Correlations of Biomarkers and Self-Reported Seafood Consumption among Pregnant and Non-Pregnant Women in Southeastern Louisiana after the Gulf Oil Spill: The GROWH Study
Abstract
:1. Introduction
2. Methods and Methods
2.1. GROWH Study
2.2. Measurements
2.2.1. Biomarkers
2.2.2. Seafood Consumption
2.3. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zheng, J.; Huang, T.; Yu, Y.; Hu, X.; Yang, B.; Li, D. Fish consumption and CHD mortality: An updated meta-analysis of seventeen cohort studies. Public Health Nutr. 2012, 15, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Jensen, I.J.; Mæhre, H.K. Preclinical and clinical studies on antioxidative, antihypertensive and cardioprotective effect of marine proteins and peptides—A review. Mar. Drugs 2016, 14, 211. [Google Scholar] [CrossRef] [PubMed]
- Abedi, E.; Sahari, M.A. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr. 2014, 2, 443–463. [Google Scholar] [CrossRef] [PubMed]
- Brantsæter, A.L.; Englund-Ögge, L.; Haugen, M.; Birgisdottir, B.E.; Knutsen, H.K.; Sengpiel, V.; Myhre, R.; Alexander, J.; Nilsen, R.M.; Jacobsson, B.; et al. Erratum to: Maternal intake of seafood and supplementary long chain n-3 poly-unsaturated fatty acids and preterm delivery. BMC Pregnancy Childbirth 2017, 17, 61. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.; Wong, M.; Rogozinska, E.; Thangaratinam, S. Effects of omega-3 fatty acids in prevention of early preterm delivery: A systematic review and meta-analysis of randomized studies. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 198, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Coletta, J.M.; Bell, S.J.; Roman, A.S. Omega-3 fatty acids and pregnancy. Rev. Obstet. Gynecol. 2010, 3, 163–171. [Google Scholar] [PubMed]
- Brantsæter, A.L.; Englund-Ögge, L.; Haugen, M.; Birgisdottir, B.E.; Knutsen, H.K.; Sengpiel, V.; Myhre, R.; Alexander, J.; Nilsen, R.M.; Jacobsson, B.; et al. Maternal intake of seafood and supplementary long chain n-3 poly-unsaturated fatty acids and preterm delivery. BMC Pregnancy Childbirth 2017, 17, 41. [Google Scholar]
- Llop, S.; Ballester, F.; Murcia, M.; Forns, J.; Tardon, A.; Andiarena, A.; Vioque, J.; Ibarluzea, J.; Fernández-Somoano, A.; Sunyer, J.; et al. Prenatal exposure to mercury and neuropsychological development in young children: The role of fish consumption. Int. J. Epidemiol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Murcia, M.; Ballester, F.; Enning, A.M.; Iñiguez, C.; Valvi, D.; Basterrechea, M.; Rebagliato, M.; Vioque, J.; Maruri, M.; Tardon, A.; et al. Prenatal mercury exposure and birth outcomes. Environ. Res. 2016, 151, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Wenstrom, K.D. The FDA’S new advice on fish: It’s complicated. Am. J. Obstet. Gynecol. 2014, 211, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Conrad, J.; Nöthlings, U. Innovative approaches to estimate individual usual dietary intake in large-scale epidemiological studies. Proc. Nutr. Soc. 2017. [Google Scholar] [CrossRef] [PubMed]
- Ritter-Gooder, P.K.; Lewis, N.M.; Heidal, K.B.; Eskridge, K.M. Validity and reliability of a quantitative food frequency questionnaire measuring n-3 fatty acid intakes in cardiac patients in the Midwest: A validation pilot study. J. Am. Diet. Assoc. 2006, 106, 1251–1255. [Google Scholar] [CrossRef] [PubMed]
