Development and Validation of a Behavioural Index for Adaptation to High Summer Temperatures among Urban Dwellers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Index of Adaptation to High Temperatures
2.3. Statistical Analyses
2.4. Criterion-Related Validity of the Index
3. Results
3.1. Item Analysis
3.2. Confirmatory Factor Analysis
3.3. Multiple Correspondence Analysis
3.4. Measurement Invariance
3.5. Criterion-Related Validity of the Index
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Allard, M.; Bourque, A.; Chaumont, D.; DesJarlais, C.; Gosselin, P.; Houle, D.; Larrivée, C.; Lease, N.; Roy, R.; Savard, J.-P.; et al. Learning to Adapt to Climate Change; Ouranos Inc.: Montreal, QC, Canada, 2010. [Google Scholar]
- Smith, K.R.; Woodward, A.; Campbell-Lendrum, D.; Chadee, D.D.; Honda, Y.; Liu, Q.; Olwoch, J.M.; Revich, B.; Sauerborn, R. Human health: Impacts, adaptation, and co-benefits. Clim. Chang. 2014, 1, 709–754. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Health Canada. Health Canada. Health canada is collaborating with Canadian communities to reduce the urban heat island effect. In Climate Change and Health: Adaptation Bulletin; Government of Canada: Ottawa, ON, Canada, 2015. [Google Scholar]
- Jones, B.; O’Neill, B.C.; McDaniel, L.; McGinnis, S.; Mearns, L.O.; Tebaldi, C. Future population exposure to us heat extremes. Nat. Clim. Chang. 2015, 5, 652–655. [Google Scholar] [CrossRef]
- Watts, N.; Adger, W.N.; Agnolucci, P.; Blackstock, J.; Byass, P.; Cai, W.; Chaytor, S.; Colbourn, T.; Collins, M.; Cooper, A.; et al. Health and climate change: Policy responses to protect public health. Lancet 2015, 386, 1861–1914. [Google Scholar] [CrossRef]
- Atha, W.F. Heat-related illness. Emerg. Med. Clin. N. Am. 2013, 31, 1097–1108. [Google Scholar] [CrossRef] [PubMed]
- Berko, J.; Ingram, D.D.; Saha, S.; Parker, J.D. Deaths attributed to heat, cold, and other weather events in the United States, 2006–2010. Natl. Health Stat. Rep. 2014, 76, 1–16. [Google Scholar]
- Centers for Disease Control and Prevention. Heat-related deaths after an extreme heat event—Four States, 2012, and United States, 1999–2009. Morb. Mortal. Wkly. Rep. 2013, 62, 433–436. [Google Scholar]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Tobias, A.; Zanobetti, A.; Schwartz, J.D.; Leone, M.; Michelozzi, P.; Kan, H. Changes in susceptibility to heat during the summer: A multicountry analysis. Am. J. Epidemiol. 2016, 183, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Lebel, G.; Bustinza, R. Surveillance de la Chaleur Accablante au Québec: Bilan de la Saison Estivale 2012; Publication INSPQ: Québec City, QC, Canada, 2013. [Google Scholar]
- Åström, D.O.; Bertil, F.; Joacim, R. Heat wave impact on morbidity and mortality in the elderly population: A review of recent studies. Maturitas 2011, 69, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Harlan, S.L.; Ruddell, D.M. Climate change and health in cities: Impacts of heat and air pollution and potential co-benefits from mitigation and adaptation. Curr. Opin. Environ. Sustain. 2011, 3, 126–134. [Google Scholar] [CrossRef]
- Institut National de Santé Publique du Québec. Vagues de Chaleur, Îlot Thermique Urbain et Santé: Examen des Initiatives Actuelles D'adaptation aux Changements Climatiques au Québec; INSPQ: Québec City, QC, Canada, 2006; p. 15. [Google Scholar]
- Laaidi, K.; Zeghnoun, A.; Dousset, B.; Bretin, P.; Vandentorren, S.; Giraudet, E.; Beaudeau, P. The impact of heat islands on mortality in paris during the August 2003 heat wave. Environ. Health Perspect. 2012, 120, 254. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Lindley, S.; Levermore, G. Estimating spatial and temporal patterns of urban anthropogenic heat fluxes for UK cities: The case of manchester. Theor. Appl. Climatol. 2009, 98, 19–35. [Google Scholar] [CrossRef]
