Increase of Elderly Population in the Rainstorm Hazard Areas of China
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
2.2.1. RSHA Identification
2.2.2. Population Exposure Analysis
3. Results
3.1. Features of RSHA
3.2. Analysis of Population Exposure in the RSHA
3.2.1. Analysis of Population Exposure
3.2.2. Analysis of the Change in Population Exposure
4. Discussion
4.1. Predictions of the Future Population in the RSHA
4.2. Limitations
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; p. 111.
- Pachauri, R.K.; Meyer, L.A. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2014; p. 10.
- Li, K.; Wu, S.; Dai, E.; Xu, Z. Flood loss analysis and quantitative risk assessment in China. Nat. Hazards 2012, 63, 737–760. [Google Scholar] [CrossRef]
- EM-DAT Disaster Trends. Available online: http://www.emdat.be/disaster_trends/index.html (accessed on 6 April 2017).
- Ding, Y.; Zhang, J. Rainstorm and Flood; Meteorological Press: Beijing, China, 2009. [Google Scholar]
- Zhang, J.; Li, N. Quantitative Method and Application of Risk Assessment and Management of Main Meteorological Disasters; Beijing Normal University Press: Beijing, China, 2007. [Google Scholar]
- Preparation Committee of the National Climate Change Assessment Report. Second National Assessment Report on Climate Change; Science Press: Beijing, China, 2011; pp. 1–711.
- Wu, J.; Zhou, B.T.; Xu, Y. Response of precipitation and its extremes over China to warming: CMIP5 simulation and projection. Chinese J. Geophys. 2016, 58, 461–473. (in Chinese). [Google Scholar]
- Shi, M. Study on the Population Distribution of Coastal Lowlands and the Vulnerability of Natural Disasters in China; Shanghai Normal University: Shanghai, China, 2012. [Google Scholar]
- Qin, D. China's Extreme Weather and Climate Incident and Disaster Risk Management and Adaptation National Assessment Report; Science Press: Beijing, China, 2015; p. 13. [Google Scholar]
- Peduzzi, P.; Chatenoux, B.; Dao, H.; De Bono, A.; Herold, C.; Kossin, J.; Mouton, F.; Nordbeck, O. Global trends in tropical cyclone risk. Nat. Clim. Chang. 2012, 2, 289–294. [Google Scholar] [CrossRef]
- Ge, Q.; Zou, M.; Zheng, J. Integrated Assessment of Natural Disaster Risks in China; Science Press: Beijing, China, 2008; p. 204. [Google Scholar]
- Murray, V.; Ebi, K.L. IPCC special report on managing the risks of extreme events and disasters to advance climate change adaptation (SREX). J. Epidemiol. Community Health 2012, 66, 759–760. [Google Scholar] [CrossRef] [PubMed]
- Freire, S.; Aubrecht, C. Integrating population dynamics into mapping human exposure to seismic hazard. Nat. Hazards Earth Syst. Sci. 2012, 12, 3533–3543. [Google Scholar] [CrossRef] [Green Version]
- Jing, C.; Jiang, T.; Wang, Y.; Chen, J.; Jian, D.; Luo, L.; Buda, S.U. A study on regional extreme precipitation events and the exposure of population and economy in China. Acta Meteorol. Sin. 2016. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gao, C.; Wang, A.; Wang, Y.; Zhang, F.; Zhai, J.; Li, X.; Su, B. Temporal and spatial variation of exposure and vulnerability of flood disaster in China. Progressus Inquisitiones De Mutatione Climatis 2014, 5, 197–205. [Google Scholar]
- He, C.; Huang, Q.; Dou, Y.; Tu, W.; Liu, J. The population in China’s earthquake-prone areas has increased by over 32 million along with rapid urbanization. Environ. Res. Lett. 2016, 11, 74028. [Google Scholar] [CrossRef]
- Wood, N.J.; Schmidtlein, M.C. Community variations in population exposure to near-field tsunami hazards as a function of pedestrian travel time to safety. Nat. Hazards 2013, 65, 1603–1628. [Google Scholar] [CrossRef]
- Huang, D.; Zhang, L.; Gao, G. Changes in population exposure to high temperature under a future scenario in China and its influencing factors. J. Geogr. 2016, 71, 1189–1200. [Google Scholar]
