Diurnal Temperature Range in Relation to Daily Mortality and Years of Life Lost in Wuhan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Population
2.2. Data Collection
2.2.1. Mortality and YLL Data
2.2.2. Ambient Meteorological Data
2.3. Data Analysis
3. Results
3.1. Data Description
3.2. Lag Patterns of DTR-Associated Effects
3.3. DTR Effects on Cause-Specific Mortality and YLL
3.4. Subgroup Analysis Stratified by Gender, Age, and Education Level
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Song, X.; Wang, S.; Hu, Y.; Yue, M.; Zhang, T.; Liu, Y.; Tian, J.; Shang, K. Impact of ambient temperature on morbidity and mortality: An overview of reviews. Sci. Total Environ. 2017, 586, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Amegah, A.K.; Rezza, G.; Jaakkola, J.J. Temperature-related morbidity and mortality in sub-saharan Africa: A systematic review of the empirical evidence. Environ. Int. 2016, 91, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Mengersen, K.; Wang, X.; Ye, X.; Guo, Y.; Pan, X.; Tong, S. Daily average temperature and mortality among the elderly: A meta-analysis and systematic review of epidemiological evidence. Int. J. Biometeorol. 2012, 56, 569–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunker, A.; Wildenhain, J.; Vandenbergh, A.; Henschke, N.; Rocklov, J.; Hajat, S.; Sauerborn, R. Effects of air temperature on climate-sensitive mortality and morbidity outcomes in the elderly: A systematic review and meta-analysis of epidemiological evidence. EBioMedicine 2016, 6, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklov, J.; Forsberg, B.; et al. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef]
- Li, T.; Horton, R.M.; Bader, D.A.; Zhou, M.; Liang, X.; Ban, J.; Sun, Q.; Kinney, P.L. Aging will amplify the heat-related mortality risk under a changing climate: Projection for the elderly in Beijing, China. Sci. Rep. 2016, 6, 28161. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Zhou, L.; Chen, X.; Ma, Z.; Liu, Y.; Huang, L.; Bi, J.; Kinney, P.L. Urbanization level and vulnerability to heat-related mortality in Jiangsu province, China. Environ. Health Perspect. 2016, 124, 1863–1869. [Google Scholar] [CrossRef] [PubMed]
- Basu, R.; Ostro, B.D. A multicounty analysis identifying the populations vulnerable to mortality associated with high ambient temperature in California. Am. J. Epidemiol. 2008, 168, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Makowski, K.; Wild, M.; Ohmura, A. Diurnal temperature range over Europe between 1950 and 2005. Atmos. Chem. Phys. Discuss. 2008, 8, 7051–7084. [Google Scholar] [CrossRef]
- Yang, J.; Liu, H.Z.; Ou, C.Q.; Lin, G.Z.; Zhou, Q.; Shen, G.C.; Chen, P.Y.; Guo, Y. Global climate change: Impact of diurnal temperature range on mortality in Guangzhou, China. Environ. Pollut. 2013, 175, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Vicedo-Cabrera, A.M.; Forsberg, B.; Tobias, A.; Zanobetti, A.; Schwartz, J.; Armstrong, B.; Gasparrini, A. Associations of inter- and intraday temperature change with mortality. Am. J. Epidemiol. 2016, 183, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Guo, P.; Xie, F.; Chu, H.; Li, K.; Pu, J.; Pang, S.; Dong, H.; Liu, Y.; Pi, F.; et al. Impact of diurnal temperature range on mortality in a high plateau area in southwest China: A time series analysis. Sci. Total Environ. 