- Stone, B.; Hess, J.J.; Frumkin, H. Urban form and extreme heat events: Are sprawling cities more vulnerable to climate change than compact cities. Environ. Health Perspect. 2010, 118, 1425–1428. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F. The urban heat island and its impact on heat waves and human health in Shanghai. Int J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Boeckmann, M.; Rohn, I. Is planned adaptation to heat reducing heat-related mortality and illness? A systematic review. BMC Public Health 2014, 14, 1112. [Google Scholar] [CrossRef] [PubMed]
- Barros, V.; Field, C.; Dokke, D.; Mastrandrea, M.; Mach, K.; Bilir, T.E.; Chatterjee, M.; Ebi, K.; Estrada, Y.; Genova, R. Climate Change 2014: Impacts, Adaptation, and Vulnerability—Part B: Regional Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Austin, S.E.; Ford, J.D.; Berrang-Ford, L.; Araos, M.; Parker, S.; Fleury, M.D. Public health adaptation to climate change in Canadian jurisdictions. Int. J. Environ. Res. Public Health 2015, 12, 623–651. [Google Scholar] [CrossRef] [PubMed]
- Ford, J.D.; Willox, A.C.; Chatwood, S.; Furgal, C.; Harper, S.; Mauro, I.; Pearce, T. Adapting to the effects of climate change on inuit health. Am. J. Public Health 2014, 104, e9–e17. [Google Scholar] [CrossRef] [PubMed]
- Deschenes, O. Temperature, human health, and adaptation: A review of the empirical literature. Energy Econ. 2014, 46, 606–619. [Google Scholar] [CrossRef]
- Huang, C.; Vaneckova, P.; Wang, X.; FitzGerald, G.; Guo, Y.; Tong, S. Constraints and barriers to public health adaptation to climate change: A review of the literature. Am. J. Prev. Med. 2011, 40, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Barreca, A.; Clay, K.; Deschenes, O.; Greenstone, M.; Shapiro, J.S. Adapting to climate change: The remarkable decline in the us temperature-mortality relationship over the twentieth century. J. Polit. Econ. 2016, 124, 105–159. [Google Scholar] [CrossRef]
- Hondula, D.M.; Davis, R.E. The predictability of high-risk zones for heat-related mortality in seven US cities. Nat. Hazards 2014, 74, 771–788. [Google Scholar] [CrossRef]
- Cutter, S.; Solecki, B.; Bragado, N.; Carmin, J.; Fragkias, M.; Ruth, M.; Wilbanks, T.; Melillo, J.M.; Richmond, T.C.; Yohe, G.W. Chapter 11—Urban systems, infrastructure, and vulnerability. In Federal Advisory Committee Draft Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2013. [Google Scholar]
- Saman, W.; Pullen, S.; Boland, J. How to cope with heat waves in the home. In Applied Studies in Climate Adaptation; Palutikof, J.P., Boulter, S.L., Barnett, J., Rissik, D., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2014; pp. 354–363. [Google Scholar]
- Bittner, M.-I.; Stößel, U. Perceptions of heatwave risks to health: Results of an qualitative interview study with older people and their carers in Freiburg, Germany. GMS Psychosoc. Med. 2012, 9. [Google Scholar] [CrossRef]
- Gupta, S.; Carmichael, C.; Simpson, C.; Clarke, M.J.; Allen, C.; Gao, Y.; Chan, E.Y.; Murray, V. Electric fans for reducing adverse health impacts in heatwaves. Cochrane Database Syst. Rev. 2012, 11. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Rosenstock, I.M. Historical origins of the health belief model. Health Educ. Monogr. 1974, 2, 328–335. [Google Scholar] [CrossRef]
- Organisation for Economic Co-Operation and Development (OECD). Handbook on Constructing Composite Indicators: Methodology and User Guide; OECD Publishing: Paris, France, 2008. [Google Scholar]
- Nicholls, R.J.; Hoozemans, F.M.; Marchand, M. Increasing flood risk and wetland losses due to global sea-level rise: Regional and global analyses. Glob. Environ. Chang. 1999, 9, S69–S87. [Google Scholar] [CrossRef]
- Hinkel, J.; Klein, R.J. Integrating knowledge to assess coastal vulnerability to sea-level rise: The development of the diva tool. Glob. Environ. Chang. 2009, 19, 384–395. [Google Scholar] [CrossRef]
- Brenner, J.; Jiménez, J.A.; Sardá, R. Environmental indicators gis of the catalan coast. J. Coast. Conserv. 2008, 11, 185–191. [Google Scholar] [CrossRef]