- Jochem, W.C.; Sims, K.; Bright, E.A.; Urban, M.L.; Rose, A.N.; Coleman, P.R.; Bhaduri, B.L. Estimating traveler populations at airport and cruise terminals for population distribution and dynamics. Nat. Hazards 2013, 68, 1325–1342. [Google Scholar] [CrossRef]
- Jones, B.; O Neill, B.C.; Mcdaniel, L.; Mcginnis, S.; Mearns, L.O.; Tebaldi, C. Future population exposure to U.S. heat extremes. Nat. Clim. Chang. 2015, 5, 592–597. [Google Scholar] [CrossRef]
- Dianne, L.; Ebi, K.L.; Bertil, F. Factors increasing vulnerability to health effects before, during and after floods. Int. J. Environ. Res. Public Health 2013, 10, 7015–7067. [Google Scholar]
- Lane, K.; Charlesguzman, K.; Wheeler, K.; Abid, Z.; Graber, N.; Matte, T. Health effects of coastal storms and flooding in urban areas: A review and vulnerability assessment. J. Environ. Public Health 2013. [Google Scholar] [CrossRef] [PubMed]
- Alderman, K.; Turner, L.R.; Tong, S. Floods and human health: A systematic review. Environ. Int. 2012, 47, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Kar, N.; Mohapatra, P.K.; Nayak, K.C.; Pattanaik, P.; Swain, S.P.; Kar, H.C. Post-traumatic stress disorder in children and adolescents one year after a super-cyclone in Orissa, India: Exploring cross-cultural validity and vulnerability factors. BMC Psychiatry 2007, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social vulnerability to environmental hazards. Soc. Sci. Quart. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Ngo, E.B. When disasters and age collide: Reviewing vulnerability of the elderly. Nat. Hazards Rev. 2001, 2, 80–89. [Google Scholar] [CrossRef]
- Barusch, A.S. Disaster, vulnerability and older adults: Toward a social work response. J. Gerontol. Soc. Work 2011, 54, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Crimmins, A. The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment; Global Change Government: Washington, DC, USA, 2016.
- Climate Change and Population Ageing in China—An Emerging Public Health Perspective—China Express —Issue 4—The University of Sydney. Available online: http://sydney.edu.au/china_studies_centre/china_express/issue_4/features/Ageing-Population-Climate-Change.shtml (accessed on 20 August 2017).
- National Office for Aging. A Forecast Report on the Development Trend of Population Aging in China. Chinese Social Newspaper, 27 February 2017. (In Chinese) [Google Scholar]
- Allen, S.K.; Barros, V.; Burton, I.; Campbell-Lendrum, D.; Cardona, O.; Cutter, S.L.; Dube, O.P.; Ebi, K.L.; Field, C.B.; Handmer, J.W. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Cambridge University: Cambridge, UK, 2012. [Google Scholar]
- Fischer, E.M.; Beyerle, U.; Knutti, R. Robust spatially aggregated projections of climate extremes. Nat. Clim. Change 2013, 3, 1033–1038. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos. 2013, 118, 2473–2493. [Google Scholar] [CrossRef]
- Toreti, A.; Naveau, P.; Zampieri, M.; Schindler, A.; Scoccimarro, E.; Xoplaki, E.; Dijkstra, H.A.; Gualdi, S.; Luterbacher, J. Projections of global changes in precipitation extremes from coupled model intercomparison project phase 5 models. Geophys. Res. Lett. 2013, 40, 4887–4892. [Google Scholar] [CrossRef] [Green Version]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Tank, A.M.G.K.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111, 1042–1063. [Google Scholar] [CrossRef]
- Jiang, A.; Du, Y.; Xie, Z.; Ding, Y. Climatic trends of heavy precipitation spatial and temporal concentration in China. Acta. Geogr. Sin. 2005, 95, 10531–10534. [Google Scholar]
- Wang, W.; Xing, W.; Yang, T.; Shao, Q.; Peng, S.; Yu, Z.; Yong, B. Characterizing the changing behaviours of precipitation concentration in the Yangtze River Basin, China. Hydrobiol. Processes 2013, 27, 3375–3393. [Google Scholar] [CrossRef]
- Standard of Precipitation Intensity Grading Issued by the National Meteorological Administration. Available online: http://www.gov.cn/ztzl/2008tffy/content_1113935.htm (accessed on 5 June 2017).