- Mina, K.; Fritschi, L.; Knuiman, M. A valid semiquantitative food frequency questionnaire to measure fish consumption. Eur. J. Clin. Nutr. 2007, 61, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Fraser, G.E.; Jaceldo-Siegl, K.; Henning, S.M.; Fan, J.; Knutsen, S.F.; Haddad, E.H.; Sabaté, J.; Beeson, W.L.; Bennett, H. Biomarkers of dietary intake are correlated with corresponding measures from repeated dietary recalls and food-frequency questionnaires in the Adventist Health Study-2. J. Nutr. 2016, 146, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Orton, H.D.; Szabo, N.J.; Clare-Salzler, M.; Norris, J.M. Comparison between omega-3 and omega-6 polyunsaturated fatty acid intakes as assessed by a food frequency questionnaire and erythrocyte membrane fatty acid composition in young children. Eur. J. Clin. Nutr. 2008, 62, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Arab, L.; Akbar, J. Biomarkers and the measurement of fatty acids. Public Health Nutr. 2002, 5, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Dahl, L.; Mæland, C.A.; Bjørkkjær, T. A short food frequency questionnaire to assess intake of seafood and n-3 supplements: Validation with biomarkers. Nutr. J. 2011, 10, 127. [Google Scholar] [CrossRef] [PubMed]
- Serra-Majem, L.; Nissensohn, M.; Øverby, N.C.; Fekete, K. Dietary methods and biomarkers of omega 3 fatty acids: A systematic review. Br. J. Nutr. 2012, 107, S64–S76. [Google Scholar] [CrossRef] [PubMed]
- Yokoo, E.M.; Valente, J.G.; Sichieri, R.; Silva, E.C. Validation and calibration of mercury intake through self-referred fish consumption in riverine populations in pantanal mato-grossense, Brazil. Environ. Res. 2001, 86, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, S.; Targos, L.; Nagy, K.L.; Kearney, K.E.; Turyk, M. Fish consumption and hair mercury among Asians in Chicago. J. Occup. Environ. Med. 2015, 57, 1325–1330. [Google Scholar] [CrossRef] [PubMed]
- Nunes, E.; Cavaco, A.; Carvalho, C. Exposure assessment of pregnant Portuguese women to methylmercury through the ingestion of fish: Cross-sectional survey and biomarker validation. J. Toxicol. Environ. Health A 2014, 77, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Markhus, M.W.; Graff, I.E.; Dahl, L.; Seldal, C.F.; Skotheim, S.; Braarud, H.C.; Stormark, K.M.; Malde, M.K. Establishment of a seafood index to assess the seafood consumption in pregnant women. Food Nutr. Res. 2013, 57, 19272. [Google Scholar] [CrossRef] [PubMed]
- Parker, G.; McClure, G.; Hegarty, B.D.; Smith, I.G. The validity of a food frequency questionnaire as a measure of PUFA status in pregnancy. BMC Pregnancy Childbirth 2015, 15, 60. [Google Scholar] [CrossRef] [PubMed]
- Merhi, Z.O. Gulf coast oil disaster: Impact on human reproduction. Fertil. Steril. 2010, 94, 1575–1577. [Google Scholar] [CrossRef] [PubMed]
- Baylin, A.; Kabagambe, E.K.; Siles, X.; Campos, H. Adipose tissue biomarkers of fatty acid intake. Am. J. Clin. Nutr. 2002, 76, 750–757. [Google Scholar] [PubMed]
- Hjartåker, A.; Lund, E.; Bjerve, K.S. Serum phospholipid fatty acid composition and habitual intake of marine foods registered by a semi-quantitative food frequency questionnaire. Eur. J. Clin. Nutr. 1997, 51, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.D.; Walker, S.P.; Younger, N.M.; Bennett, F.I. Use of a food frequency questionnaire to assess diets of Jamaican adults: Validation and correlation with biomarkers. Nutr. J. 2011, 10, 28. [Google Scholar] [CrossRef] [PubMed]
- National Resources Defense Council. Mercury in Fish: A Guide to Protecting Your Family’s Health. 30 May 2006. Available online: https://www.nrdc.org/resources/mercury-contamination-fish-wallet-cards (accessed on 7 March 2017).
- Louisiana Department of Health and Hosptials. Mercury in Fish: What Everyone Should Know about Eating Locally Caught Fish. 2009. Available online: http://new.dhh.louisiana.gov/index.cfm/page/851 (accessed on 6 March 2017).
- North Carolina Department of Health and Human Services. What Fish Are Safe to Eat? Available online: http://epi.publichealth.nc.gov/oee/mercury/safefish.html (accessed on 8 March 2017).
- U.S. Department of Agriculture. USDA Nawtional Nutrient Database for Standard Reference, Release 28. 2015. Available online: https://ndb.nal.usda.gov/ndb/ (accessed on 8 March 2017).