- Hinkel, J. “Indicators of vulnerability and adaptive capacity”: Towards a clarification of the science-policy interface. Glob. Environ.Chang. 2011, 21, 198–208. [Google Scholar] [CrossRef]
- Lamari, M.; Bouchard, J.; Jacob, J.; Poulin-Lariviere, L. Monitoring and evaluation of climate change adaptation in coastal zones: Overview of the indicators in use. In Climate Change Adaptation, Resilience and Hazards; Springer: Berlin, Germany, 2016; pp. 3–20. [Google Scholar]
- Brooks, N. Vulnerability, risk and adaptation: A conceptual framework. Tyndall Cent. Clim. Chang. Res. Work. Pap. 2003, 38, 1–16. [Google Scholar]
- Thywissen, K. Components of Risk: A Comparative Glossary; UNU-EHS: Bonn, Germany, 2006. [Google Scholar]
- Hedger, M.M.; Mitchell, T.; Leavy, J.; Greeley, M.; Downie, A. Desk Review: Evaluation of Adaptation to Climate Change from a Development Perspective; Institute of Development Studies: Brighton, UK, 2008. [Google Scholar]
- Organisation for Economic Co-Operation and Development. Adaptation to Climate Change. Key Terms; OECD: Paris, France, 2006. [Google Scholar]
- Bélanger, D.; Abdous, B.; Gosselin, P.; Valois, P. An adaptation index to high summer heat associated with adverse health impacts in deprived neighborhoods. Clim. Chang. 2015, 132, 279–293. [Google Scholar] [CrossRef]
- Morin, A.; Marsh, H.; Nagengast, B.; Hancock, G.; Mueller, R. Exploratory structural equation modeling. In Structural Equation Modeling: A Second Course; Information Age Publishing Inc.: Charlotte, NC, USA, 2013; pp. 395–436. [Google Scholar]
- Gérardin, V.; McKenney, D. Une Classification Climatique du Québec À Partir de Modèles de Distribution Spatiale de Données Climatiques Mensuelles: Vers une Définition des Bioclimats au Québec; Direction du Patrimoine Écologique et du Développement Durable, Ministère de l’Environnement: Québec City, QC, Canada, 2001.
- Pampalon, R.; Raymond, G. A deprivation index for health and welfare planning in Quebec. Chronic Dis. Inj. Can. 2000, 21, 104–113. [Google Scholar]
- Vallée, J.; Souris, M.; Fournet, F.; Bochaton, A.; Mobillion, V.; Peyronnie, K.; Salem, G. Sampling in health geography: Reconciling geographical objectives and probabilistic methods. An example of a health survey in vientiane (LAo PDR). Emerg. Themes Epidemiol. 2007, 4, 6. [Google Scholar] [CrossRef] [PubMed]
- Basu, R.; Samet, J.M. Relation between elevated ambient temperature and mortality: A review of the epidemiologic evidence. Epidemiol. Rev. 2002, 24, 190–202. [Google Scholar] [CrossRef] [PubMed]
- Bouchama, A.; Dehbi, M.; Mohamed, G.; Matthies, F.; Shoukri, M.; Menne, B. Prognostic factors in heat wave-related deaths: A meta-analysis. Arch. Intern. Med. 2007, 167, 2170–2176. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, A.C.; Lundgren, L. Stratified Climate Vulnerability Analysis for Heat Waves in a Swedish City: Who is Vulnerable and Why? In Proceedings of the NORDCLAD 2012: Nordic International Conference on Climate Change Adaptation, Helsingfors, Finland, 29–31 August 2012. [Google Scholar]
- Kovats, R.S.; Hajat, S. Heat stress and public health: A critical review. Annu. Rev. Public Health 2008, 29, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Luber, G.; McGeehin, M. Climate change and extreme heat events. Am. J. Prev. Med. 2008, 35, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Kish, L. Optima and proxima in linear sample designs. J. R. Stat. Soc. Ser. A (Gen.) 1976, 139, 80–95. [Google Scholar] [CrossRef]
- Kish, L. Multipurpose sample designs. Surv. Methodol. 1988, 14, 19–32. [Google Scholar]
- Bélanger, D.; Gosselin, P.; Valois, P.; Abdous, B. Neighbourhood and dwelling characteristics associated with the self-reported adverse health effects of heat in most deprived urban areas: A cross-sectional study in 9 cities. Health Place 2015, 32, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Institut National de Santé Publique Québec. S’adapter aux Vagues de Chaleur. Available online: http://www.monclimatmasante.qc.ca/adaptation-vagues-de-chaleur.aspx (accessed on 7 July 2017).