- Peng, X. China’s demographic history and future challenges. Science 2011, 333, 581. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Day 2012—Ageing and Health; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Woo, J.; Kwok, T.; Sze, F.K.; Yuan, H.J. Ageing in China: Health and social consequences and responses. Int. J. Epidemiol 2002, 31, 772–775. [Google Scholar] [CrossRef]
- Qin, D. Climate Change—Regional Response and Disaster Prevention and Mitigation; Science Press: Beijing, China, 2009; p. 8. (In Chinese) [Google Scholar]
- Kron, W. Keynote lecture: Flood risk = hazard × exposure × vulnerability. Proc. Flood Defenc. 2002. [Google Scholar] [CrossRef]
Population and Year | RSHA | RSHAS | Mainland China | |||||||
---|---|---|---|---|---|---|---|---|---|---|
I | II | III | Total | I | II | III | Total | Total | ||
Total population | 1990 | 36.3 (3.2) | 217.9 (19.2) | 545.9 (48.1) | 800.1 (70.6) | 27.3 (2.4) | 66 (5.8) | 29.8 (2.6) | 123.1 (10.9) | 1133.7 (100) |
2000 | 40.7 (3.2) | 234.1 (18.5) | 591.4 (46.7) | 866.2 (68.4) | 30.7 (2.4) | 69.6 (5.5) | 32.7 (2.6) | 133 (10.5) | 1265.8 (100) | |
2010 | 46.6 (3.5) | 261.2 (19.5) | 602.4 (45) | 910.2 (67.9) | 36.1 (2.7) | 79.2 (5.9) | 33.1 (2.5) | 148.4 (11.1) | 1339.7 (100) | |
Elderly population | 1990 | 2 (3.2) | 12.9 (20.4) | 29.5 (46.7) | 44.4 (70.3) | 1.5 (2.3) | 4.1 (6.5) | 1.6 (2.5) | 7.2 (11.3) | 63.2 (100) |
2000 | 2.8 (3.2) | 18.3 (20.7) | 40.9 (46.4) | 62 (70.3) | 2.1 (2.4) | 5.7 (6.4) | 2.3 (2.6) | 10 (11.4) | 88.1 (100) | |
2010 | 3.7 (3.1) | 23.9 (20.1) | 55 (46.3) | 82.6 (69.5) | 2.8 (2.3) | 7.4 (6.3) | 3 (2.5) | 13.2 (11.1) | 118.8 (100) | |
Children | 1990 | 11.1 (3.5) | 61.2 (19.5) | 153.4 (48.8) | 225.6 (71.9) | 8.3 (2.6) | 17 (5.4) | 8.9 (2.8) | 34.2 (10.9) | 314 (100) |
2000 | 9.2 (3.2) | 53.4 (18.4) | 141.3 (48.7) | 203.8 (70.3) | 6.8 (2.4) | 14.5 (5) | 8 (2.8) | 29.4 (10.1) | 289.8 (100) | |
2010 | 7.2 (3.3) | 45.1 (20.3) | 103.3 (46.4) | 155.7 (70) | 5.5 (2.5) | 12.4 (5.6) | 5.9 (2.7) | 23.7 (10.7) | 222.5 (100) |
Area | 1990 | 2000 | 2010 | |||
---|---|---|---|---|---|---|
Percentage of the Elderly | Percentage of Children | Percentage of the Elderly | Percentage of Children | Percentage of the Elderly | Percentage of Children | |
RSHA | 5.6 | 28.2 | 7.2 | 23.5 | 9.1 | 17.1 |
RSHAS | 5.8 | 27.8 | 7.5 | 22.1 | 8.9 | 16 |
Mainland China | 5.6 | 27.7 | 7.0 | 22.9 | 8.9 | 16.6 |
Area | RSHA | RSHAS | Mainland China | |||||||