2015, 526, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Vutcovici, M.; Goldberg, M.S.; Valois, M.F. Effects of diurnal variations in temperature on non-accidental mortality among the elderly population of Montreal, Quebec, 1984–2007. Int. J. Biometeorol. 2014, 58, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.H.; Reid, C.E.; Mann, J.K.; Jerrett, M.; Kim, H. Diurnal temperature range and short-term mortality in large US communities. Int. J. Biometeorol. 2015, 59, 1311–1319. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Chen, G.; Jiang, L.; Zhang, Y.; Zhao, N.; Chen, B.; Kan, H. Diurnal temperature range as a novel risk factor for COPD death. Respirology 2008, 13, 1066–1069. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Shin, J.; Lim, Y.H.; Honda, Y.; Hashizume, M.; Guo, Y.L.; Kan, H.; Yi, S.; Kim, H. Comprehensive approach to understand the association between diurnal temperature range and mortality in east Asia. Sci. Total Environ. 2016, 539, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Xu, Z.; Zhu, R.; Wang, X.; Jin, L.; Song, J.; Su, H. Impact of diurnal temperature range on human health: A systematic review. Int. J. Biometeorol. 2014, 58, 2011–2024. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.W.; Sanborn, J.S. Years of potential life lost (YPLL)—What does it measure? Epidemiology 1990, 1, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Barnett, A.G.; Wang, X.; Tong, S. The impact of temperature on years of life lost in Brisbane, Australia. Nat. Clim. Chang. 2012, 2, 265–270. [Google Scholar] [CrossRef]
- Yang, J.; Ou, C.Q.; Guo, Y.; Li, L.; Guo, C.; Chen, P.Y.; Lin, H.L.; Liu, Q.Y. The burden of ambient temperature on years of life lost in Guangzhou, China. Sci. Rep. 2015, 5, 12250. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, S.; Tian, Z.; Pan, X.; Zhang, J.; Williams, G. The burden of air pollution on years of life lost in Beijing, China, 2004–08: Retrospective regression analysis of daily deaths. BMJ 2013, 347, f7139. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Yang, Z.; Liu, T.; Shen, Y.; Fu, X.; Qian, X.; Zhang, Y.; Wang, Y.; Xu, Z.; Zhu, S.; et al. Ambient air pollution and years of life lost in Ningbo, China. Sci. Rep. 2016, 6, 22485. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Zhou, L.; Xu, Y.; Zheng, T.; Guo, Y.; Wellenius, G.A.; Bassig, B.A.; Chen, X.; Wang, H.; Zheng, X. Short-term effects of air pollution on daily mortality and years of life lost in Nanjing, China. Sci. Total Environ. 2015, 536, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Amann, M.; Anderson, H.R.; Andrews, K.G.; Aryee, M.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the global burden of disease study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef]
- Naghavi, M.; Wang, H.; Lozano, R.; Davis, A.; Liang, X.; Zhou, M.; Vollset, S.E.V.; Abbasoglu Ozgoren, A.; Norman, R.E.; Vos, T. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the global burden of disease study 2013. Lancet 2015, 385, 117–171. [Google Scholar]