- Health Canada. You’re Active in the Heat. You’re at Risk! Protect Yourself from Extreme Heat; Government of Canada: Québec City, QC, Canada, 2011; p. 14.
- Deville, J.-C.; Särndal, C.-E. Calibration estimators in survey sampling. J. Am. Stat. Assoc. 1992, 87, 376–382. [Google Scholar] [CrossRef]
- Sautory, O. La Macro Calmar Redressement d’un Échantillon par Calage sur Marges; L Document; Institut National de la Statistique et des Études Économiques Direction Générale: Paris, France, 1993. [Google Scholar]
- White, I.R.; Royston, P.; Wood, A.M. Multiple imputation using chained equations: Issues and guidance for practice. Stat. Med. 2011, 30, 377–399. [Google Scholar] [CrossRef] [PubMed]
- Samejima, F. Estimation of Latent Ability Using a Response Pattern of Graded Scores; Research Bulletin; Educational Testing Service: Princeton, NJ, USA, 1969. [Google Scholar]
- Baker, F.B. The Basics of Item Response Theory; ERIC Clearinghouse on Assessment and Evaluation: College Park, MD, USA, 2001. [Google Scholar]
- Greenacre, M. Correspondence Analysis in Practice; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Canuel, M.; Abdous, B.; Bélanger, D.; Gosselin, P. Development of composite indices to measure the adoption of pro-environmental behaviours across canadian provinces. PLoS ONE 2014, 9, e101569. [Google Scholar] [CrossRef] [PubMed]
- Howe, L.D.; Hargreaves, J.R.; Huttly, S.R. Issues in the construction of wealth indices for the measurement of socio-economic position in low-income countries. Emerg. Themes Epidemiol. 2008, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Greenacre, M.J. Theory and Applications of Correspondence Analysis; Academic Press: Waltham, MA, USA, 1984. [Google Scholar]
- Millsap, E. Statistical Methods for Studying Measurement Invariance; Taylor & Fransis: Abingdon, UK, 2011. [Google Scholar]
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 7th ed.; Muthén & Muthén: Los Angeles, CA, USA, 2015. [Google Scholar]
- Lee, J.; Little, T.D.; Preacher, K.J. Methodological issues in using structural equation models for testing differential item functioning. In Cross-Cultural Analysis: Methods and Applications; Davidov, E., Schmidt, P., Billiet, J., Eds.; Routledge: Abingdon, UK, 2011; pp. 55–85. [Google Scholar]
- Guay, F.; Morin, A.J.; Litalien, D.; Valois, P.; Vallerand, R.J. Application of exploratory structural equation modeling to evaluate the academic motivation scale. J. Exp. Educ. 2015, 83, 51–82. [Google Scholar] [CrossRef]
- Morin, A.J.S.; Moullec, G.; Maiano, C.; Layet, L.; Just, J.L.; Ninot, G. Psychometric properties of the center for epidemiologic studies depression scale (CES-D) in French clinical and non-clinical adults. Epidemiol. Public Health 2011, 59, 327–340. [Google Scholar]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Yu, C.-Y. Evaluating Cutoff Criteria of Model Fit Indices for Latent Variable Models with Binary and Continuous Outcomes. Ph.D. Thesis, University of California Los Angeles, Los Angeles, CA, USA, 2002. [Google Scholar]
- Kline, R. Principles and Practice of Structural Equation Modeling; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Cheung, G.W.; Rensvold, R.B. Evaluating goodness-of-fit indexes for testing measurement invariance. Struct. Equ. Model. Multidiscip. J. 2002, 9, 233–255. [Google Scholar] [CrossRef]