---|---|---|---|---|---|---|---|---|---|---|
I | II | III | Total | I | II | III | Total | Total | ||
From 1990 to 2010 | Total population | 10.4 (28.6) | 43.3 (19.8) | 56.6 (10.4) | 110.2 (13.8) | 8.8 (32.2) | 13.2 (20) | 3.3 (11) | 25.3 (20.6) | 206 (18.2) |
Elderly population | 1.7 (84.4) | 11 (85.6) | 25.5 (86.4) | 38.2 (86.1) | 1.3 (87.4) | 3.4 (82.1) | 1.4 (88) | 6.1 (84.5) | 55.7 (88.2) | |
Children | −3.9 (−34.7) | −16.1 (−26.3) | −50 (−32.6) | −70 (−31) | −2.8 (−34.2) | −4.6 (−27.2) | −3 (−33.7) | −10.5 (−30.6) | −91.5 (−29.1) | |
From 2000 to 2010 | Total population | 5.9 (14.5) | 27.1 (11.6) | 11 (1.9) | 44 (5.1) | 5.4 (17.6) | 9.6 (13.8) | 0.4 (1.2) | 15.4 (11.6) | 73.9 (5.8) |
Elderly population | 0.8 (29.1) | 5.7 (31.1) | 14.2 (34.7) | 20.7 (33.4) | 0.7 (32) | 1.8 (31.8) | 0.7 (32.8) | 3.2 (32.1) | 30.7 (34.9) | |
Children | −2 (−21.4) | −8.3 (−15.5) | −37.9 (−26.9) | −48.2 (−23.6) | −1.4 (−19.9) | −2.1 (−14.7) | −2.1 (−26.6) | −5.6 (−19.2) | −67.3 (−23.2) | |
From 1990 to 2000 | Total population | 4.5 (12.3) | 16.1 (7.4) | 45.6 (8.3) | 66.2 (8.3) | 3.4 (12.4) | 3.6 (5.5) | 2.9 (9.7) | 9.9 (8) | 132.1 (11.7) |
Elderly population | 0.9 (42.9) | 5.4 (41.5) | 11.4 (38.4) | 17.6 (39.5) | 0.6 (42) | 1.6 (38.1) | 0.7 (41.6) | 2.8 (39.7) | 25 (39.5) | |
Children | −1.9 (−16.9) | −7.8 (−12.8) | −12.1 (−7.9) | −21.8 (−9.7) | −1.5 (−17.8) | −2.5 (−14.7) | −0.9 (−9.6) | −4.8 (−14.1) | −24.2 (−7.7) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, P.; Xu, W.; Ma, Y.; Zhao, X.; Qin, L. Increase of Elderly Population in the Rainstorm Hazard Areas of China. Int. J. Environ. Res. Public Health 2017, 14, 963. https://doi.org/10.3390/ijerph14090963
Liang P, Xu W, Ma Y, Zhao X, Qin L. Increase of Elderly Population in the Rainstorm Hazard Areas of China. International Journal of Environmental Research and Public Health. 2017; 14(9):963. https://doi.org/10.3390/ijerph14090963
Chicago/Turabian StyleLiang, Pujun, Wei Xu, Yunjia Ma, Xiujuan Zhao, and Lianjie Qin. 2017. "Increase of Elderly Population in the Rainstorm Hazard Areas of China" International Journal of Environmental Research and Public Health 14, no. 9: 963. https://doi.org/10.3390/ijerph14090963
APA StyleLiang, P., Xu, W., Ma, Y., Zhao, X., & Qin, L. (2017). Increase of Elderly Population in the Rainstorm Hazard Areas of China. International Journal of Environmental Research and Public Health, 14(9), 963. https://doi.org/10.3390/ijerph14090963