- Qian, Z.; He, Q.; Lin, H.M.; Kong, L.; Bentley, C.M.; Liu, W.; Zhou, D. High temperatures enhanced acute mortality effects of ambient particle pollution in the “oven” city of Wuhan, China. Environ. Health Perspect. 2008, 116, 1172–1178. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, C.; Feng, R.; Zhu, Y.; Wu, K.; Tan, X.; Ma, L. The short-term effect of ambient temperature on mortality in Wuhan, China: A time-series study using a distributed lag non-linear model. Int. J. Environ. Res. Public Health 2016, 13, 722. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, C.; Bao, J.; Li, X. Impact of temperature variation on mortality: An observational study from 12 counties across Hubei province in China. Sci. Total Environ. 2017, 587–588, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ou, C.Q.; Song, Y.F.; Li, L.; Chen, P.Y.; Liu, Q.Y. Estimating years of life lost from cardiovascular mortality related to air pollution in Guangzhou, China. Sci. Total Environ. 2016, 573, 1566–1572. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.D.; Dominici, F.; Louis, T.A. Model choice in time series studies of air pollution and mortality. J. R. Stat. Soc. A 2006, 169, 179–203. [Google Scholar] [CrossRef]
- Kan, H.; London, S.J.; Chen, H.; Song, G.; Chen, G.; Jiang, L.; Zhao, N.; Zhang, Y.; Chen, B. Diurnal temperature range and daily mortality in Shanghai, China. Environ. Res. 2007, 103, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhao, A.; Meng, X.; Chen, R.; Kuang, X.; Duan, X.; Kan, H. Acute effects of diurnal temperature range on mortality in 8 Chinese cities. Sci. Total Environ. 2014, 493, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Gasparrini, A.; Armstrong, B.; Kenward, M.G. Distributed lag non-linear models. Stat. Med. 2010, 29, 2224–2234. [Google Scholar] [CrossRef] [PubMed]
- Gasparrini, A. Distributed lag linear and non-linear models in R: The package dlnm. J. Stat. Softw. 2011, 43, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Gasparrini, A.; Armstrong, B.; Li, S.; Tawatsupa, B.; Tobias, A.; Lavigne, E.; de Sousa Zanotti Stagliorio Coelho, M.; Leone, M.; Pan, X.; et al. Global variation in the effects of ambient temperature on mortality: A systematic evaluation. Epidemiology 2014, 25, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, C.; Bao, J.; Li, X. Impact of temperature on mortality in Hubei, China: A multi-county time series analysis. Sci. Rep. 2017, 7, 45093. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhang, Y.; Zhang, W.; Li, S.; Chen, G.; Wu, Y.; Qiu, C.; Ying, K.; Tang, H.; Huang, J.A.; et al. Ambient temperature and emergency department visits: Time-series analysis in 12 Chinese cities. Environ. Pollut. 2017, 224, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.H.; Park, A.K.; Kim, H. Modifiers of diurnal temperature range and mortality association in six Korean cities. Int. J. Biometeorol. 2012, 56, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Wang, H.; Zhu, J.; Chen, W.; Wang, L.; Liu, S.; Li, Y.; Wang, L.; Liu, Y.; Yin, P.; et al. Cause-specific mortality for 240 causes in China during 1990–2013: A systematic subnational analysis for the global burden of disease study 2013. Lancet 2016, 387, 251–272. [Google Scholar] [CrossRef]
- Cao, J.; Cheng, Y.; Zhao, N.; Song, W.; Jiang, C.; Chen, R.; Kan, H. Diurnal temperature range is a risk factor for coronary heart disease death. J. Epidemiol. 2009, 19, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, R.; Silva, M.C.; Correia, M.; Bailey, T. Are stroke occurrence and outcome related to weather parameters? Results from a population-based study in northern Portugal. Cerebrovasc. Dis. 2011, 32, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Benmarhnia, T.; Deguen, S.; Kaufman, J.S.; Smargiassi, A. Review article: Vulnerability to heat-related mortality: A systematic review, meta-analysis, and meta-regression analysis. Epidemiology 2015, 26, 781–793. [Google Scholar] [CrossRef] [PubMed]