- Chen, F.F. Sensitivity of goodness of fit indexes to lack of measurement invariance. Struct. Equ. Model. Multidiscip. J. 2007, 14, 464–504. [Google Scholar] [CrossRef]
- Hogan, T.P. Psychological Testing: A Practical Introduction, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Fahimi, M.; Link, M.; Mokdad, A.; Schwartz, D.A.; Levy, P. Peer reviewed: Tracking chronic disease and risk behavior prevalence as survey participation declines: Statistics from the behavioral risk factor surveillance system and other national surveys. Prev. Chronic Dis. 2008, 5, A80. [Google Scholar] [PubMed]
- Jamrozik, E.; Hyde, Z.; Alfonso, H.; Flicker, L.; Almeida, O.; Yeap, B.; Norman, P.; Hankey, G.; Jamrozik, K. Validity of self-reported versus hospital-coded diagnosis of stroke: A cross-sectional and longitudinal study. Cerebrovasc. Dis. 2014, 37, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Pierannunzi, C.; Hu, S.S.; Balluz, L. A systematic review of publications assessing reliability and validity of the behavioral risk factor surveillance system (BRFSS), 2004–2011. BMC Med. Res. Methodol. 2013, 13, 49. [Google Scholar] [CrossRef] [PubMed]
- Starr, G.J.; Grande, E.D.; Taylor, A.W.; Wilson, D.H. Reliability of self-reported behavioural health risk factors in a South Australian telephone survey. Aust. N. Z. J. Public Health 1999, 23, 528–530. [Google Scholar] [CrossRef] [PubMed]
- Grothmann, T.; Patt, A. Adaptive capacity and human cognition: The process of individual adaptation to climate change. Glob. Environ. Chang. 2005, 15, 199–213. [Google Scholar] [CrossRef]
- Akompab, D.A.; Bi, P.; Williams, S.; Grant, J.; Walker, I.A.; Augoustinos, M. Heat waves and climate change: Applying the health belief model to identify predictors of risk perception and adaptive behaviours in Adelaide, Australia. Int. J. Environ. Res. Public Health 2013, 10, 2164–2184. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Xu, Y.J.; Zhang, Y.H.; Yan, Q.H.; Song, X.L.; Xie, H.Y.; Luo, Y.; Rutherford, S.; Chu, C.; Lin, H.L. Associations between risk perception, spontaneous adaptation behavior to heat waves and heatstroke in Guangdong Province, China. BMC Public Health 2013, 13, 913. [Google Scholar] [CrossRef] [PubMed]
- Semenza, J.C.; Ploubidis, G.B.; George, L.A. Climate change and climate variability: Personal motivation for adaptation and mitigation. Environ. Health 2011, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Bélanger, D.; Abdous, B.; Valois, P.; Gosselin, P.; Sidi, E.A.L. A multilevel analysis to explain self-reported adverse health effects and adaptation to urban heat: A cross-sectional survey in the deprived areas of 9 Canadian cities. BMC Public Health 2016, 16, 144. [Google Scholar] [CrossRef] [PubMed]
- Valois, P.; Houssemand, C.; Germain, S.; Abdous, B. An open source tool to verify the psychometric properties of an evaluation instrument. Procedia-Soc. Behav. Sci. 2011, 15, 552–556. [Google Scholar] [CrossRef]
- Little, T.D.; Slegers, D.W.; Card, N.A. A non-arbitrary method of identifying and scaling latent variables in SEM and MACS models. Struct. Equ. Model. Multidiscip. J. 2006, 13, 59–72. [Google Scholar] [CrossRef]
- Litalien, D.; Lüdtke, O.; Parker, P.; Trautwein, U. Different pathways, same effects: Autonomous goal regulation is associated with subjective well-being during the post-school transition. Motiv. Emot. 2013, 37, 444–456. [Google Scholar] [CrossRef]