- Subar, A.F.; Freedman, L.S.; Tooze, J.A.; Kirkpatrick, S.I.; Boushey, C.; Neuhouser, M.L.; Thompson, F.E.; Potischman, N.; Guenther, P.M.; Tarasuk, V.; et al. Addressing current criticism regarding the value of self-report dietary data. J. Nutr. 2015, 145, 2639–2645. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, T.B.; Osler, M.; Olsen, S.F. Validity of protein, retinol, folic acid and n-3 fatty acid intakes estimated from the food-frequency questionnaire used in the Danish national birth cohort. Public Health Nutr. 2006, 9, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Oken, E.; Guthrie, L.B.; Bloomingdale, A.; Gillman, M.W.; Olsen, S.F.; Amarasiriwardena, C.J.; Platek, D.N.; Bellinger, D.C.; Wright, R.O. Assessment of dietary fish consumption in pregnancy: Comparing one-, four- and thirty-six-item questionnaires. Public Health Nutr. 2014, 17, 1949–1959. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.; Pollman, C.; Landing, W.; Evans, D.; Axelrad, D.; Hutchinson, D.; Morey, S.L.; Rumbold, D.; Dukhovskoy, D.; Adams, D.H.; et al. Mercury in the Gulf of Mexico: Sources to receptors. Environ. Res. 2012, 119, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Gohlke, J.M.; Doke, D.; Tipre, M.; Leader, M.; Fitzgerald, T. A review of seafood safety after the Deepwater Horizon blowout. Environ. Health Perspect. 2011, 119, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, T.P.; Gohlke, J.M. Contaminant levels in Gulf of Mexico reef fish after the Deepwater Horizon oil spill as measured by a fishermen-led testing program. Environ. Sci. Technol. 2014, 48, 1993–2000. [Google Scholar] [CrossRef] [PubMed]
- Balk, L.; Hylland, K.; Hansson, T.; Berntssen, M.H.; Beyer, J.; Jonsson, G.; Melbye, A.; Grung, M.; Torstensen, B.E.; Børseth, J.F.; et al. Biomarkers in natural fish populations indicate adverse biological effects of offshore oil production. PLoS ONE 2011, 6, e19735. [Google Scholar] [CrossRef] [PubMed]
- Razzaghi, H.; Tinker, S.C.; Crider, K. Blood mercury concentrations in pregnant and nonpregnant women in the United States: National health and nutrition examination survey 1999–2006. Am. J. Obstet. Gynecol. 2014, 210, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Bloomingdale, A.; Guthrie, L.B.; Price, S.; Wright, R.O.; Platek, D.; Haines, J.; Oken, E. A qualitative study of fish consumption during pregnancy. Am. J. Clin. Nutr. 2010, 92, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Oken, E.; Kleinman, K.P.; Berland, W.E.; Simon, S.R.; Rich-Edwards, J.W.; Gillman, M.W. Decline in fish consumption among pregnant women after a national mercury advisory. Obstet. Gynecol. 2003, 102, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Simon-Friedt, B.R.; Howard, J.L.; Wilson, M.J.; Gauthe, D.; Bogen, D.; Nguyen, D.; Frahm, E.; Wickliffe, J.K. Louisiana residents’ self-reported lack of information following the Deepwater Horizon oil spill: Effects on seafood consumption and risk perception. J. Environ. Manag. 2016, 180, 526–537. [Google Scholar] [CrossRef] [PubMed]