- Ban, J.; Xu, D.; He, M.Z.; Sun, Q.; Chen, C.; Wang, W.; Zhu, P.; Li, T. The effect of high temperature on cause-specific mortality: A multi-county analysis in China. Environ. Int. 2017, 106, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Seposo, X.T.; Dang, T.N.; Honda, Y. Effect modification in the temperature extremes by mortality subgroups among the tropical cities of the Philippines. Glob. Health Action 2016, 9, 31500. [Google Scholar] [CrossRef] [PubMed]
- Onozuka, D.; Hagihara, A. Variation in vulnerability to extreme-temperature-related mortality in Japan: A 40-year time-series analysis. Environ. Res. 2015, 140, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Basu, R. High ambient temperature and mortality: A review of epidemiologic studies from 2001 to 2008. Environ. Health 2009, 8, 40. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Li, L.; Xin, L.; Pi, F.; Dong, W.; Wen, Y.; Au, W.W.; Zhang, Q. High diurnal temperature range and mortality: Effect modification by individual characteristics and mortality causes in a case-only analysis. Sci. Total Environ. 2016, 544, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Shi, L.; Zanobetti, A.; Schwartz, J.D. Study on the association between ambient temperature and mortality using spatially resolved exposure data. Environ. Res. 2016, 151, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Feng, R.; Wu, R.; Zhong, P.; Tan, X.; Wu, K.; Ma, L. Global climate change: Impact of heat waves under different definitions on daily mortality in Wuhan, China. Glob. Health Res. Policy 2017, 2, 10. [Google Scholar] [CrossRef]
- Anderson, B.G.; Bell, M.L. Weather-related mortality: How heat, cold, and heat waves affect mortality in the United States. Epidemiology 2009, 20, 205–213. [Google Scholar] [CrossRef] [PubMed]
Meteorological Variables | Mean ± SD | Range | Percentile | ||||
---|---|---|---|---|---|---|---|
P1 | P25 | P50 | P75 | P99 | |||
Mean temperature (°C) | 16.8 ± 9.6 | −2.9–35.3 | −0.6 | 8.2 | 18.1 | 25.0 | 32.8 |
Minimum temperature (°C) | 13.2 ± 9.8 | −7.8–31.4 | −4.7 | 4.8 | 14.1 | 21.7 | 29.6 |
Maximum temperature (°C) | 21.6 ± 9.7 | 0.7–39.1 | 2.2 | 13.2 | 23.1 | 29.8 | 37.3 |
DTR (°C) | 8.4 ± 3.9 | 0.9–19.5 | 1.5 | 5.4 | 8.3 | 11.0 | 16.9 |
Mean relative humidity (%) | 76.6 ± 12.4 | 24–100 | 39 | 70 | 78 | 86 | 97 |
Mean wind speed (m/s) | 1.9 ± 1.0 | 0.2–6.8 | 0.6 | 1.2 | 1.7 | 2.3 | 5.2 |
Sunshine duration (h) | 4.5 ± 4.1 | 0.0–13.2 | 0.0 | 0.0 | 4.5 | 8.3 | 11.9 |
Atmospheric pressure (hPa) | 1012.7 ± 9.5 | 992.7–1037.6 | 996.7 | 1004.6 | 1013.0 | 1019.7 | 1033.2 |
Variables | Mean ± SD | Minimum | P25 | P50 | P75 | Maximum |
---|---|---|---|---|---|---|
Death Counts | ||||||
Non-accidental | 21.4 ± 5.9 | 9 | 17 | 21 | 25 | 47 |
Cardiorespiratory | 11.8 ± 4.5 | 1 | 9 | 11 | 15 | 36 |
Cardiovascular | 9.7 ± 3.8 | 1 | 7 | 9 | 12 | 29 |
Respiratory | 2.1 ± 1.6 | 0 | 1 | 2 | 3 | 9 |
Stroke | 5.4 ± 2.6 | 0 | 4 | 5 | 7 | 14 |
IHD | 3.3 ± 2.0 | 0 | 2 | 3 | 4 | 13 |
Gender | ||||||
Male | 11.9 ± 3.9 | 2 | 9 | 12 | 14 | 29 |
Female | 9.5 ± 3.5 | 1 | 7 | 9 | 12 | 24 |
Age (years) | ||||||
0–74 | 9.3 ± 3.3 | 0 | 7 | 9 | 11 | 22 |
75+ | 12.0 ± 4.3 | 2 | 9 | 12 | 15 | 29 |
Education level (years) | ||||||
0–6 | 10.7 ± 3.6 | 2 | 8 | 11 | 13 | 29 |
7+ | 10.2 ± 3.9 | 2 | 7 | 10 | 13 | 27 |
YLL (years) | ||||||