- Marsh, H.W.; Hau, K.-T. Applications of latent-variable models in educational psychology: The need for methodological-substantive synergies. Contemp. Educ. Psychol. 2007, 32, 151–170. [Google Scholar] [CrossRef]
- Patz, J.A.; Frumkin, H.; Holloway, T.; Vimont, D.J.; Haines, A. Climate change: Challenges and opportunities for global health. JAMA 2014, 312, 1565–1580. [Google Scholar] [CrossRef] [PubMed]
- De Munck, C.; Pigeon, G.; Masson, V.; Meunier, F.; Bousquet, P.; Tréméac, B.; Merchat, M.; Poeuf, P.; Marchadier, C. How much can air conditioning increase air temperatures for a city like Paris, France? Int. J. Climatol. 2013, 33, 210–227. [Google Scholar] [CrossRef]
- Vescovi, L.; Bourque, A.; Simonet, G.; Musy, A. Climate change science knowledge transfer in support of vulnerability, impacts and adaptation activities on a north american regional scale: Ouranos as a case study. In Proceedings of the IPCC Regional Expert Meeting: Meeting Report Papers, Denarau Island Nadi, Fiji, 20–22 June 2007; pp. 221–225. [Google Scholar]
- Hansen, A.; Bi, P.; Nitschke, M.; Pisaniello, D.; Newbury, J.; Kitson, A. Perceptions of heat-susceptibility in older persons: Barriers to adaptation. Int. J. Environ. Res. Public Health 2011, 8, 4714. [Google Scholar] [CrossRef] [PubMed]
- Lane, K.; Wheeler, K.; Charles-Guzman, K.; Ahmed, M.; Blum, M.; Gregory, K.; Graber, N.; Clark, N.; Matte, T. Extreme heat awareness and protective behaviors in new york city. J. Urban Health 2014, 91, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Richard, L.; Kosatsky, T.; Renouf, A. Correlates of hot day air-conditioning use among middle-aged and older adults with chronic heart and lung diseases: The role of health beliefs and cues to action. Health Educ. Res. 2010, 26, 77–88. [Google Scholar] [CrossRef] [PubMed]
Adaptive Behaviours | Discrimination Index | 99% Confidence Interval |
---|---|---|
Cover your head in strong sunlight | 0.512 | (0.386–0.638) |
Sponge or spray your face or neck with cool water | 0.962 | (0.790–1.134) |
Take showers or baths more often than usual | 0.753 | (0.615–0.890) |
Drink mainly plain water to cool down | 0.473 | (0.323–0.622) |
Consume frozen foods to cool down | 0.512 | (0.382–0.641) |
Swim in a public pool, lake, or river to cool off | 0.591 | (0.427–0.755) |
Swim in a private pool to cool off | 0.394 | (0.261–0.526) |
Adopt preventive behaviours according to weather bulletins in the media or on the Internet | 0.856 | (0.703–1.009) |
Stay home during heat waves to avoid adverse health effects | 0.441 | (0.315–0.566) |
Keep a list of emergency phone numbers on hand | 0.314 | (0.195–0.432) |
Use air-conditioning during heat waves | –0.057 | (–0.178–0.063) |
Use window shades to block strong sunlight and keep the home cool | 0.966 | (0.803–1.128) |
Use the dryer less to reduce heat sources at home | 1.132 | (0.972–1.293) |
Shut off the computer when not in use to reduce heat sources at home | 0.789 | (0.651–0.928) |
Use the stove less to reduce heat sources at home | 1.359 | (1.175–1.543) |
Spend time in air-conditioned places outside the home to cool off | 0.782 | (0.589–0.974) |
Use the balcony to cool off in the evening | 0.731 | (0.595–0.866) |
Use the yard to cool off in the evening | 0.641 | (0.506–0.776) |
Removed Behaviours | Number of Behaviours Composing the Index | Reason | Model Fit | |||
---|---|---|---|---|---|---|
CFI a | TLI b | χ2/df c | RMSEA d | |||