- Birch, R.J.; Bigler, J.; Rogers, J.W.; Zhuang, Y.; Clickner, R.P. Trends in blood mercury concentrations and fish consumption among U.S. women of childbearing age NHANES, 1999–2010. Environ. Res. 2014, 133, 431–438. [Google Scholar] [CrossRef] [PubMed]
Characteristic | n | % |
---|---|---|
Race | ||
White | 189 | 28.3 |
Black | 381 | 57.0 |
Other | 46 | 6.9 |
Missing | 53 | 7.9 |
Age (years) | ||
18–19 | 179 | 26.8 |
20–24 | 177 | 26.5 |
25–35 | 116 | 17.3 |
35+ | 124 | 18.5 |
Missing | 73 | 10.9 |
Income (USD) | ||
<15 k | 256 | 38.3 |
15–30 k | 212 | 31.7 |
>30 k | 124 | 18.5 |
Missing | 77 | 11.5 |
Pregnancy status | ||
Pregnant | 182 | 27.2 |
Not pregnant | 487 | 72.8 |
Missing | 0 | 0 |
Region | ||
Coast | 134 | 20.0 |
Inland | 485 | 72.5 |
Missing | 50 | 7.5 |
Fish Oil | ||
Yes | 53 | 7.9 |
No | 390 | 58.3 |
Don’t know/missing | 226 | 33.7 |
Blood Levels | Median | 25th and 75th Percentile |
Hg (ng/mL) | 1.66 | 1.23, 3.49 |
Total n-3 PUFA (% total FA) | 3.66 | 1.68, 5.10 |
ALA (% total FA) | 0.15 | 0.11, 0.20 |
EPA (% total FA) | 0.22 | 0.13, 0.41 |
DPA (% total FA) | 1.05 | 0.50, 1.50 |
DHA | 1.93 | 0.86, 2.91 |
Self-Reported Seafood Consumption (Ounces per Month) | Median | 25th and 75th Percentile |
Hg | 9.0 | 2.5, 25 |
Total n-3 PUFA | 20 | 6, 47.5 |
Seafood Consumption | Pregnant | Non-Pregnant | ||||
---|---|---|---|---|---|---|
Median | 25th Percentile | 75th Percentile | Median | 25th Percentile | 75th Percentile | |
Moderate Hg seafood | 5 | 1 | 18 | 10.5 | 3 | 27.5 |
High n-3 PUFA seafood | 12.5 | 3.5 | 32.5 | 22.5 | 7.5 | 56.0 |
Blood Level | Overall | Pregnant | Not Pregnant | |||
---|---|---|---|---|---|---|
95% CI | 95% CI | 95% CI | ||||
Hg | 0.15 * | 0.07, 0.23 | 0.22 * | 0.06, 0.37 | 0.10 * | 0.01, 0.20 |
Total n-3 PUFA | 0.12 * | 0.02, 0.22 | −0.01 | −0.24, 0.23 | 0.15 * | 0.03, 0.26 |
ALA | 0.00 | −0.10, 0.11 | −0.10 | −0.33, 0.13 | 0.05 | −0.06, 0.17 |
EPA | 0.20 * | 0.10, 0.30 | 0.06 | −0.17, 0.29 | 0.21 * | 0.10, 0.32 |
DPA | 0.11 * | 0.01, 0.23 | 0.03 | −0.20, 0.27 | 0.12 * | 0.00, 0.23 |
DHA | 0.16 * | 0.06, 0.26 | 0.05 | −0.18, 0.28 | 0.20 * | 0.09, 0.31 |
Blood Level | Trimester 1 n = 22 | Trimester 2 n = 66 | Trimester 3 n = 71 | |||
---|---|---|---|---|---|---|
95% CI | 95% CI | 95% CI | ||||
Hg | 0.66 * | 0.27, 0.86 | 0.26 * | 0.01, 0.48 | 0.13 | −0.12, 0.36 |
Total n-3 PUFA | 0.06 | −0.79, 0.83 | 0.08 | −0.35, 0.49 | −0.01 | −0.33, 0.31 |
ALA | 0.81 * | 0.00, 0.98 | 0.05 | −0.37, 0.42 | −0.22 | −0.51, 0.11 |
EPA | 0.32 | −0.66, 0.90 | −0.01 | −0.43, 0.42 | 0.12 | −0.21, 0.43 |
DPA | −0.41 | −0.92, 0.69 | 0.03 | −0.39, 0.45 | 0.12 | −0.21, 0.43 |
DHA | 0.06 | −0.79, 0.83 | 0.10 | −0.34, 0.50 | 0.12 | −0.21, 0.43 |
Model | Unadjusted | Adjusted | ||||
---|---|---|---|---|---|---|
β | 95% CI | p-Value | β | 95% CI | p-Value | |
Hg * | ||||||
Seafood Consumption ** | 0.01 | 0.03 | ||||
Q1 | Ref | Ref | ||||
Q2 | 0.11 | −0.09, 0.30 | 0.05 | −0.16, 0.25 | ||
Q3 | 0.12 | −0.08, 0.32 | 0.09 | −0.11, 0.29 | ||
Q4 | 0.34 | 0.15, 0.53 | 0.28 | 0.08, 0.48 | ||
Total n-3 PUFA * | ||||||
Seafood Consumption *** | 0.07 | 0.12 | ||||
Q1 | Ref | Ref | ||||
Q2 | −0.12 | −0.31, 0.07 | −0.16 | −0.35, 0.03 | ||
