2970–2988. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.D. Antibiotic resistance in the environment: A link to the clinic? Current Opin. Biotechnol. 2010, 13, 589–594. [Google Scholar] [CrossRef] [PubMed]
- D’Costa, V.M.; Griffiths, E.; Wright, G.D. Expanding the soil antibiotic resistome: Exploring environmental diversity. Current Opin. Biotechnol. 2007, 10, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Purohit, M.P.; Chandran, S.; Shah, H.; Diwan, V.; Tamhankar, A.J.; Stålsby Lundborg, C. Antibiotic Resistance in an Indian Rural Community: A ‘One-Health’ Observational Study on Commensal Coliform from Humans, Animals, and Water. Int. J. Environ. Res. Public Health 2017, 14, 386. [Google Scholar] [CrossRef] [PubMed]
- Shakya, P.; Barrett, P.; Diwan, V.; Marothi, Y.; Shah, H.; Chhari, N.; Tamhankar, A.J.; Pathak, A.; Lundborg, C.S. Antibiotic resistance among Escherichia coli isolates from stool samples of children aged 3 to 14 years from Ujjain, India. BMC Infect. Dis. 2013, 13, 477. [Google Scholar] [CrossRef] [PubMed]
- Diwan, V.; Chandran, S.P.; Tamhankar, A.J.; Stalsby Lundborg, C.; Macaden, R. Identification of extended-spectrum beta-lactamase and quinolone resistance genes in Escherichia coli isolated from hospital wastewater from central India. J. Antimicrob. Chemother. 2012, 67, 857–859. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, K.C.; Tamhankar, A.J.; Sahoo, S.; Sahu, P.S.; Klintz, S.R.; Lundborg, C.S. Geographical variation in antibiotic-resistant Escherichia coli isolates from stool, cow-dung and drinking water. Int. J. Environ. Res. Public Health 2012, 9, 746–759. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, K.C.; Tamhankar, A.J.; Johansson, E.; Lundborg, C.S. Antibiotic use, resistance development and environmental factors: A qualitative study among healthcare professionals in Orissa, India. BMC Public Health 2010, 10, 629. [Google Scholar] [CrossRef] [PubMed]
- Stalsby Lundborg, C.; Diwan, V.; Pathak, A.; Purohit, M.R.; Shah, H.; Sharma, M.; Mahadik, V.K.; Tamhankar, A.J. Protocol: A “One health” two year follow-up, mixed methods study on antibiotic resistance, focusing children under 5 and their environment in rural India. BMC Public Health 2015, 15, 1321. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diwan, V.; Purohit, M.; Chandran, S.; Parashar, V.; Shah, H.; Mahadik, V.K.; Stålsby Lundborg, C.; Tamhankar, A.J. A Three-Year Follow-Up Study of Antibiotic and Metal Residues, Antibiotic Resistance and Resistance Genes, Focusing on Kshipra—A River Associated with Holy Religious Mass-Bathing in India: Protocol Paper. Int. J. Environ. Res. Public Health 2017, 14, 574. https://doi.org/10.3390/ijerph14060574
Diwan V, Purohit M, Chandran S, Parashar V, Shah H, Mahadik VK, Stålsby Lundborg C, Tamhankar AJ. A Three-Year Follow-Up Study of Antibiotic and Metal Residues, Antibiotic Resistance and Resistance Genes, Focusing on Kshipra—A River Associated with Holy Religious Mass-Bathing in India: Protocol Paper. International Journal of Environmental Research and Public Health. 2017; 14(6):574. https://doi.org/10.3390/ijerph14060574
Chicago/Turabian StyleDiwan, Vishal, Manju Purohit, Salesh Chandran, Vivek Parashar, Harshada Shah, Vijay K. Mahadik, Cecilia Stålsby Lundborg, and Ashok J. Tamhankar. 2017. "A Three-Year Follow-Up Study of Antibiotic and Metal Residues, Antibiotic Resistance and Resistance Genes, Focusing on Kshipra—A River Associated with Holy Religious Mass-Bathing in India: Protocol Paper" International Journal of Environmental Research and Public Health 14, no. 6: 574. https://doi.org/10.3390/ijerph14060574
APA StyleDiwan, V., Purohit, M., Chandran, S., Parashar, V., Shah, H., Mahadik, V. K., Stålsby Lundborg, C., & Tamhankar, A. J. (2017). A Three-Year Follow-Up Study of Antibiotic and Metal Residues, Antibiotic Resistance and Resistance Genes, Focusing on Kshipra—A River Associated with Holy Religious Mass-Bathing in India: Protocol Paper. International Journal of Environmental Research and Public Health, 14(6), 574. https://doi.org/10.3390/ijerph14060574