Non-accidental | 317.8 ± 97.2 | 97.9 | 246.8 | 308.3 | 378.9 | 730.8 |
Cardiorespiratory | 130.1 ± 54.6 | 9.9 | 90.6 | 123.6 | 163.8 | 356.8 |
Cardiovascular | 110.4 ± 48.4 | 5.4 | 74.8 | 105.5 | 140.8 | 298.1 |
Respiratory | 19.7 ± 19.4 | 0 | 6.6 | 14.5 | 27.9 | 131.7 |
Stroke | 61.4 ± 33.7 | 0 | 36.9 | 57.4 | 81.4 | 216.3 |
IHD | 36.6 ± 25.8 | 0 | 16.6 | 32.4 | 51.7 | 155.5 |
Gender | ||||||
Male | 189.4 ± 73.6 | 30.4 | 135.3 | 179.1 | 235 | 489.8 |
Female | 128.4 ± 55.7 | 9.9 | 87.6 | 121.8 | 160.2 | 403.7 |
Age (years) | ||||||
0–74 | 229.4 ± 88.5 | 0 | 165.1 | 218.4 | 286.1 | 648.2 |
75 + | 88.4 ± 31.3 | 8.6 | 65 | 86 | 107.5 | 205 |
Education level (years) | ||||||
0–6 | 197.1 ± 73.4 | 21.6 | 145.2 | 189.1 | 241.5 | 498.8 |
7+ | 104.6 ± 45.2 | 15.2 | 71.7 | 98.6 | 131.7 | 331.7 |
Cause | Mortality (%) | YLL (Years) | ||
---|---|---|---|---|
Estimate (95% CI) | p-Value | Estimate (95% CI) | p-Value | |
Non-accidental | 0.65 (0.08, 1.23) | 0.026 | 1.42 (−0.88, 3.72) | 0.226 |
Cardiorespiratory | 0.73 (−0.03, 1.50) | 0.061 | 0.65 (−0.56, 1.87) | 0.294 |
Cardiovascular | 1.12 (0.28, 1.97) | 0.009 | 0.92 (−0.19, 2.02) | 0.104 |
Respiratory | −1.01 (−2.73, 0.73) | 0.253 | −0.27 (−0.74, 0.21) | 0.272 |
Stroke | 0.84 (−0.27, 1.97) | 0.139 | 0.14 (−0.65, 0.94) | 0.724 |
IHD | 1.35 (−0.07, 2.79) | 0.062 | 0.47 (−0.16, 1.11) | 0.145 |
Cause/Subgroups | Mortality (%) | YLL (Years) | ||
---|---|---|---|---|
Estimate (95% CI) | p-Value | Estimate (95% CI) | p-Value | |
Non-accidental deaths | ||||
Male | 0.17 (−0.58, 0.93) | 0.651 | −0.04 (−1.84, 1.77) | 0.969 |
Female | 1.26 (0.42, 2.11) | 0.003 | 1.46 (0.10, 2.82) | 0.036 |
Youth | 0.57 (−0.30, 1.44) | 0.201 | 0.70 (−1.49, 2.88) | 0.531 |
Elderly | 0.71 (−0.03, 1.46) | 0.059 | 0.72 (0.05, 1.39) | 0.034 |
Low EL | 0.26 (−0.52, 1.05) | 0.513 | 0.62 (−1.18, 2.42) | 0.502 |
High EL | 1.18 (0.36, 2.00) | 0.005 | 1.25 (0.19, 2.32) | 0.021 |
Cardiovascular deaths | ||||
Male | 0.53 (−0.65, 1.71) | 0.38 | 0.02 (−0.88, 0.92) | 0.963 |
Female | 1.74 (0.56, 2.92) | 0.004 | 0.90 (0.24, 1.56) | 0.008 |
Youth | 0.89 (−0.50, 2.30) | 0.212 | 0.31 (−0.68, 1.30) | 0.536 |
Elderly | 1.22 (0.20, 2.26) | 0.019 | 0.60 (0.14, 1.07) | 0.011 |
Low EL | 1.07 (−0.17, 2.32) | 0.091 | 0.29 (−0.61, 1.20) | 0.525 |
High EL | 1.27 (0.14, 2.41) | 0.027 | 0.56 (−0.04, 1.16) | 0.069 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yu, C.; Yang, J.; Zhang, L.; Cui, F. Diurnal Temperature Range in Relation to Daily Mortality and Years of Life Lost in Wuhan, China. Int. J. Environ. Res. Public Health 2017, 14, 891. https://doi.org/10.3390/ijerph14080891
Zhang Y, Yu C, Yang J, Zhang L, Cui F. Diurnal Temperature Range in Relation to Daily Mortality and Years of Life Lost in Wuhan, China. International Journal of Environmental Research and Public Health. 2017; 14(8):891. https://doi.org/10.3390/ijerph14080891
Chicago/Turabian StyleZhang, Yunquan, Chuanhua Yu, Jin Yang, Lan Zhang, and Fangfang Cui. 2017. "Diurnal Temperature Range in Relation to Daily Mortality and Years of Life Lost in Wuhan, China" International Journal of Environmental Research and Public Health 14, no. 8: 891. https://doi.org/10.3390/ijerph14080891
APA StyleZhang, Y., Yu, C., Yang, J., Zhang, L., & Cui, F. (2017). Diurnal Temperature Range in Relation to Daily Mortality and Years of Life Lost in Wuhan, China. International Journal of Environmental Research and Public Health, 14(8), 891. https://doi.org/10.3390/ijerph14080891