Q3 | −0.03 | −0.22, 0.17 | −0.06 | −0.26, 0.14 | ||
Q4 | 0.12 | −0.07, 0.31 | 0.07 | −0.13, 0.26 |
Model | Unadjusted | Adjusted | ||||
---|---|---|---|---|---|---|
β | 95% CI | p-Value | β | 95% CI | p-Value | |
ALA ** | ||||||
Seafood Consumption | 0.36 | 0.32 | ||||
Q1 | Ref | Ref | ||||
Q2 | −0.13 | −0.36, 0.10 | −0.12 | −0.36, 0.13 | ||
Q3 | −0.15 | −0.40, 0.08 | −0.17 | −0.43, 0.08 | ||
Q4 | −0.21 | −0.44, 0.03 | −0.23 | −0.47, 0.02 | ||
EPA ** | ||||||
Seafood Consumption | 0.004 | 0.05 | ||||
Q1 | Ref | Ref | ||||
Q2 | 0.07 | −0.11, 0.24 | 0.01 | −0.17, 0.18 | ||
Q3 | 0.13 | −0.06, 0.31 | 0.08 | −0.09, 0.26 | ||
Q4 | 0.31 | 0.13, 0.49 | 0.21 | 0.04, 0.38 | ||
DPA *** | ||||||
Seafood Consumption | 0.20 | 0.14 | ||||
Q1 | Ref | Ref | ||||
Q2 | −0.03 | −0.24, 0.18 | 0.12 | −0.12, 0.37 | ||
Q3 | 0.07 | −0.15, 0.30 | 0.29 | −0.03, 0.54 | ||
Q4 | 0.18 | −0.03, 0.40 | 0.22 | −0.03, 0.46 | ||
Consumption/Time interaction | 0.002 | |||||
Q1 × Time | - | - | Ref | |||
Q2 × Time | - | - | −0.72 | −1.23, −0.21 | ||
Q3 × Time | - | - | −0.95 | −1.47, −0.43 | ||
Q4 × Time | - | - | −0.33 | −0.85, 0.19 | ||
DHA *** | ||||||
Seafood Consumption | 0.01 | 0.17 | ||||
Q1 | Ref | Ref | ||||
Q2 | −0.08 | −0.29, 0.13 | −0.13 | −0.23, 0.26 | ||
Q3 | 0.05 | −0.17, 0.28 | 0.16 | −0.09, 0.41 | ||
Q4 | 0.27 | 0.06, 0.49 | 0.24 | −0.01, 0.48 | ||
Consumption/Time interaction | 0.02 | |||||
Q1 × Time | - | - | Ref | |||
Q2 × Time | - | - | −0.61 | −1.12, −0.10 | ||
Q3 × Time | - | - | −0.60 | −1.12, −0.08 | ||
Q4 × Time | - | - | −0.07 | −0.59, 0.45 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zilversmit, L.; Wickliffe, J.; Shankar, A.; Taylor, R.J.; Harville, E.W. Correlations of Biomarkers and Self-Reported Seafood Consumption among Pregnant and Non-Pregnant Women in Southeastern Louisiana after the Gulf Oil Spill: The GROWH Study. Int. J. Environ. Res. Public Health 2017, 14, 784. https://doi.org/10.3390/ijerph14070784
Zilversmit L, Wickliffe J, Shankar A, Taylor RJ, Harville EW. Correlations of Biomarkers and Self-Reported Seafood Consumption among Pregnant and Non-Pregnant Women in Southeastern Louisiana after the Gulf Oil Spill: The GROWH Study. International Journal of Environmental Research and Public Health. 2017; 14(7):784. https://doi.org/10.3390/ijerph14070784
Chicago/Turabian StyleZilversmit, Leah, Jeffrey Wickliffe, Arti Shankar, Robert J. Taylor, and Emily W. Harville. 2017. "Correlations of Biomarkers and Self-Reported Seafood Consumption among Pregnant and Non-Pregnant Women in Southeastern Louisiana after the Gulf Oil Spill: The GROWH Study" International Journal of Environmental Research and Public Health 14, no. 7: 784. https://doi.org/10.3390/ijerph14070784
APA StyleZilversmit, L., Wickliffe, J., Shankar, A., Taylor, R. J., & Harville, E. W. (2017). Correlations of Biomarkers and Self-Reported Seafood Consumption among Pregnant and Non-Pregnant Women in Southeastern Louisiana after the Gulf Oil Spill: The GROWH Study. International Journal of Environmental Research and Public Health, 14(7), 784. https://doi.org/10.3390/ijerph14070784