None: Initial model | 17 | 0.631 | 0.578 | 5.99 | 0.050 | |
Use the yard to cool off in the evening | 16 | Too high a relationship with “Use the balcony to cool off in the evening” (r = 0.67) | 0.741 | 0.701 | 3.87 | 0.038 |
Sponge or spray your face or neck with cool water | 15 | Too high a relationship with “Take showers or baths more often than usual” (r = 0.49) | 0.751 | 0.709 | 3.62 | 0.036 |
Swim in a private pool | 14 | Too high a relationship with “swim in a public pool” (r = 0.27) | 0.812 | 0.778 | 3.17 | 0.033 |
Stay home during a heat wave | 13 | Too high a relationship with “Adopt preventive behaviours according to weather bulletins in the media or on the Internet” (r = 0.38) | 0.876 | 0.851 | 2.47 | 0.027 |
Consume frozen foods to cool down | 12 | Does not appear to belong to the same theoretical construct as that measured by the other indicators. One possible explanation is that the respondents did not necessarily adopt this behaviour to combat heat. | 0.921 | 0.903 | 2.02 | 0.023 |
Model | χ2 | df | RMSEA | CFI | TLI | ∆RMSEA | ∆CFI | ∆TLI | Compared Model |
---|---|---|---|---|---|---|---|---|---|
Configural invariance | 185.690 | 108 | 0.022 | 0.910 | 0.890 | - | - | - | - |
Strong invariance | 186.470 | 118 | 0.02 | 0.921 | 0.911 | −0.002 | 0.011 | 0.021 | 1 |
Strict invariance | 190.900 | 130 | 0.018 | 0.929 | 0.928 | −0.002 | 0.008 | 0.017 | 2 |
Variance-covariance invariance | 189.110 | 131 | 0.017 | 0.933 | 0.932 | −0.001 | 0.004 | 0.004 | 3 |
Latent means invariance | 190.450 | 132 | 0.017 | 0.932 | 0.932 | 0.000 | −0.001 | 0.000 | 4 |
Level of Adaptation to Heat | % Who Reported Adverse Health Impacts | Confidence Interval | Coeff. of Variation | Odds Ratio | Confidence Interval | Pr > χ2 |
---|---|---|---|---|---|---|
Individuals who adapt well | 45.77 | (41.78–49.76) | 4.44 | 1.37 | (1.13–1.66) | 0.0011 |
Individuals who do not adapt as well | 38.11 | (33.66–42.56) | 5.95 | 1.00 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valois, P.; Talbot, D.; Caron, M.; Carrier, M.-P.; Morin, A.J.S.; Renaud, J.-S.; Jacob, J.; Gosselin, P. Development and Validation of a Behavioural Index for Adaptation to High Summer Temperatures among Urban Dwellers. Int. J. Environ. Res. Public Health 2017, 14, 820. https://doi.org/10.3390/ijerph14070820
Valois P, Talbot D, Caron M, Carrier M-P, Morin AJS, Renaud J-S, Jacob J, Gosselin P. Development and Validation of a Behavioural Index for Adaptation to High Summer Temperatures among Urban Dwellers. International Journal of Environmental Research and Public Health. 2017; 14(7):820. https://doi.org/10.3390/ijerph14070820
Chicago/Turabian StyleValois, Pierre, Denis Talbot, Maxime Caron, Marie-Pier Carrier, Alexandre J. S. Morin, Jean-Sébastien Renaud, Johann Jacob, and Pierre Gosselin. 2017. "Development and Validation of a Behavioural Index for Adaptation to High Summer Temperatures among Urban Dwellers" International Journal of Environmental Research and Public Health 14, no. 7: 820. https://doi.org/10.3390/ijerph14070820
APA StyleValois, P., Talbot, D., Caron, M., Carrier, M. -P., Morin, A. J. S., Renaud, J. -S., Jacob, J., & Gosselin, P. (2017). Development and Validation of a Behavioural Index for Adaptation to High Summer Temperatures among Urban Dwellers. International Journal of Environmental Research and Public Health, 14(7), 820. https://doi.org/10.3390/ijerph14070820